Richner H. The effect of extra food on fitness in breeding carrion crows. Ecology. 1992;73:330–5.
Article
Google Scholar
Stephens DW, Krebs JR. Foraging theory. Princeton: Princeton University Press; 1986.
Google Scholar
Bost CA, Cotté C, Terray P, Barbraud C, Bon C, Delord K, et al. Large-scale climatic anomalies affect marine predator foraging behaviour and demography. Nat Commun. 2015;6:8220.
Article
CAS
Google Scholar
Allen AM, Singh NJ. Linking movement ecology with wildlife management and conservation. Front Ecol Evol. 2016;3.
Bograd S, Block B, Costa D, Godley B. Biologging technologies: new tools for conservation. Introd Endanger Spec Res. 2010;10:1–7.
Article
Google Scholar
Naito Y. How can we observe the underwater feeding behavior of endotherms? Polar Sci. 2007;1:101–11.
Article
Google Scholar
Carter MID, Bennett KA, Embling CB, Hosegood PJ, Russell DJF. Navigating uncertain waters: a critical review of inferring foraging behaviour from location and dive data in pinnipeds. Mov Ecol. 2016;4:25.
Article
Google Scholar
Volpov BL, Rosen DAS, Hoskins AJ, Lourie HJ, Dorville N, Baylis AMM, et al. Dive characteristics can predict foraging success in Australian fur seals (Arctocephalus pusillus doriferus) as validated by animal-borne video. Biol Open. 2016;5:262–71.
Article
Google Scholar
Kuhn CE, Crocker DE, Tremblay Y, Costa DP. Time to eat: measurements of feeding behaviour in a large marine predator, the northern elephant seal Mirounga angustirostris. J Anim Ecol. 2009;78:513–23.
Article
Google Scholar
Suzuki I, Naito Y, Folkow LP, Miyazaki N, Blix AS. Validation of a device for accurate timing of feeding events in marine animals. Polar Biol. 2009;32:667–71.
Article
Google Scholar
Viviant M, Trites AW, Rosen DAS, Monestiez P, Guinet C. Prey capture attempts can be detected in Steller sea lions and other marine predators using accelerometers. Polar Biol. 2010;33:713–9.
Article
Google Scholar
Allegue H, Thomas A, Liu Y, Trites A. Harbour seals responded differently to pulses of out-migrating coho and Chinook smolts. Mar Ecol Prog Ser. 2020;647:211–27.
Article
Google Scholar
Le Bras Y, Jouma’a J, Picard B, Guinet C, Wiebe P, Fincke J. How elephant seals (Mirounga leonina) adjust their fine scale horizontal movement and diving behaviour in relation to prey encounter rate. Hemmi JM, editor. PLoS One. 2016;11:e0167226.
Jeanniard-du-Dot T, Guinet C, Arnould JPY, Speakman JR, Trites AW. Accelerometers can measure total and activity-specific energy expenditures in free-ranging marine mammals only if linked to time-activity budgets. Funct Ecol. 2016;31:377–86.
Article
Google Scholar
McMahon CR, Hindell MA, Charrassin JB, Corney S, Guinet C, Harcourt R, et al. Finding mesopelagic prey in a changing Southern Ocean. Sci Rep. 2019;9:1–11.
Article
Google Scholar
Roncon G, Bestley S, McMahon CR, Wienecke B, Hindell MA. View from below: inferring behavior and physiology of southern ocean marine predators from dive telemetry. Front Mar Sci. 2018;5:464.
Article
Google Scholar
Pyke GH, Pulliam HR, Charnov EL. Optimal foraging: a selective review of theory and tests. Q Rev Biol. 1977;52:137–54.
Article
Google Scholar
Kareiva PM, Odell G. Swarms of predators exhibit “preytaxis” if individual predators use area-restricted search. Am Nat. 1987;130:233–70.
Article
Google Scholar
Weimerskirch H, Pinaud D, Pawlowski F, Bost C. Does prey capture induce area-restricted search? a fine-scale study using GPS in a marine predator, the wandering albatross. Am Nat. 2007;170:734–43.
Article
Google Scholar
Bell WJ. Sources of information controlling motor patterns in arthropod local search orientation. J Insect Physiol. 1985;31:837–47.
Article
Google Scholar
Robinson PW, Simmons SE, Crocker DE, Costa DP. Measurements of foraging success in a highly pelagic marine predator, the northern elephant seal. J Anim Ecol. 2010;79:1146–56.
Article
CAS
Google Scholar
Bailey H, Fossette S, Bograd SJ, Shillinger GL, Swithenbank AM, Georges J-Y, et al. Movement patterns for a critically endangered species, the leatherback turtle (Dermochelys coriacea), linked to foraging success and population status. PLoS ONE. 2012;7: e36401.
Article
CAS
Google Scholar
Pacheco-Cobos L, Winterhalder B, Cuatianquiz-Lima C, Rosetti MF, Hudson R, Ross CT. Nahua mushroom gatherers use area-restricted search strategies that conform to marginal value theorem predictions. Proc Natl Acad Sci. 2019;116:10339–47.
Article
CAS
Google Scholar
Bovet P, Benhamou S. Spatial analysis of animals’ movements using a correlated random walk model. J Theor Biol. 1988;131:419–33.
Article
Google Scholar
Nolet BA, Mooij WM. Search paths of swans foraging on spatially autocorrelated tubers. J Anim Ecol. 2002;71:451–62.
Article
Google Scholar
Jonsen ID, McMahon CR, Patterson TA, Auger-Méthé M, Harcourt R, Hindell MA, et al. Movement responses to environment: fast inference of variation among southern elephant seals with a mixed effects model. Ecology. 2019;100: e02566.
Article
CAS
Google Scholar
Fauchald P, Tveraa T. Using first-passage time in the analysis of area-restricted search and habitat selection. Ecology. 2003;84:282–8.
Article
Google Scholar
Barraquand F, Benhamou S. Animal movements in heterogeneous landscapes: identifying profitable places and homogeneous movement bouts. Ecology. 2008;89:3336–48.
Article
Google Scholar
Knell AS, Codling EA. Classifying area-restricted search (ARS) using a partial sum approach. Theor Ecol. 2012;5:325–39.
Article
Google Scholar
Kramer DL. The behavioral ecology of air breathing by aquatic animals. Can J Zool. 1988;66:89–94.
Article
Google Scholar
Kooyman GL, Ponganis PJ. The physiological basis of diving to depth: birds and mammals. Annu Rev Physiol. 1998;60:19–32.
Article
CAS
Google Scholar
Orians GH, Pearson NE. On the theory of central place foraging. In: Horn DJ, Stairs GR, Mitchell RD, editors. Anal Ecol syst. Columbus: Ohio State Univ. Press; 1979. p. 155–77.
Google Scholar
Houston AI, McNamara JM. A general theory of central place foraging for single-prey loaders. Theor Popul Biol. 1985;28:233–62.
Article
Google Scholar
Houston AI, Carbone C. The optimal allocation of time during the diving cycle. Behav Ecol. 1992;3:255–65.
Article
Google Scholar
Carbone C, Houston AI. The optimal allocation of time over the dive cycle: an approach based on aerobic and anaerobic respiration. Anim Behav. 1996;51:1247–55.
Article
Google Scholar
Thompson D, Fedak MA. How long should a dive last? A simple model of foraging decisions by breath-hold divers in a patchy environment. Anim Behav. 2001;61:287–96.
Article
Google Scholar
Mori Y. The optimal allocation of time and respiratory metabolism over the dive cycle. Behav Ecol. 1999;10:155–60.
Article
Google Scholar
Mori Y, Takahashi A, Mehlum F, Watanuki Y. An application of optimal diving models to diving behaviour of Brünnich’s guillemots. Anim Behav. 2002;64:739–45.
Article
Google Scholar
Elliott KH, Davoren GK, Gaston AJ. Time allocation by a deep-diving bird reflects prey type and energy gain. Anim Behav. 2008;75:1301–10.
Article
Google Scholar
Ropert-Coudert Y, Kato A, Baudat J, Bost C-A, Le Maho Y, Naito Y. Time/depth usage of Adélie penguins: an approach based on dive angles. Polar Biol. 2001;24:467–70.
Article
Google Scholar
Sato K, Charrassin J-B, Bost C-A, Naito Y. Why do macaroni penguins choose shallow body angles that result in longer descent and ascent durations? J Exp Biol. 2004;207:4057–65.
Article
Google Scholar
Hanuise N, Bost C-A, Handrich Y. Optimization of transit strategies while diving in foraging king penguins. J Zool. 2013;290:181–91.
Article
Google Scholar
Tessier E, Bost C-A. Behavioural adjustments during foraging in two diving seabirds: king and macaroni penguins. Mar Biol. 2020;167:138.
Article
Google Scholar
Gallon S, Bailleul F, Charrassin J-B, Guinet C, Bost C-A, Handrich Y, et al. Identifying foraging events in deep diving southern elephant seals, Mirounga leonina, using acceleration data loggers. Deep Sea Res Part II Top Stud Oceanogr. 2013;88:14–22.
Article
Google Scholar
Vacquié-Garcia J, Guinet C, Dragon A-C, Viviant M, Ksabi NE, Bailleul F. Predicting prey capture rates of southern elephant seals from track and dive parameters. Mar Ecol Prog Ser. 2015;541:265–77.
Article
Google Scholar
Lescroël A, Ballard G, Toniolo V, Barton KJ, Wilson PR, Lyver PO’B, et al. Working less to gain more: when breeding quality relates to foraging efficiency. Ecology. 2010;91:2044–55.
Article
Google Scholar
Hanuise N, Bost C-A, Huin W, Auber A, Halsey LG, Handrich Y. Measuring foraging activity in a deep-diving bird: comparing wiggles, oesophageal temperatures and beak-opening angles as proxies of feeding. J Exp Biol. 2010;213:3874–80.
Article
Google Scholar
Heerah K, Hindell M, Guinet C, Charrassin J-B. A new method to quantify within dive foraging behaviour in marine predators. PLoS ONE. 2014;9: e99329.
Article
Google Scholar
Bost CA, Handrich Y, Butler PJ, Fahlman A, Halsey LG, Woakes AJ, et al. Changes in dive profiles as an indicator of feeding success in king and Adélie penguins. Deep Sea Res Part II Top Stud Oceanogr. 2007;54:248–55.
Article
Google Scholar
Simeone A, Wilson RP. In-depth studies of Magellanic penguin (Spheniscus magellanicus) foraging: can we estimate prey consumption by perturbations in the dive profile? Mar Biol. 2003;143:825–31.
Article
Google Scholar
Carroll G, Slip D, Jonsen I, Harcourt R. Supervised accelerometry analysis can identify prey capture by penguins at sea. J Exp Biol. 2014;217:4295–302.
Google Scholar
Cornick LA, Horning M. A test of hypotheses based on optimal foraging considerations for a diving mammal using a novel experimental approach. Can J Zool. 2003;81:1799–807.
Article
Google Scholar
Sparling CE, Georges J-Y, Gallon SL, Fedak M, Thompson D. How long does a dive last? Foraging decisions by breath-hold divers in a patchy environment: a test of a simple model. Anim Behav. 2007;74:207–18.
Article
Google Scholar
Foo D, Semmens JM, Arnould JPY, Dorville N, Hoskins AJ, Abernathy K, et al. Testing optimal foraging theory models on benthic divers. Anim Behav. 2016;112:127–38.
Article
Google Scholar
Robinson PW, Tremblay Y, Crocker DE, Kappes MA, Kuhn CE, Shaffer SA, et al. A comparison of indirect measures of feeding behaviour based on ARGOS tracking data. Deep Sea Res Part II Top Stud Oceanogr. 2007;54:356–68.
Article
Google Scholar
Viviant M, Monestiez P, Guinet C. Can we predict foraging success in a marine predator from dive patterns only? Validation with prey capture attempt data. PLoS ONE. 2014;9: e88503.
Article
Google Scholar
Viviant M, Jeanniard-du-Dot T, Monestiez P, Authier M, Guinet C. Bottom time does not always predict prey encounter rate in Antarctic fur seals. Funct Ecol. 2016;30:1834–44.
Article
Google Scholar
Thums M, Bradshaw CJA, Sumner MD, Horsburgh JM, Hindell MA. Depletion of deep marine food patches forces divers to give up early. J Anim Ecol. 2013;82:72–83.
Article
Google Scholar
Austin D, Bowen WD, McMillan JI, Iverson SJ. Linking movement, diving, and habitat to foraging success in a large marine predator. Ecology. 2006;87:3095–108.
Article
Google Scholar
Heaslip SG, Bowen WD, Iverson SJ. Testing predictions of optimal diving theory using animal-borne video from harbour seals (Phoca vitulina concolor). Can J Zool. 2014;92:309–18.
Article
CAS
Google Scholar
Watanabe YY, Ito M, Takahashi A. Testing optimal foraging theory in a penguin–krill system. Proc R Soc B Biol Sci. 2014;281:20132376.
Article
Google Scholar
Labrousse S, Vacquié-Garcia J, Heerah K, Guinet C, Sallée J-B, Authier M, et al. Winter use of sea ice and ocean water mass habitat by southern elephant seals: the length and breadth of the mystery. Prog Oceanogr. 2015;137:52–68.
Article
Google Scholar
Dingemanse NJ, Kazem AJN, Réale D, Wright J. Behavioural reaction norms: animal personality meets individual plasticity. Trends Ecol Evol. 2010;25:81–9.
Article
Google Scholar
Stamps JA. Individual differences in behavioural plasticities. Biol Rev. 2016;91:534–67.
Article
Google Scholar
Hindell MA, McMahon CR, Bester MN, Boehme L, Costa D, Fedak MA, et al. Circumpolar habitat use in the southern elephant seal: implications for foraging success and population trajectories. Ecosphere. 2016;7: e01213.
Article
Google Scholar
Bailleul F, Authier M, Ducatez S, Roquet F, Charrassin J-B, Cherel Y, et al. Looking at the unseen: combining animal bio-logging and stable isotopes to reveal a shift in the ecological niche of a deep diving predator. Ecography (Cop). 2010;33:709–19.
Article
Google Scholar
Mestre J, Authier M, Cherel Y, Harcourt R, McMahon CR, Hindell MA, et al. Decadal changes in blood δ 13 C values, at-sea distribution, and weaning mass of southern elephant seals from Kerguelen Islands. Proc R Soc B Biol Sci; 2020;287:20201544
Hindell MA, McMahon CR, Jonsen I, Harcourt R, Arce F, Guinet C. Inter- and intrasex habitat partitioning in the highly dimorphic southern elephant seal. Ecol Evol. 2021;11:1620–33.
Article
Google Scholar
Bailleul F, Charrassin J-B, Monestiez P, Roquet F, Biuw M, Guinet C. Successful foraging zones of southern elephant seals from the Kerguelen Islands in relation to oceanographic conditions. Philos Trans R Soc B Biol Sci. 2007;362:2169–81.
Article
Google Scholar
Guinet C, Vacquié-Garcia J, Picard B, Bessigneul G, Lebras Y, Dragon A, et al. Southern elephant seal foraging success in relation to temperature and light conditions: insight into prey distribution. Mar Ecol Prog Ser. 2014;499:285–301.
Article
Google Scholar
Vacquié-Garcia J, Guinet C, Laurent C, Bailleul F. Delineation of the southern elephant seal’s main foraging environments defined by temperature and light conditions. Deep Sea Res Part II Top Stud Oceanogr. 2015;113:145–53.
Article
Google Scholar
Bailleul F, Cotté C, Guinet C. Mesoscale eddies as foraging area of a deep-diving predator, the southern elephant seal. Mar Ecol Prog Ser. 2010;408:251–64.
Article
Google Scholar
Dragon A-C, Monestiez P, Bar-Hen A, Guinet C. Linking foraging behaviour to physical oceanographic structures: Southern elephant seals and mesoscale eddies east of Kerguelen Islands. Prog Oceanogr. 2010;87:61–71.
Article
Google Scholar
Siegelman L, O’Toole M, Flexas M, Rivière P, Klein P. Submesoscale ocean fronts act as biological hotspot for southern elephant seal. Sci Rep. 2019;9:5588.
Article
Google Scholar
Rivière P, Jaud T, Siegelman L, Klein P, Cotté C, Le Sommer J, et al. Sub-mesoscale fronts modify elephant seals foraging behavior. Limnol Oceanogr Lett. 2019;4:193–204.
Article
Google Scholar
Cotté C, D’Ovidio F, Dragon A-C, Guinet C, Lévy M. Flexible preference of southern elephant seals for distinct mesoscale features within the Antarctic Circumpolar Current. Prog Oceanogr. 2015;131:46–58.
Article
Google Scholar
O’Toole M, Guinet C, Lea M, Hindell M. Marine predators and phytoplankton: how elephant seals use the recurrent Kerguelen plume. Mar Ecol Prog Ser Inter-Res. 2017;581:215–27.
Article
Google Scholar
Allegue H, Guinet C, Patrick SC, Hindell MA, McMahon CR, Réale D. Sex, body size, and boldness shape the seasonal foraging habitat selection in southern elephant seals. Ecol Evol. 2022;12: e8457.
Article
Google Scholar
Bradshaw CJA, Hindell MA, Sumner MD, Michael KJ. Loyalty pays: potential life history consequences of fidelity to marine foraging regions by southern elephant seals. Anim Behav. 2004;68:1349–60.
Article
Google Scholar
Hückstädt LA, Koch PL, McDonald BI, Goebel ME, Crocker DE, Costa DP. Stable isotope analyses reveal individual variability in the trophic ecology of a top marine predator, the southern elephant seal. Oecologia Springer-Verlag. 2012;169:395–406.
Article
Google Scholar
Authier M, Martin C, Ponchon A, Steelandt S, Bentaleb I, Guinet C. Breaking the sticks: a hierarchical change-point model for estimating ontogenetic shifts with stable isotope data. Methods Ecol Evol. 2012;3:281–90.
Article
Google Scholar
Slip DJ. The diet of southern elephant seals ( Mirounga leonina ) from Heard Island. Can J Zool. 1995;73:1519–28.
Article
Google Scholar
Daneri GA, Carlini AR. Fish prey of southern elephant seals, Mirounga leonina, at King George Island. Antarct Sci. 2002;1248:739–43.
Google Scholar
Bradshaw CJA, Hindell MA, Best NJ, Phillips KL, Wilson G, Nichols PD. You are what you eat: describing the foraging ecology of southern elephant seals (Mirounga leonina) using blubber fatty acids. Proc R Soc B Biol Sci. 2003;270:1283–92.
Article
Google Scholar
Banks J, Lea M-A, Wall S, McMahon CR, Hindell MA. Combining bio-logging and fatty acid signature analysis indicates spatio-temporal variation in the diet of the southern elephant seal, Mirounga leonina. J Exp Mar Bio Ecol. 2014;450:79–90.
Article
CAS
Google Scholar
Newland C, Field I, Nichols P, Bradshaw C, Hindell M. Blubber fatty acid profiles indicate dietary resource partitioning between adult and juvenile southern elephant seals. Mar Ecol Prog Ser. 2009;384:303–12.
Article
CAS
Google Scholar
Field IC, Bradshaw CJA, Van Den Hoff J, Burton HR, Hindell MA. Age-related shifts in the diet composition of southern elephant seals expand overall foraging niche. Mar Biol Springer. 2007;150:1441–52.
Article
CAS
Google Scholar
Piatkowski U, Vergani DF, Stanganelli ZB. Changes in the cephalopod diet of southern elephant seal females at King George Island, during El Niño-La Niña events. J Mar Biol Assoc UK. 2002;82:913–6.
Article
Google Scholar
Cherel Y, Ducatez S, Fontaine C, Richard P, Guinet C. Stable isotopes reveal the trophic position and mesopelagic fish diet of female southern elephant seals breeding on the Kerguelen Islands. Mar Ecol Prog Ser. 2008;370:239–47.
Article
Google Scholar
Ducatez S, Dalloyau S, Richard P, Guinet C, Cherel Y. Stable isotopes document winter trophic ecology and maternal investment of adult female southern elephant seals (Mirounga leonina) breeding at the Kerguelen Islands. Mar Biol. 2008;155:413–20.
Article
Google Scholar
Volpov BL, Hoskins AJ, Battaile BC, Viviant M, Wheatley KE, Marshall G, et al. Identification of prey captures in Australian fur seals (Arctocephalus pusillus doriferus) using head-mounted accelerometers: field validation with animal-borne video cameras. PLoS One; 2015;10: 0128789
Kokubun N, Kim J-H, Shin H-C, Naito Y, Takahashi A. Penguin head movement detected using small accelerometers: a proxy of prey encounter rate. J Exp Biol; 2011;214:3760.
Ropert-Coudert Y, Kato A, Wilson RP, Cannell B. Foraging strategies and prey encounter rate of free-ranging Little Penguins. Mar Biol Berlin/Heidelberg. 2006;149:139–48.
Article
Google Scholar
Fedak M, Lovell P, McConnell B, Hunter C. Overcoming the constraints of long range radio telemetry from animals: getting more useful data from smaller packages1. Integr Comp Biol. 2002;42:3–10.
Article
Google Scholar
McMahon CR, Burton H, McLean S, Slip D, Bester M. Field immobilisation of southern elephant seals with intravenous tiletamine and zolazepam. Vet Rec. 2000;146:251–4.
Article
CAS
Google Scholar
McMahon CR, Field IC, Bradshaw CJA, White G, Hindell MA. Tracking and data–logging devices attached to elephant seals do not affect individual mass gain or survival. J Exp Mar Bio Ecol. 2008;360:71–7.
Article
Google Scholar
Zuur AF, IENO EN, Elphick CS. A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol. 2010;1:3–14.
Article
Google Scholar
Cox SL, Orgeret F, Gesta M, Rodde C, Heizer I, Weimerskirch H, et al. Processing of acceleration and dive data on-board satellite relay tags to investigate diving and foraging behaviour in free-ranging marine predators. Methods Ecol Evol. 2018;9:64–77.
Article
Google Scholar
Jouma’a J, Le Bras Y, Richard G, Vacquié-Garcia J, Picard B, El Ksabi N, et al. Adjustment of diving behaviour with prey encounters and body condition in a deep diving predator: the Southern Elephant Seal. Funct Ecol. 2015;30:636–48.
Photopoulou T, Lovell P, Fedak MA, Thomas L, Matthiopoulos J. Efficient abstracting of dive profiles using a broken‐stick model. Börger L, editor. Methods Ecol Evol. 2015;6:278–88.
Heerah K, Hindell M, Guinet C, Charrassin JB. From high-resolution to low-resolution dive datasets: a new index to quantify the foraging effort of marine predators. Anim Biotelemetry. 2015;3:42.
Article
Google Scholar
Jonsen ID, Patterson TA, Costa DP, Doherty PD, Godley BJ, Grecian WJ, et al. A continuous-time state-space model for rapid quality control of argos locations from animal-borne tags. Mov Ecol. 2020;8:31.
Article
Google Scholar
Dingemanse NJ, Dochtermann NA. Quantifying individual variation in behaviour: mixed-effect modelling approaches. Pol M van de, editor. J Anim Ecol. 2013;82:39–54.
Elith J, Leathwick JR, Hastie T. A working guide to boosted regression trees. J Anim Ecol. 2008;77:802–13.
Article
CAS
Google Scholar
Rights JD, Sterba SK. Quantifying explained variance in multilevel models: An integrative framework for defining R-squared measures. Psychol Methods. 2019;24:309–38.
Article
Google Scholar
Nakagawa S, Schielzeth H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol. 2013;4:133–42.
Article
Google Scholar
Chen T, Guestrin C. XGBoost: A scalable tree boosting system. Proc of the 22nd ACM SIGKDD Int Conf Knowl Discov Data Min. 2016;KDD '16:785–94.
Article
Google Scholar
Zhou H, Qian W, Yang Y. Tweedie gradient boosting for extremely unbalanced zero-inflated data. Commun Stat - Simul Comput. Taylor & Francis; 2020;1–23.
Team R Development Core. A Language and Environment for Statistical Computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing; 2021. http://www.r-project.org
Rosen DAS, Hindle AG, Gerlinsky CD, Goundie E, Hastie GD, Volpov BL, et al. Physiological constraints and energetic costs of diving behaviour in marine mammals: a review of studies using trained Steller sea lions diving in the open ocean. J Comp Physiol B. 2016;1–22.
Houston AI, McNamara JM, Heron JE, Barta Z. The effect of foraging parameters on the probability that a dive is successful. Proc R Soc London Ser B Biol Sci. 2003;270:2451–5.
Article
Google Scholar
Ydenberg RC, Clark CW. Aerobiosis and anaerobiosis during diving by western grebes: an optimal foraging approach. J Theor Biol. 1989;139:437–47.
Article
Google Scholar
Gallon S, Sparling CE, Georges JY, Fedak MA, Biuw M, Thompson D. How fast does a seal swim? Variations in swimming behaviour under differing foraging conditions. J Exp Biol. 2007;210:3285–94.
Article
Google Scholar
Hassrick JL, Crocker DE, Zeno RL, Blackwell SB, Costa DP, Le Boeuf BJ. Swimming speed and foraging strategies of northern elephant seals. Deep Sea Res Part II Top Stud Oceanogr. 2007;54:369–83.
Article
Google Scholar
Adachi T, Maresh JL, Robinson PW, Peterson SH, Costa DP, Naito Y, et al. The foraging benefits of being fat in a highly migratory marine mammal. Proc R Soc B Biol Sci. 2014;281.
Richard G, Vacquié-Garcia J, Jouma’a J, Picard B, Génin A, Arnould JPY, et al. Variation in body condition during the post-moult foraging trip of southern elephant seals and its consequences on diving behaviour. J Exp Biol. 2014;217:2609–19.
Mori Y, Boyd IL. The behavioral basis for nonlinear functional responses and optimal foraging in antarctic fur seals. Ecology. 2004;85:398–410.
Article
Google Scholar
Bailleul F, Pinaud D, Hindell M, Charrassin J-B, Guinet C. Assessment of scale-dependent foraging behaviour in southern elephant seals incorporating the vertical dimension: a development of the First Passage Time method. J Anim Ecol. 2008;77:948–57.
Article
Google Scholar
McIntyre T, Bornemann H, Nico de Bruyn PJ, Reisinger RR, Steinhage D, Márquez MEI, et al. Environmental influences on the at-sea behaviour of a major consumer, Mirounga leonina, in a rapidly changing environment. Polar Res. 2014;33:23808.
Godard M, Manté C, Guinet C, Picard B, Nerini D. Diving behavior of mirounga leonina: a functional data analysis approach. Front Mar Sci. 2020;7:595.
Article
Google Scholar
Jouma’a J, Le Bras Y, Picard B, Guinet C. Three-dimensional assessment of hunting strategies in a deep diving predator, southern elephant seal Mirounga leonina. Mar Ecol Prog Ser. 2017;573:255–68
Miller PJO, Biuw M, Watanabe YY, Thompson D, Fedak MA. Sink fast and swim harder! Round-trip cost-of-transport for buoyant divers. J Exp Biol. 2012;215:3622–30.
Article
Google Scholar
Webb PM, Crocker DE, Blackwell SB, Costa DP, Le Boeuf BJ. Effects of buoyancy on the diving behavior of northern elephant seals. J Exp Biol. 1998;201:2349–58.
Article
CAS
Google Scholar
Aoki K, Watanabe YY, Crocker DE, Robinson PW, Biuw M, Costa DP. Northern elephant seals adjust gliding and stroking patterns with changes in buoyancy: validation of at-sea metrics of body density. J Exp Biol. 2011;214:2973–87.
Article
Google Scholar
Halsey LG, Bost C-A, Handrich Y. A thorough and quantified method for classifying seabird diving behaviour. Polar Biol. 2007;30:991–1004.
Article
Google Scholar
McGovern K, Rodríguez D, Lewis M, Davis R. Classification and behavior of free-ranging female southern elephant seal dives based on threedimensional movements and video-recorded observations. Mar Ecol Prog Ser. 2019;620:215–32.
Article
Google Scholar
Heerah K, Cox SL, Blevin P, Guinet C, Charrassin J-B. Validation of Dive Foraging Indices Using Archived and Transmitted Acceleration Data: The Case of the Weddell Seal. 2019. p. 30.
Heerah K, Hindell M, Andrew-Goff V, Field I, McMahon CR, Charrassin J-B. Contrasting behavior between two populations of an ice-obligate predator in East Antarctica. Ecol Evol. 2017;7:606–18.
Article
Google Scholar
Labrousse S, Sallée J-B, Fraser AD, Massom RA, Reid P, Sumner M, et al. Under the sea ice: exploring the relationship between sea ice and the foraging behaviour of southern elephant seals in East Antarctica. Prog Oceanogr. 2017;156:17–40.
Article
Google Scholar
Jonsen ID, Myers RA, James MC. Identifying leatherback turtle foraging behaviour from satellite telemetry using a switching state-space model. Mar Ecol Prog Ser. 2007;337:255–64.
Article
Google Scholar
Ramasco V, Barraquand F, Biuw M, McConnell B, Nilssen KT. The intensity of horizontal and vertical search in a diving forager: the harbour seal. Mov Ecol. 2015;3:1–16.
Article
Google Scholar
Planque Y, Huon M, Caurant F, Pinaud D, Vincent C. Comparing the horizontal and vertical approaches used to identify foraging areas of two diving marine predators. Mar Biol. 2020;167:25.
Article
Google Scholar
Bestley S, Jonsen ID, Hindell MA, Harcourt RG, Gales NJ. Taking animal tracking to new depths: synthesizing horizontal–vertical movement relationships for four marine predators. Ecology. 2015;96:417–27.
Article
Google Scholar
Bestley S, Patterson TA, Hindell MA, Gunn JS. Feeding ecology of wild migratory tunas revealed by archival tag records of visceral warming. J Anim Ecol. 2008;77:1223–33.
Article
Google Scholar
Bestley S, Patterson TA, Hindell MA, Gunn JS. Predicting feeding success in a migratory predator: integrating telemetry, environment, and modeling techniques. Ecology. 2010;91:2373–84.
Article
Google Scholar
Riaz J, Bestley S, Wotherspoon S, Emmerson L. Horizontal-vertical movement relationships: Adélie penguins forage continuously throughout provisioning trips. Mov Ecol. 2021;9:43.
Article
Google Scholar
Della Penna A, De Monte S, Kestenare E, Guinet C, D’Ovidio F. Quasi-planktonic behavior of foraging top marine predators. Sci Rep. 2015;5:18063.
Article
CAS
Google Scholar
McIntyre T, Bester MN, Bornemann H, Tosh CA, de Bruyn PJN. Slow to change? Individual fidelity to three-dimensional foraging habitats in southern elephant seals. Mirounga leonina Anim Behav. 2017;127:91–9.
Article
Google Scholar
Ford RG, Ainley DG, Lescroël A, Lyver PO’B, Toniolo V, Ballard G. Testing assumptions of central place foraging theory: a study of Adélie penguins Pygoscelis adeliae in the Ross Sea. J Avian Biol. 2015;46:193–205.
Article
Google Scholar
Hill S, Burrows MT, Hughes RN. Adaptive search in juvenile plaice foraging for aggregated and dispersed prey. J Fish Biol. 2002;61:1255–67.
Article
Google Scholar
Sims DW, Witt MJ, Richardson AJ, Southall EJ, Metcalfe JD. Encounter success of free-ranging marine predator movements across a dynamic prey landscape. Proc R Soc B Biol Sci. 2006;273:1195–201.
Article
Google Scholar
Boyd IL. Temporal scales of foraging in a marine predator. Ecology. 1996;77:426–34.
Article
Google Scholar
Amano T, Katayama N. Hierarchical movement decisions in predators: effects of foraging experience at more than one spatial and temporal scale. Ecology. 2009;90:3536–45.
Article
Google Scholar
Gass CL, Roberts WM. The problem of temporal scale in optimization: three contrasting views of hummingbird visits to flowers. Am Nat. 1992;140:829–53.
Article
CAS
Google Scholar
Fortin D, Fryxell JM, Pilote R. The temporal scale of foraging decisons in bison. Ecology. 2002;83:970–82.
Article
Google Scholar
McIntyre T, Tosh C, Plötz J, Bornemann H, Bester M. Segregation in a sexually dimorphic mammal: a mixed-effects modelling analysis of diving behaviour in southern elephant seals. Mar Ecol Prog Ser. 2010;412:293–304.
Article
Google Scholar
Ishikawa K, Watanuki Y. Sex and individual differences in foraging behavior of Japanese cormorants in years of different prey availability. J Ethol. 2002;20:49–54.
Article
Google Scholar
Jeanniard-du-Dot T, Thomas A, Cherel Y, Trites A, Guinet C. Combining hard-part and DNA analyses of scats with biologging and stable isotopes can reveal different diet compositions and feeding strategies within a fur seal population. Mar Ecol Prog Ser. 2017;584:1–16.
Article
CAS
Google Scholar
Lescroël A, O’B. Lyver P, Jongsomjit D, Veloz S, Dugger KM, Kappes P, et al. Inter-individual differences in the foraging behavior of breeding Adélie penguins are driven by individual quality and sex. Mar Ecol Prog Ser. 2020;636:189–205.
Goulet P, Guinet C, Campagna C, Campagna J, Tyack PL, Johnson M. Flash and grab: Deep-diving southern elephant seals trigger anti-predator flashes in bioluminescent prey. J Exp Biol. 2020;223.
Bolnick DI, Svanbäck R, Fordyce JA, Yang LH, Davis JM, Hulsey CD, et al. The ecology of individuals: incidence and implications of individual specialization. Am Nat. The University of Chicago Press; 2003;161:1–28.
Réale D, Reader SM, Sol D, McDougall PT, Dingemanse NJ. Integrating animal temperament within ecology and evolution. Biol Rev. 2007;82:291–318.
Article
Google Scholar
Chaigne A, Authier M, Richard P, Cherel Y, Guinet C. Shift in foraging grounds and diet broadening during ontogeny in southern elephant seals from Kerguelen Islands. Mar Biol Springer-Verlag. 2013;160:977–86.
Article
Google Scholar
Daneri GA, Carlini AR, Rodhouse PGK. Cephalopod diet of the southern elephant seal, Mirounga leonina, at King George Island, South Shetland Islands. Antarct Sci. 2004/05/06 ed. Cambridge University Press; 2000;12:16–9.
Daneri GA, Carlini AR, Marschoff ER, Harrington A, Negrete J, Mennucci JA, et al. The feeding habits of the Southern elephant seal, Mirounga leonina, at Isla 25 de Mayo/King George Island, South Shetland Islands. Polar Biol. 2015;38:665–76.
Article
Google Scholar
Holtmann B, Lagisz M, Nakagawa S. Metabolic rates, and not hormone levels, are a likely mediator of between-individual differences in behaviour: a meta-analysis. Moore I, editor. Funct Ecol; 2017;31:685–96
Selman C, Lumsden S, Bunger L, Hill WG, Speakman JR. Resting metabolic rate and morphology in mice (Mus musculus) selected for high and low food intake. J Exp Biol. 2001;204:777–84.
Article
CAS
Google Scholar
Hindell MA, Lea M, Morrice MG, MacMahon CR. Metabolic limits on dive duration and swimming speed in the southern elephant seal mirounga leonina. Physiol Biochem Zool. 2000;73:790–8.
Article
CAS
Google Scholar
Castellini MA, Kooyman GL, Ponganis PJ. Metabolic rates of freely diving Weddell seals: correlations with oxygen stores, swim velocity and diving duration. J Exp Biol. 1992;165:181–94.
Article
CAS
Google Scholar
Meir JU, Robinson PW, Vilchis LI, Kooyman GL, Costa DP, Ponganis PJ. Blood oxygen depletion is independent of dive function in a deep diving vertebrate, the northern elephant seal. PLoS ONE. 2013;8: e83248.
Article
Google Scholar
Ydenberg RC, Forbes LS. Diving and Foraging in the Western Grebe. Ornis Scand. 1988;19:129–33.
Article
Google Scholar
Kooyman GL. Diverse divers: physiology and behavior. Berlin: Springer; 2012.
Google Scholar
Crocker DE, Boeuf BJL, Costa DP. Drift diving in female northern elephant seals: implications for food processing. Can J Zool. 1997;75:27–39.
Article
Google Scholar
Railsback SF, Harvey BC. Trait-mediated trophic interactions: is foraging theory keeping up? Trends Ecol Evol. 2013;28:119–25.
Article
Google Scholar
van Gils JA, van der Geest M, De Meulenaer B, Gillis H, Piersma T, Folmer EO. Moving on with foraging theory: incorporating movement decisions into the functional response of a gregarious shorebird. J Anim Ecol. 2015;84:554–64.
Article
Google Scholar
Ward TD, Algera DA, Gallagher AJ, Hawkins E, Horodysky A, Jørgensen C, et al. Understanding the individual to implement the ecosystem approach to fisheries management. Conserv Physiol. 2016;4:cow005.
Merrick MJ, Koprowski JL. Should we consider individual behavior differences in applied wildlife conservation studies? Biol Conserv. 2017;209:34–44.
Article
Google Scholar