Newton I. The migration ecology of birds. London: Academic Press; 2008.
Google Scholar
Fudickar AM, Jahn AE, Ketterson ED. Animal migration: an overview of one of nature’s great spectacles. Annu Rev Ecol Evol. 2021;52:479–97. https://doi.org/10.1146/annurev-ecolsys-012021-031035.
Article
Google Scholar
Alerstam T, Hedenström A, Åkesson S. Long-distance migration: evolution and determinants. Oikos. 2003;103:247–60. https://doi.org/10.1034/j.1600-0706.2003.12559.x.
Article
Google Scholar
Piersma T. Flyway evolution is too fast to be explained by the modern synthesis: Proposals for an ’extended’ evolutionary research agenda. J Ornithol. 2011;152:151–9. https://doi.org/10.1007/s10336-011-0716-z.
Article
Google Scholar
Verhoeven MA, Loonstra AHJ, McBride AD, Kaspersma W, Hooijmeijer JCEW, Both C, Senner NR, Piersma T. Age-dependent timing and routes demonstrate developmental plasticity in a long-distance migratory bird. J Anim Ecol. 2021. https://doi.org/10.1111/1365-2656.13641.
Article
Google Scholar
Vickery JA, Ewing SR, Smith KW, Pain DJ, Bairlein F, Škorpilová J, Gregory RD. The decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis. 2014;156:1–22. https://doi.org/10.1111/ibi.12118.
Article
Google Scholar
Verhoeven MA, Loonstra AJ, McBride AD, Both C, Senner NR, Piersma T. Migration route, stopping sites, and non-breeding destinations of adult Black-tailed Godwits breeding in southwest Fryslân, the Netherlands. J Ornithol. 2021;162:61–76. https://doi.org/10.1007/s10336-020-01807-3.
Article
Google Scholar
Strøm H, Descamps S, Ekker M, Fauchald P, Moe B. Tracking the movements of North Atlantic seabirds: steps towards a better understanding of population dynamics and marine ecosystem conservation. Mar Ecol Prog Ser. 2021;676:97–116. https://doi.org/10.3354/meps13801.
Article
Google Scholar
Charmantier A, Gienapp P. Climate change and timing of avian breeding and migration: evolutionary versus plastic changes. Evol Appl. 2014;7:15–28. https://doi.org/10.1111/eva.12126.
Article
Google Scholar
Harrison XA, Blount JD, Inger R, Norris DR, Bearhop S. Carry-over effects as drivers of fitness differences in animals. J Anim Ecol. 2011;80:4–18. https://doi.org/10.1111/j.1365-2656.2010.01740.x.
Article
Google Scholar
O’Connor CM, Norris DR, Crossin GT, Cooke SJ. Biological carryover effects: linking common concepts and mechanisms in ecology and evolution. Ecosphere. 2014;5:1–11. https://doi.org/10.1890/ES13-00388.1.
Article
Google Scholar
Rakhimberdiev E, Duijns S, Karagicheva J, Camphuysen CJ, Dekinga A, Dekker R, Gavrilov A, ten Horn J, Jukema J, Saveliev A, Soloviev M, Tibbitts TL, van Gils JA, Piersma T. Fuelling conditions at staging sites can mitigate Arctic warming effects in a migratory bird. Nat Commun. 2018;9:1–10. https://doi.org/10.1038/s41467-018-0.
Article
Google Scholar
Rakhimberdiev E, van den Hout PJ, Brugge M, Spaans B, Piersma T. Seasonal mortality and sequential density dependence in a migratory bird. J Avian Biol. 2015;46:332–41. https://doi.org/10.1111/jav.00701.
Article
Google Scholar
Piersma T. Ornithology from the flatlands. Seasonal selective forces and innovations in bird migration. Ardea. 2019;107:115–7. https://doi.org/10.5253/arde.v107i2.a9.
Article
Google Scholar
Bolnick DI, Svanbäck R, Fordyce JA, Yang LH, Davis JM, Hulsey CD, Forister ML. The ecology of individuals: incidence and implications of individual specialization. Am Nat. 2003;161:1–28. https://doi.org/10.1086/343878.
Article
Google Scholar
Dall SRX, Bell AM, Bolnick DI, Ratnieks FLW. An evolutionary ecology of individual differences. Ecol Lett. 2012;15:1189–98. https://doi.org/10.1111/j.1461-0248.2012.01846.x.
Article
Google Scholar
Catry I, Dias MP, Catry T, Afanasyev V, Fox J, Frankco AMA, Sutherland WJ. Individual variation in migratory movements and winter behaviour of Iberian Lesser Kestrels Falco naumanni revealed by geolocators. Ibis. 2011;153:154–64. https://doi.org/10.1111/j.1474-919X.2010.01073.x.
Article
Google Scholar
Delmore KE, Fox JW, Darren EI. Dramatic intraspecific differences in migratory routes, stopover sites and wintering areas, revealed using light-level geolocators. Proc R Soc B. 2012;279:4582–9. https://doi.org/10.1098/rspb.2012.1229.
Article
Google Scholar
Bêty J, Giroux JF, Gauthier G. Individual variation in timing of migration: causes and reproductive consequences in greater snow geese (Anser caerulescens atlanticus). Behav Ecol Sociobiol. 2004;57:1–8. https://doi.org/10.1007/s00265-004-0840-3.
Article
Google Scholar
Tedeschi A, Sorrenti M, Bottazzo M, Spagnesi M, Telletxea I, Ibàñez R, Tormen N, De Pascalis F, Guidolin L, Rubolini D. Interindividual variation and consistency of migratory behavior in the Eurasian woodcock. Curr Zool. 2020;66:155–63. https://doi.org/10.1093/cz/zoz038.
Article
Google Scholar
Brown JM, van Loon EE, Bouten W, Camphuysen KC, Lens L, Müller W, Thaxter CB, Shamoun-Baranes J. Long-distance migrants vary migratory behaviour as much as short-distance migrants: an individual-level comparison from a seabird species with diverse migration strategies. J Anim Ecol. 2021;90:1058–70. https://doi.org/10.1111/1365-2656.13431.
Article
Google Scholar
Hake M, Kjellén N, Alerstam T. Age-dependent migration strategy in honey buzzards Pernis apivorus tracked by satellite. Oikos. 2003;103:385–96. https://doi.org/10.1034/j.1600-0706.2003.12145.x.
Article
Google Scholar
Wobker J, Heim W, Schmaljohann H. Sex, age, molt strategy, and migration distance explain the phenology of songbirds at a stopover along the East Asian flyway. Behav Ecol Sociobiol. 2021;75:1–14. https://doi.org/10.1007/s00265-020-02957-3.
Article
Google Scholar
Rubolini D, Spina F, Saino N. Protandry and sexual dimorphism in trans-Saharan migratory birds. Behav Ecol. 2004;15:92–601. https://doi.org/10.1093/beheco/arh048.
Article
Google Scholar
Phillips RA, Silk JR, Croxall JP, Afanasyev V, Bennett VJ. Summer distribution and migration of nonbreeding albatrosses: individual consistencies and implications for conservation. Ecology. 2005;86:2386–96. https://doi.org/10.1890/04-1885.
Article
Google Scholar
Briedis M, Bauer S, Adamík P, Alves JA, Costa JS, Emmenegger T, Gustafsson L, Koleček J, Liechti F, Meier CM, Procházka P, Hahn S. A full annual perspective on sex-biased migration timing in long-distance migratory birds. Proc RR Soc B. 2019;286:20182821. https://doi.org/10.1098/rspb.2018.2821.
Article
Google Scholar
Bell AM, Hankison SJ, Laskowski KL. The repeatability of behaviour: a meta-analysis. Anim Behav. 2009;77:771–83. https://doi.org/10.1016/j.anbehav.2008.12.022.
Article
Google Scholar
Nakagawa S, Schielzeth H. Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol Rev. 2010;85:935–56. https://doi.org/10.1111/j.1469-185X.2010.00141.x.
Article
Google Scholar
Semlitsch RD, Scott DE, Pechmann JH, Gibbons JW. Phenotypic variation in the arrival time of breeding salamanders: individual repeatability and environmental influences. J Anim Ecol. 1993;62:334–40. https://doi.org/10.2307/5364.
Article
Google Scholar
Birnie-Gauvin K, Koed A, Aarestrup K. Repeatability of migratory behaviour suggests trade-off between size and survival in a wild iteroparous salmonid. Funct Ecol. 2021;35:2717–27. https://doi.org/10.1111/1365-2435.13917.
Article
CAS
Google Scholar
Kent JW, Rankin MA. Heritability and physiological correlates of migratory tendency in the grasshopper Melanoplus sanguinipes. Physiol Entomol. 2001;26:371–80. https://doi.org/10.1046/j.0307-6962.2001.00257.x.
Article
Google Scholar
Both C, Bijlsma RG, Ouwehand J. Repeatability in spring arrival dates in pied flycatchers varies among years and sexes. Ardea. 2016;104:3–21. https://doi.org/10.5253/arde.v104i1.a1.
Article
Google Scholar
Phillips RA, Lewis S, González-Solís J, Daunt F. Causes and consequences of individual variability and specialization in foraging and migration strategies of seabirds. Mar Ecol Prog Ser. 2017;578:117–50. https://doi.org/10.3354/meps12217.
Article
Google Scholar
Vardanis Y, Nilsson JÅ, Klaassen RH, Strandberg R, Alerstam T. Consistency in long-distance bird migration: contrasting patterns in time and space for two raptors. Anim Behav. 2016;113:177–87. https://doi.org/10.1016/j.anbehav.2015.12.014.
Article
Google Scholar
Sugasawa S, Higuchi H. Seasonal contrasts in individual consistency of oriental honey buzzards’ migration. Biol Lett. 2019;15:20190131. https://doi.org/10.1098/rsbl.2019.0131.
Article
Google Scholar
Carneiro C, Gunnarsson TG, Alves JA. Why are whimbrels not advancing their arrival dates into Iceland? Exploring seasonal and sex-specific variation in consistency of individual timing during the annual cycle. Front Ecol Evol. 2019;7:248. https://doi.org/10.3389/fevo.2019.00248.
Article
Google Scholar
Senner NR, Verhoeven MA, Abad-Gómez JM, Alves JA, Hooijmeijer JC, Howison RA, Kentie R, Loonstra AHJ, Masero JA, Rocha A, Stager M, Piersma T. High migratory survival and highly variable migratory behavior in black-tailed godwits. Front Ecol Evol. 2019;7:96. https://doi.org/10.3389/fevo.2019.00096.
Article
Google Scholar
Verhoeven MA, Loonstra AH, Senner NR, McBride AD, Both C, Piersma T. Variation from an unknown source: large inter-individual differences in migrating black-tailed godwits. Front Ecol Evol. 2019;7:31. https://doi.org/10.3389/fevo.2019.00031.
Article
Google Scholar
Petersen MR. Reproductive ecology of emperor geese: annual and individual variation in nesting. Condor. 1992;94:383–97. https://doi.org/10.2307/1369211.
Article
Google Scholar
Hasselquist D, Montràs-Janer T, Tarka M, Hansson B. Individual consistency of long-distance migration in a songbird: significant repeatability of autumn route, stopovers and wintering sites but not in timing of migration. J Avian Biol. 2017;48:91–102. https://doi.org/10.1111/jav.01292.
Article
Google Scholar
Fraser KC, Shave A, de Greef E, Siegrist J, Garroway CJ. Individual variability in migration timing can explain long-term, population-level advances in a songbird. Front Ecol Evol. 2019;7:324. https://doi.org/10.3389/fevo.2019.00324.
Article
Google Scholar
Müller MS, Massa B, Phillips RA, Dell’omo G. Individual consistency and sex differences in migration strategies of Scopoli’s shearwaters Calonectris diomedea despite year differences. Curr Zool. 2014;60:631–41. https://doi.org/10.1093/czoolo/60.5.631.
Article
Google Scholar
Delord K, Barbraud C, Pinaud D, Ruault S, Patrick SC, Weimerskirch H. Individual consistency in the non-breeding behavior of a long-distance migrant seabird, the Grey Petrel Procellaria cinerea. Mar Ornithol. 2019;47:93–103.
Google Scholar
Léandri-Breton D-J, Tarroux A, Elliott KH, Legagneux P, Angelier F, Blévin P, Bråthen VS, Fauchald P, Goutte A, Jouanneau W, Tartu S, Moe B, Chaste O. Long-term tracking of an Arctic-breeding seabird indicates high fidelity to pelagic wintering areas. Mar Ecol Prog Ser. 2021;676:205–18. https://doi.org/10.3354/meps13798.
Article
Google Scholar
BirdLife International. Sterna hirundo (amended version of 2018 assessment). The IUCN Red List of Threatened Species 2019: e.T22694623A155537726. https://doi.org/10.2305/IUCN.UK.2019-3.RLTS.T22694623A155537726.en
Ryslavy T, Bauer H-G, Gerlach B, Hüppop O, Stahmer J, Südbeck P, Sudfeldt C. The Red List of breeding birds of Germany. Ber Vogelschutz. 2020;57:13–112.
Google Scholar
Becker PH, Ludwigs J-D. Sterna hirundo common tern. In: Parkin D, editors. BWP Update Vol. 6 Nos 1 and 2. New York: Oxford University Press; 2004. p. 93–139.
Szostek KL, Becker PH. Terns in trouble: demographic consequences of low breeding success and recruitment on a common tern population in the German Wadden Sea. J Ornithol. 2012;153:313–26. https://doi.org/10.1007/s10336-011-0745-7.
Article
Google Scholar
Zhang H, Rebke M, Becker PH, Bouwhuis S. Fitness prospects: effects of age, sex and recruitment age on reproductive value in a long-lived seabird. J Anim Ecol. 2015;84:199–207. https://doi.org/10.1111/1365-2656.12259.
Article
CAS
Google Scholar
Kürten N, Vedder O, González-Solís J, Schmaljohann H, Bouwhuis S. No detectable effect of light-level geolocators on the behaviour and fitness of a long-distance migratory seabird. J Ornithol. 2019;160:1087–95. https://doi.org/10.1007/s10336-019-01686-3.
Article
Google Scholar
Becker PH, Wendeln H. A new application for transponders in population ecology of the common tern. Condor. 1997;99:534–8. https://doi.org/10.2307/1369963.
Article
Google Scholar
Becker PH, Wink M. Influences of sex, sex composition of brood and hatching order on mass growth in common terns Sterna hirundo. Behav Ecol Sociobiol. 2003;54:136–46. https://doi.org/10.1007/s00265-003-0605-4.
Article
Google Scholar
Becker PH, Schmaljohann H, Riechert J, Wagenknecht G, Zajková Z, González-Solís J. Common terns on the East Atlantic flyway: temporal–spatial distribution during the non-breeding period. J Ornithol. 2016;157:927–40. https://doi.org/10.1007/s10336-016-1346-2.
Article
Google Scholar
Vedder O, Kürten N, Bouwhuis S. Intraspecific variation in and environment-dependent resource allocation to embryonic development time in common terns. Physiol Biochem Zool. 2017;90:453–60. https://doi.org/10.1086/691690.
Article
Google Scholar
Kenward RE. A manual for wildlife radio tagging. London: Academic Press; 2001.
Google Scholar
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2020. Available from: https://www.r-project.org/.
Rakhimberdiev E, Saveliev A. FLightR: SSM for solar geolocation. 2020. R package version 0.5.0. Available from: http://github.com/eldarrak/FLightR.
Rakhimberdiev E, Saveliev A, Piersma T, Karagicheva J. FLightR: an R package for reconstructing animal paths from solar geolocation loggers. Methods Ecol Evol. 2017;8:1482–7. https://doi.org/10.1111/2041-210X.12765.
Article
Google Scholar
Wotherspoon S, Sumner M, Lisovski S. BAStag: basic data processing for light based geolocation archival tags. 2016. R package version 0.1.3. Available from https://github.com/SWotherspoon/BAStag.
Rakhimberdiev E, Winkler DW, Bridge E, Seavy NE, Sheldon D, Piersma T, Saveliev A. A hidden Markov model for reconstructing animal paths from solar geolocation loggers using templates for light intensity. Mov Ecol. 2015;3:25. https://doi.org/10.1186/s40462-015-0062-5.
Article
Google Scholar
Redfern CP, Bevan RM. Overland movement and migration phenology in relation to breeding of Arctic Terns Sterna paradisaea. Ibis. 2020;162:373–80. https://doi.org/10.1111/ibi.12723.
Article
Google Scholar
Bruderer B, Boldt A. Flight characteristics of birds: I. Radar measurements of speeds. Ibis. 2001;143:178–204. https://doi.org/10.1111/j.1474-919X.2001.tb04475.x.
Article
Google Scholar
Kralj J, Martinović M, Jurinović L, Szinai P, Sütő S, Preiszner B. Geolocator study reveals east African migration route of Central European Common Terns. Avian Res. 2020;11:1–11. https://doi.org/10.1186/s40657-020-00191-z.
Article
Google Scholar
Hijmans RJ. Geosphere: spherical trigonometry. 2019. R package version 1.5–10. Available from: https://CRAN.R-project.org/package=geosphere
Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48. https://doi.org/10.18637/jss.v067.i01.
Article
Google Scholar
Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest package: tests in linear mixed effects models. J Stat Softw. 2017;82:1–26. https://doi.org/10.18637/jss.v082.i13.
Article
Google Scholar
Stoffel MA, Nakagawa S, Schielzeth H. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol Evol. 2017;8:1639–44. https://doi.org/10.1111/2041-210X.12797.
Article
Google Scholar
Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer; 2016.
Book
Google Scholar
QGIS Development Team. QGIS Geographic Information System. QGIS Association. 2021. Available from: https://www.qgis.org/.
Sanderson FJ, Donald PF, Pain DJ, Burfield IJ, van Bommel FP. Long-term population declines in Afro-Palearctic migrant birds. Biol Conserv. 2006;131:93–105. https://doi.org/10.1016/j.biocon.2006.02.008.
Article
Google Scholar
Mills AM. Protogyny in autumn migration: do male birds “play chicken”? Auk. 2005;122:71–81. https://doi.org/10.1093/auk/122.1.71.
Article
Google Scholar
Nisbet ICT, Szczys P, Mostello CS, Fox JW. Female common terns Sterna hirundo start autumn migration earlier than males. Seabird. 2011;24:103–6.
Google Scholar
Nisbet ICT, Mostello CS, Veit RR, Fox JW, Afanasyev V. Migrations and winter quarters of five common terns tracked using geolocators. Waterbirds. 2011;34:32–9. https://doi.org/10.1675/063.034.0104.
Article
Google Scholar
Neves VC, Nava CP, Cormons M, Bremer E, Castresana G, Lima P, Azevedo Junior SM, Phillips RA, Magalhães MC, Santos RS. Migration routes and non-breeding areas of common terns (Sterna hirundo) from the Azores. Emu. 2015;115:158–67. https://doi.org/10.1071/MU13112.
Article
Google Scholar
Bracey A, Lisovski S, Moore D, McKellar A, Craig E, Matteson S, Strand F, Costa J, Pekarik C, Curtis P, Niemi G, Cuthbert F. Migratory routes and wintering locations of declining inland North American Common Terns. Auk. 2018;135:385–99. https://doi.org/10.1642/AUK-17-210.1.
Article
Google Scholar
Fifield DA, Montevecchi WA, Garthe S, Robertson GJ, Kubetzki U, Rail JF. Migratory tactics and wintering areas of northern gannets (Morus bassanus) breeding in North America. Ornithol Monogr. 2014;79:1–63.
Google Scholar
Mueller HC, Mueller NS, Berger DD, Allez G, Robichaud W, Kaspar JL. Age and sex differences in the timing of fall migration of hawks and falcons. Wilson Bull. 2000;112:214–24. https://doi.org/10.1676/0043-5643(2000)112[0214:AASDIT]2.0.CO;2.
Article
Google Scholar
Méndez V, Gill JA, Þórisson B, Vignisson SR, Gunnarsson TG, Alves JA. Paternal effects in the initiation of migratory behaviour in birds. Sci Rep. 2021;11:2782. https://doi.org/10.1038/s41598-021-81274-9.
Article
CAS
Google Scholar
Schmaljohann H, Liechti F, Bruderer B. First records of Lesser Black-backed Gulls (Larus fuscus) crossing the Sahara non-stop. J Avian Biol. 2008;39:233–7. https://doi.org/10.1111/j.2007.0908-8857.04174.x.
Article
Google Scholar
Lamb JS, Newstead DJ, Koczur LM, Ballard BM, Green MC, Jodice PG. A bridge between oceans: overland migration of marine birds in a wind energy corridor. J Avian Biol. 2018;49:e01474. https://doi.org/10.1111/jav.01474.
Article
Google Scholar
Kok EM, Tibbitts TL, Douglas DC, Howey PW, Dekinga A, Gnep B, Piersma T. A red knot as a black swan: how a single bird shows navigational abilities during repeat crossings of the Greenland Icecap. J Avian Biol. 2020;51:e02464. https://doi.org/10.1111/jav.02464.
Article
Google Scholar
Piersma T, Kok EM, Hassell CJ, Peng HB, Verkuil YI, Lei G, Karagicheva J, Rakhimberdiev E, Howey PW, Tibbitts L, Chan YC. When a typical jumper skips: itineraries and staging habitats used by Red Knots (Calidris canutus piersmai) migrating between northwest Australia and the New Siberian Islands. Ibis. 2021;163:1235–51. https://doi.org/10.1111/ibi.12964.
Article
Google Scholar
Grecian WJ, Witt MJ, Attrill MJ, Bearhop S, Becker PH, Egevang C, Furness RW, Godley BJ, González-Solís J, Grémillet D, Kopp M, Lescroël A, Matthiopoulos J, Patrick SC, Peter H-P, Phillips RA, Stenhouse IJ, Votier SC. Seabird diversity hotspot linked to ocean productivity in the Canary Current Large Marine Ecosystem. Biol Lett. 2016;12:20160024. https://doi.org/10.1098/rsbl.2016.0024.
Article
Google Scholar
Crawford RJM. Food and population variability in five regions supporting large stocks of anchovy, sardine and horse mackerel. S Afr J Mar Sci. 1987;5:735–57. https://doi.org/10.2989/025776187784522243.
Article
Google Scholar
Binet D. Climate and pelagic fisheries in the Canary and Guinea currents 1964–1993: the role of trade winds and the southern oscillation. Oceanol Acta. 1997;20:177–90.
Google Scholar
Wynn RB, Knefelkamp B. Seabird distribution and oceanic upwelling off northwest Africa. Br Birds. 2004;97:323–35.
Google Scholar
Camphuysen CJ, van der Meer J. Wintering seabirds in West Africa: foraging hotspots off Western Sahara and Mauritania driven by upwelling and fisheries. Afr J Mar Sci. 2005;27:427–37. https://doi.org/10.2989/18142320509504101.
Article
Google Scholar
Redfern CP, Kinchin-Smith D, Newton S, Morrison P, Bolton M, Piec D. Upwelling systems in the migration ecology of Roseate Terns (Sterna dougallii) breeding in northwest Europe. Ibis. 2021;163:549–65. https://doi.org/10.1111/ibi.12915.
Article
Google Scholar
Block BA, Jonsen ID, Jorgensen SJ, Winship AJ, Shaffer SA, Bograd SJ, Hazen EL, Foley DG, Breed GA, Harrison A-L, Ganong JE, Swithenbank A, Castleton M, Dewar H, Mate BR, Shillinger GL, Schaefer KM, Benson SR, Weise MJ, Henry RW, Costa DP. Tracking apex marine predator movements in a dynamic ocean. Nature. 2011;475:86–90. https://doi.org/10.1038/nature10082.
Article
CAS
Google Scholar
Hoegh-Guldberg O, Bruno JF. The impact of climate change on the world’s marine ecosystems. Science. 2010;328:1523–8. https://doi.org/10.1126/science.1189930.
Article
CAS
Google Scholar
Blanchard JL, Jennings S, Holmes R, Harle J, Merino G, Allen JI, Holt J, Dulvy NK, Barange M. Potential consequences of climate change for primary production and fish production in large marine ecosystems. Philos Trans R Soc B. 2012;367:2979–89. https://doi.org/10.1098/rstb.2012.0231.
Article
Google Scholar
Sydeman WJ, Poloczanska E, Reed TE, Thompson SA. Climate change and marine vertebrates. Science. 2015;350:772–7. https://doi.org/10.1126/science.aac9874.
Article
CAS
Google Scholar
Crawford RJ, Makhado AB, Whittington PA, Randall RM, Oosthuizen WH, Waller LJ. A changing distribution of seabirds in South Africa—the possible impact of climate and its consequences. Front Ecol Evol. 2015;3:10. https://doi.org/10.3389/fevo.2015.00010.
Article
Google Scholar
Sydeman WJ, Schoeman DS, Thompson SA, Hoover BA, García-Reyes M, Daunt F, Agnew P, Anker-Nilssen T, Barbraud C, Barrett R, Becker PH, Bell E, Boersma PD, Bouwhuis S, Cannell B, Crawford RJM, Dann P, Delord K, Elliott G, Erikstad KE, Flint E, Furness RW, Harris MP, Hatch S, Hilwig K, Hinke JT, Jahncke J, Mills JA, Reiertsen TK, Renner H, Sherley RB, Surman C, Taylor G, Thayer JA, Trathan PN, Velarde E, Walker K, Wanless S, Warzybok P, Watanuki Y. Hemispheric asymmetry in ocean change and the productivity of marine ecosystem sentinels. Science. 2021;372:980–3. https://doi.org/10.1126/science.abf1772.
Article
CAS
Google Scholar
Nilsson C, Klaassen RH, Alerstam T. Differences in speed and duration of bird migration between spring and autumn. Am Nat. 2013;181:837–45. https://doi.org/10.1086/670335.
Article
Google Scholar
Schmaljohann H. Proximate mechanisms affecting seasonal differences in migration speed of avian species. Sci Rep. 2018;8:4106. https://doi.org/10.1038/s41598-018-22421-7.
Article
CAS
Google Scholar
Moiron M, Araya-Ajoy YG, Teplitsky C, Bouwhuis S, Charmantier A. Understanding the social dynamics of breeding phenology: indirect genetic effects and assortative mating in a long distance migrant. Am Nat. 2020;196:566–76. https://doi.org/10.1086/711045.
Article
Google Scholar
Dobson FS, Becker PH, Arnaud CM, Bouwhuis S, Charmantier A. Plasticity results in delayed breeding in a long-distant migrant seabird. Ecol Evol. 2017;7:3100–9. https://doi.org/10.1002/ece3.2777.
Article
Google Scholar
Liechti F. Birds: Blowin’ by the wind? J Ornithol. 2006;147:202–11. https://doi.org/10.1007/s10336-006-0061-9.
Article
Google Scholar
Barrett RT. Upwind or downwind: the spring arrival of Arctic Terns Sterna paradisaea at Troms, north Norway. Ring Mig. 2016;31:23–9. https://doi.org/10.1080/03078698.2016.1190610.
Article
Google Scholar
Haest B, Hüppop O, Bairlein F. The influence of weather on avian spring migration phenology: what, where and when? Glob Chang Biol. 2018;24:5769–88. https://doi.org/10.1111/gcb.14450.
Article
Google Scholar
Haest B, Hüppop O, Pol M, Bairlein F. Autumn bird migration phenology: a potpourri of wind, precipitation and temperature effects. Glob Chang Biol. 2019;25:4064–80. https://doi.org/10.1111/gcb.14746.
Article
Google Scholar
Cresswell W. Migratory connectivity of Palaearctic-African migratory birds and their responses to environmental change: the serial residency hypothesis. Ibis. 2014;156:493–510. https://doi.org/10.1111/ibi.12168.
Article
Google Scholar
Wynn J, Guilford T, Padget O, Perrins CM, Mckee N, Gillies N, Tyson C, Dean B, Kirk H, Fayet AL. Early-life development of contrasting outbound and return migration routes in a long-lived seabird. Ibis. 2021. https://doi.org/10.1111/ibi.13030.
Article
Google Scholar
Smouse PE, Focardi S, Moorcroft PR, Kie JG, Forester JD, Morales JM. Stochastic modelling of animal movement. Philos Trans R Soc B. 2010;365:2201–11. https://doi.org/10.1098/rstb.2010.0078.
Article
Google Scholar
Sergio F, Tanferna A, De Stephanis R, Jiménez LL, Blas J, Tavecchia G, Preatoni D, Hiraldo F. Individual improvements and selective mortality shape lifelong migratory performance. Nature. 2014;515:410–3. https://doi.org/10.1038/nature13696.
Article
CAS
Google Scholar
Campioni L, Dias MP, Granadeiro JP, Catry P. An ontogenetic perspective on migratory strategy of a long-lived pelagic seabird: timings and destinations change progressively during maturation. J Anim Ecol. 2020;89:29–43. https://doi.org/10.1111/1365-2656.13044.
Article
Google Scholar
Robertson GJ, Cooke F. Winter philopatry in migratory waterfowl. Auk. 1999;116:20–34. https://doi.org/10.2307/4089450.
Article
Google Scholar
BirdLife International and Durham University. Species climate change impacts factsheet: hirundo. 2021. http://www.birdlife.org. Accessed 10 Apr 2021.
Saino N, Szép T, Ambrosini R, Romano M, Møller AP. Ecological conditions during winter affect sexual selection and breeding in a migratory bird. Proc R Soc B. 2004;271:681–6. https://doi.org/10.1098/rspb.2003.2656.
Article
Google Scholar
Rockwell SM, Bocetti CI, Marra PP. Carry-over effects of winter climate on spring arrival date and reproductive success in an endangered migratory bird, Kirtland’s Warbler (Setophaga kirtlandii). Auk. 2012;129:744–52. https://doi.org/10.1525/auk.2012.12003.
Article
Google Scholar
Wernham CV, Toms MP, Marchant JH, Clark JA, Siriwardena GM, Baillie SR. The migration atlas: movements of the birds of Britain and Ireland. London; T & AD Poyser; 2002.
Bairlein F, Dierschke J, Dierschke V, Salewski V, Geiter O, Hüppop K, Köppen U, Fielder W. Atlas des Vogelzugs. Wiebelsheim: AULA; 2014.
Zhang SD, Ma Z, Choi CY, Peng HB, Bai QQ, Liu WL, Tan K, Melville DS, He P, Chan Y-C, van Gils JA, Piersma T. Persistent use of a shorebird staging site in the Yellow Sea despite severe declines in food resources implies a lack of alternatives. Bird Conserv Int. 2018;28:534–48. https://doi.org/10.1017/S0959270917000430.
Article
Google Scholar
Dias MP, Granadeiro JP, Catry P. Individual variability in the migratory path and stopovers of a long-distance pelagic migrant. Anim Behav. 2013;86:359–64. https://doi.org/10.1016/j.anbehav.2013.05.026.
Article
Google Scholar
Loonstra AJ, Verhoeven MA, Zbyryt A, Schaaf E, Both C, Piersma T. Individual Black-tailed Godwits do not stick to single routes: a hypothesis on how low population densities might decrease social conformity. Ardea. 2020;107:251–61. https://doi.org/10.5253/arde.v107i3.a11.
Article
Google Scholar
López-López P, García-Ripollés C, Urios V. Individual repeatability in timing and spatial flexibility of migration routes of trans-Saharan migratory raptors. Curr Zool. 2014;60:642–52. https://doi.org/10.1093/czoolo/60.5.642.
Article
Google Scholar
Stanley CQ, MacPherson M, Fraser KC, McKinnon EA, Stutchbury BJ. Repeat tracking of individual songbirds reveals consistent migration timing but flexibility in route. PLoS ONE. 2012;7:e40688. https://doi.org/10.1371/journal.pone.0040688.
Article
CAS
Google Scholar
Mellone U, López-López P, Limiñana R, Urios V. Weather conditions promote route flexibility during open ocean crossing in a long-distance migratory raptor. Int J Biometeorol. 2011;55:463–8. https://doi.org/10.1007/s00484-010-0368-3.
Article
Google Scholar
González-Solís J, Felicísimo A, Fox JW, Afanasyev V, Kolbeinsson Y, Muñoz J. Influence of sea surface winds on shearwater migration detours. Mar Ecol Prog Ser. 2009;391:221–30. https://doi.org/10.3354/meps08128.
Article
Google Scholar
Robson D, Barriocanal C. The influence of environmental conditions on the body mass of Barn Swallows (Hirundo rustica) during spring migration. J Ornithol. 2008;149:473–8. https://doi.org/10.1007/s10336-008-0297-7.
Article
Google Scholar
Szostek KL, Bouwhuis S, Becker PH. Are arrival date and body mass after spring migration influenced by large-scale environmental factors in a migratory seabird. Front Ecol Evol. 2015;3:42. https://doi.org/10.3389/fevo.2015.00042.
Article
Google Scholar
Åkesson S, Ilieva M, Karagicheva J, Rakhimberdiev E, Tomotani B, Helm B. Timing avian long-distance migration: from internal clock mechanisms to global flights. Phil Trans R Soc B. 2017;372:20160252. https://doi.org/10.1098/rstb.2016.0252.
Article
Google Scholar
Gill JA, Alves JA, Sutherland WJ, Appleton GF, Potts PM, Gunnarsson TG. Why is timing of bird migration advancing when individuals are not? Proc R Soc B. 2014;281:20132161. https://doi.org/10.1098/rspb.2013.2161.
Article
Google Scholar
Youngflesh C, Jenouvrier S, Hinke JT, DuBois L, St. Leger J, Trivelpiece WZ, Trivelpiece SG, Lynch HJ. Rethinking “normal”: the role of stochasticity in the phenology of a synchronously breeding seabird. J Anim Ecol. 2018;87:682–90. https://doi.org/10.1111/1365-2656.12790.
Article
Google Scholar
Vedder O, Pen I, Bouwhuis S. How fitness consequences of early-life conditions vary with age in a long-lived seabird: a Bayesian multivariate analysis of age-specific reproductive values. J Anim Ecol. 2021;90:1505–14. https://doi.org/10.1111/1365-2656.13471.
Article
Google Scholar
Vedder O, Zhang H, Bouwhuis S. Early mortality saves energy: estimating the energetic cost of excess offspring in a seabird. Proc R Soc B. 2017;284:20162724. https://doi.org/10.1098/rspb.2016.2724.
Article
Google Scholar
Vedder O, Zhang H, Dänhardt A, Bouwhuis S. Age-specific offspring mortality economically tracks food abundance in a piscivorous seabird. Am Nat. 2019;193:88–597. https://doi.org/10.1086/702304.
Article
Google Scholar
Bogdanova MI, Daunt F, Newell M, Phillips RA, Harris MP, Wanless S. Seasonal interactions in the black-legged kittiwake, Rissa tridactyla: links between breeding performance and winter distribution. Proc R Soc B. 2011;278:2412–8. https://doi.org/10.1098/rspb.2010.2601.
Article
Google Scholar
Bogdanova MI, Butler A, Wanless S, Moe B, Anker-Nilssen T, Frederiksen M, Boulinier T, Chivers LS, Christensen-Dalsgaard S, Descamps S, Harris MP, Newell M, Olsen B, Phillips RA, Shaw D, Steen H, Strøm H, Thórarinsson TL, Daunt F. Multi-colony tracking reveals spatio-temporal variation in carry-over effects between breeding success and winter movements in a pelagic seabird. Mar Ecol Prog Ser. 2017;578:167–81. https://doi.org/10.3354/meps12096.
Article
Google Scholar
Helm B, Piersma T, van der Jeugd H. Sociable schedules: interplay between avian seasonal and social behaviour. Anim Behav. 2006;72:245–62. https://doi.org/10.1016/j.anbehav.2005.12.007.
Article
Google Scholar