Skip to content



Page 3 of 4

  1. Content type: Research

    In the open ocean, eddies and associated structures (fronts, filaments) have strong influences on the foraging activities of top-predators through the enhancement and the distribution of marine productivity, z...

    Authors: Cecile Bon, Alice Della Penna, Francesco d’Ovidio, John Y.P. Arnould, Timothée Poupart and Charles-André Bost

    Citation: Movement Ecology 2015 3:32

    Published on:

  2. Content type: Methodology article

    Detailed information about animal location and movement is often crucial in studies of natural behaviour and how animals respond to anthropogenic activities. Dead-reckoning can be used to infer such detailed i...

    Authors: Paul J. Wensveen, Len Thomas and Patrick J. O. Miller

    Citation: Movement Ecology 2015 3:31

    Published on:

  3. Content type: Research

    Marine predators are ecosystem sentinels because their foraging behaviour and reproductive success reflect the variability occurring in the lower trophic levels of the ecosystem. In an era of environmental cha...

    Authors: Michel Widmann, Akiko Kato, Ben Raymond, Frédéric Angelier, Benjamin Arthur, Olivier Chastel, Marie Pellé, Thierry Raclot and Yan Ropert-Coudert

    Citation: Movement Ecology 2015 3:30

    Published on:

  4. Content type: Software article

    Smart tags attached to freely-roaming animals recording multiple parameters at infra-second rates are becoming commonplace, and are transforming our understanding of the way wild animals behave. Interpretation...

    Authors: James S. Walker, Mark W. Jones, Robert S. Laramee, Mark D. Holton, Emily LC Shepard, Hannah J. Williams, D. Michael Scantlebury, Nikki, J. Marks, Elizabeth A. Magowan, Iain E. Maguire, Owen R. Bidder, Agustina Di Virgilio and Rory P. Wilson

    Citation: Movement Ecology 2015 3:29

    Published on:

  5. Content type: Research

    To meet the minimum energetic requirements needed to support parents and their provisioned offspring, the timing of breeding in birds typically coincides with periods of high food abundance. Seasonality and sy...

    Authors: Melinda G. Conners, Elliott L. Hazen, Daniel P. Costa and Scott A. Shaffer

    Citation: Movement Ecology 2015 3:28

    Published on:

  6. Content type: Research

    Behaviour and time spent active and inactive are key factors in animal ecology, with important consequences for bioenergetics. For the first time, here, we equipped the gastropod Tectus (= Trochus) niloticus with...

    Authors: Aurélie Jolivet, Laurent Chauvaud, Julien Thébault, Anthony A. Robson, Pascal Dumas, George Amos and Anne Lorrain

    Citation: Movement Ecology 2015 3:26

    Published on:

  7. Content type: Research

    Whether, and how, animals move requires them to assess their environment to determine the most appropriate action and trajectory, although the precise way the environment is scanned has been little studied. We...

    Authors: Gwendoline Ixia Wilson, Brad Norman, James Walker, Hannah J. Williams, M. D. Holton, D. Clarke and Rory P. Wilson

    Citation: Movement Ecology 2015 3:24

    Published on:

  8. Content type: Methodology article

    Research on wild animal ecology is increasingly employing GPS telemetry in order to determine animal movement. However, GPS systems record position intermittently, providing no information on latent position o...

    Authors: O. R. Bidder, J. S. Walker, M. W. Jones, M. D. Holton, P. Urge, D. M. Scantlebury, N. J. Marks, E. A. Magowan, I. E. Maguire and R. P. Wilson

    Citation: Movement Ecology 2015 3:23

    Published on:

  9. Content type: Research

    The energy requirements of free-ranging marine mammals are challenging to measure due to cryptic and far-ranging feeding habits, but are important to quantify given the potential impacts of high-level predator...

    Authors: JL Maresh, T. Adachi, A. Takahashi, Y. Naito, DE Crocker, M. Horning, TM Williams and DP Costa

    Citation: Movement Ecology 2015 3:22

    Published on:

  10. Content type: Research

    Waterfowl can exploit distant ephemeral wetlands in arid environments and provide valuable insights into the response of birds to rapid environmental change, and behavioural flexibility of avian movements. Cur...

    Authors: John F. McEvoy, David A. Roshier, Raoul F. H. Ribot and Andy T. D. Bennett

    Citation: Movement Ecology 2015 3:21

    Published on:

  11. Content type: Research

    Given that winds encountered on migration could theoretically double or half the energy expenditure of aerial migrants, there should be strong selection on behaviour in relation to wind conditions aloft. Howev...

    Authors: Greg W Mitchell, Bradley K Woodworth, Philip D Taylor and D Ryan Norris

    Citation: Movement Ecology 2015 3:19

    Published on:

  12. Content type: Research

    Establishing patterns of movements of free-ranging animals in marine ecosystems is crucial for a better understanding of their feeding ecology, life history traits and conservation. As central place foragers, ...

    Authors: Maud Berlincourt and John P. Y. Arnould

    Citation: Movement Ecology 2015 3:16

    Published on:

  13. Content type: Research

    Population connectivity, which is essential for the persistence of benthic marine metapopulations, depends on how life history traits and the environment interact to influence larval production, dispersal and ...

    Authors: Eric A. Treml, John R. Ford, Kerry P. Black and Stephen E. Swearer

    Citation: Movement Ecology 2015 3:17

    Published on:

  14. Content type: Research

    Paired with satellite location telemetry, animal-borne instruments can collect spatiotemporal data describing the animal’s movement and environment at a scale relevant to its behavior.

    Authors: Laurie L Baker, Joanna E Mills Flemming, Ian D Jonsen, Damian C Lidgard, Sara J Iverson and W Don Bowen

    Citation: Movement Ecology 2015 3:20

    Published on:

  15. Content type: Methodology Article

    The Brownian bridge movement model (BBMM) provides a biologically sound approximation of the movement path of an animal based on discrete location data, and is a powerful method to quantify utilization distrib...

    Authors: Kevin Buchin, Stef Sijben, E Emiel van Loon, Nir Sapir, Stéphanie Mercier, T Jean Marie Arseneau and Erik P Willems

    Citation: Movement Ecology 2015 3:18

    Published on:

  16. Content type: Research

    A population of humpback whales (Megaptera novaeangliae) spends the austral summer feeding on Antarctic krill (Euphausia superba) along the Western Antarctic Peninsula (WAP). These whales acquire their annual ene...

    Authors: Corrie Curtice, David W Johnston, Hugh Ducklow, Nick Gales, Patrick N Halpin and Ari S Friedlaender

    Citation: Movement Ecology 2015 3:13

    Published on:

  17. Content type: Research

    Free ranging foraging animals can vary their searching intensity in response to the profitability of the environment by modifying their movements. Marine diving animals forage in a three dimensional space and ...

    Authors: Virginie Ramasco, Frédéric Barraquand, Martin Biuw, Bernie McConnell and Kjell T Nilssen

    Citation: Movement Ecology 2015 3:15

    Published on:

  18. Content type: Review

    Animal movement patterns in space and time are a central aspect of animal ecology. Remotely-sensed environmental indices can play a key role in understanding movement patterns by providing contiguous, relative...

    Authors: Wiebke Neumann, Sebastian Martinuzzi, Anna B Estes, Anna M Pidgeon, Holger Dettki, Göran Ericsson and Volker C Radeloff

    Citation: Movement Ecology 2015 3:8

    Published on:

  19. Content type: Research

    An adaption of the optimal foraging theory suggests that herbivores deplete, depart, and finally return to foraging patches leaving time for regrowth [van Moorter et al., Oikos 118:641–652, 2009]. Inter-patch ...

    Authors: Dana P Seidel and Mark S Boyce

    Citation: Movement Ecology 2015 3:7

    Published on:

  20. Content type: Research

    The spatial distribution of forage resources is a major driver of animal movement patterns. Understanding where animals forage is important for the conservation of multi-species communities, since interspecifi...

    Authors: Anna K Schweiger, Martin Schütz, Pia Anderwald, Michael E Schaepman, Mathias Kneubühler, Rudolf Haller and Anita C Risch

    Citation: Movement Ecology 2015 3:6

    Published on:

  21. Content type: Review

    The processes that cause and influence movement are one of the main points of enquiry in movement ecology. However, ecology is not the only discipline interested in movement: a number of information sciences a...

    Authors: Urška Demšar, Kevin Buchin, Francesca Cagnacci, Kamran Safi, Bettina Speckmann, Nico Van de Weghe, Daniel Weiskopf and Robert Weibel

    Citation: Movement Ecology 2015 3:5

    Published on:

  22. Content type: Research

    Identifying movement routes and stopover sites is necessary for developing effective management and conservation strategies for migratory animals. In the case of migratory birds, a collection of migration rout...

    Authors: Eric C Palm, Scott H Newman, Diann J Prosser, Xiangming Xiao, Luo Ze, Nyambayar Batbayar, Sivananinthaperumal Balachandran and John Y Takekawa

    Citation: Movement Ecology 2015 3:3

    Published on:

  23. Content type: Research

    Accelerometers are useful tools for biologists seeking to gain a deeper understanding of the daily behavior of cryptic species. We describe how we used GPS and tri-axial accelerometer (sampling at 64 Hz) colla...

    Authors: Yiwei Wang, Barry Nickel, Matthew Rutishauser, Caleb M Bryce, Terrie M Williams, Gabriel Elkaim and Christopher C Wilmers

    Citation: Movement Ecology 2015 3:2

    Published on:

  24. Content type: Research

    Tracking individual animals using satellite telemetry has improved our understanding of animal movements considerably. Nonetheless, thorough statistical treatment of Argos datasets is often jeopardized by thei...

    Authors: Jean-François Therrien, David Pinaud, Gilles Gauthier, Nicolas Lecomte, Keith L Bildstein and Joël Bety

    Citation: Movement Ecology 2015 3:1

    Published on:

  25. Content type: Software article

    The study of animal movement is experiencing rapid progress in recent years, forcefully driven by technological advancement. Biologgers with Acceleration (ACC) recordings are becoming increasingly popular in t...

    Authors: Yehezkel S Resheff, Shay Rotics, Roi Harel, Orr Spiegel and Ran Nathan

    Citation: Movement Ecology 2014 2:27

    Published on:

  26. Content type: Research

    Linking animal movements to landscape features is critical to identify factors that shape the spatial behaviour of animals. Habitat selection is led by behavioural decisions and is shaped by the environment, t...

    Authors: Mirjana Bevanda, Ned Horning, Bjoern Reineking, Marco Heurich, Martin Wegmann and Joerg Mueller

    Citation: Movement Ecology 2014 2:26

    Published on:

  27. Content type: Research

    Animals adjust activity budgets as competing demands for limited time and energy shift across life history phases. For far-ranging migrants and especially pelagic seabirds, activity during breeding and migrati...

    Authors: Sarah E Gutowsky, Lee FG Gutowsky, Ian D Jonsen, Marty L Leonard, Maura B Naughton, Marc D Romano and Scott A Shaffer

    Citation: Movement Ecology 2014 2:23

    Published on:

  28. Content type: Research

    Little is known about migration patterns and seasonal distribution away from coastal summer feeding habitats of many pelagic baleen whales. Recently, large-scale passive acoustic monitoring networks have becom...

    Authors: Denise Risch, Manuel Castellote, Christopher W Clark, Genevieve E Davis, Peter J Dugan, Lynne EW Hodge, Anurag Kumar, Klaus Lucke, David K Mellinger, Sharon L Nieukirk, Cristian Marian Popescu, Christian Ramp, Andrew J Read, Aaron N Rice, Monica A Silva, Ursula Siebert…

    Citation: Movement Ecology 2014 2:24

    Published on:

  29. Content type: Review

    Animal movement is essential to our understanding of population dynamics, animal behavior, and the impacts of global change. Coupled with high-resolution biotelemetry data, exciting new inferences about animal...

    Authors: Brett T McClintock, Devin S Johnson, Mevin B Hooten, Jay M Ver Hoef and Juan M Morales

    Citation: Movement Ecology 2014 2:21

    Published on:

  30. Content type: Research

    Windscapes affect energy costs for flying animals, but animals can adjust their behavior to accommodate wind-induced energy costs. Theory predicts that flying animals should decrease air speed to compensate fo...

    Authors: Kyle Hamish Elliott, Lorraine S Chivers, Lauren Bessey, Anthony J Gaston, Scott A Hatch, Akiko Kato, Orla Osborne, Yan Ropert-Coudert, John R Speakman and James F Hare

    Citation: Movement Ecology 2014 2:17

    Published on:

  31. Content type: Methodology article

    Migratory species face numerous threats related to human encroachment and climate change. Several migratory populations are declining and individuals are losing their migratory behaviour. To understand how hab...

    Authors: Mael Le Corre, Christian Dussault and Steeve D Côté

    Citation: Movement Ecology 2014 2:19

    Published on:

  32. Content type: Review

    Dispersal of pollen and seeds are essential functions of plant species, with far-reaching demographic, ecological and evolutionary consequences. Interest in plant dispersal has increased with concerns about th...

    Authors: Juan J Robledo-Arnuncio, Etienne K Klein, Helene C Muller-Landau and Luis Santamaría

    Citation: Movement Ecology 2014 2:16

    Published on:

  33. Content type: Research

    Dispersal has a critical influence on demography and gene flow and as such maintaining connectivity between populations is an essential element of modern conservation. Advances in satellite radiotelemetry are ...

    Authors: Joshua Killeen, Henrik Thurfjell, Simone Ciuti, Dale Paton, Marco Musiani and Mark S Boyce

    Citation: Movement Ecology 2014 2:15

    Published on:

  34. Content type: Research

    Foraging movements of animals shape their efficiency in finding food and their exposure to the environment while doing so. Our goal was to test the optimal foraging theory prediction that territorial acorn woo...

    Authors: Pamela G Thompson, Peter E Smouse, Douglas G Scofield and Victoria L Sork

    Citation: Movement Ecology 2014 2:12

    Published on:

  35. Content type: Research

    Many animals are known to have improved navigational efficiency when moving together as a social group. One potential mechanism for social group navigation is known as the ‘many wrongs principle’, where inform...

    Authors: Edward A Codling and Nikolai WF Bode

    Citation: Movement Ecology 2014 2:11

    Published on:

  36. Content type: Commentary

    Billions of organisms travel through the air, influencing population dynamics, community interactions, ecosystem services and our lives in many different ways. Yet monitoring these movements are technically ve...

    Authors: Judy Shamoun-Baranes, Jose A Alves, Silke Bauer, Adriaan M Dokter, Ommo Hüppop, Jarmo Koistinen, Hidde Leijnse, Felix Liechti, Hans van Gasteren and Jason W Chapman

    Citation: Movement Ecology 2014 2:9

    Published on:

  37. Content type: Research

    How foragers move across the landscape to search for resources and obtain energy is a central issue in ecology. Direct energetic quantification of animal movements allows for testing optimal foraging theory pr...

    Authors: Maite Louzao, Thorsten Wiegand, Frederic Bartumeus and Henri Weimerskirch

    Citation: Movement Ecology 2014 2:8

    Published on:

  38. Content type: Review

    Seed dispersal alters gene flow, reproduction, migration and ultimately spatial organization of dryland ecosystems. Because many seeds in drylands lack adaptations for long-distance dispersal, seed transport b...

    Authors: Sally E Thompson, Shmuel Assouline, Li Chen, Ana Trahktenbrot, Tal Svoray and Gabriel G Katul

    Citation: Movement Ecology 2014 2:7

    Published on:

    The Correction article to this article has been published in Movement Ecology 2014 2:14

  39. Content type: Methodology article

    Animal-borne accelerometers measure body orientation and movement and can thus be used to classify animal behaviour. To univocally and automatically analyse the large volume of data generated, we need classifi...

    Authors: Roeland A Bom, Willem Bouten, Theunis Piersma, Kees Oosterbeek and Jan A van Gils

    Citation: Movement Ecology 2014 2:6

    Published on: