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Movement Ecology

Crabs ride the tide: incoming tides promote 
foraging of Giant Mud Crab (Scylla serrata)
Daniel E. Hewitt1,2*, Daniel D. Johnson2, Iain M. Suthers1,3 and Matthew D. Taylor1,2 

Abstract 

Background Effective fisheries management of mobile species relies on robust knowledge of animal behaviour 
and habitat-use. Indices of behaviour can be useful for interpreting catch-per-unit-effort data which acts as a proxy 
for relative abundance. Information about habitat-use can inform stocking release strategies or the design of marine 
protected areas. The Giant Mud Crab (Scylla serrata; Family: Portunidae) is a swimming estuarine crab that supports 
significant fisheries harvest throughout the Indo-West Pacific, but little is known about the fine-scale movement and 
behaviour of this species.

Methods We tagged 18 adult Giant Mud Crab with accelerometer-equipped acoustic tags to track their fine-scale 
movement using a hyperbolic positioning system, alongside high temporal resolution environmental data (e.g., water 
temperature), in a temperate south-east Australian estuary. A hidden Markov model was used to classify movement 
(i.e., step length, turning angle) and acceleration data into discrete behaviours, while also considering the possibility 
of individual variation in behavioural dynamics. We then investigated the influence of environmental covariates on 
these behaviours based on previously published observations.

Results We fitted a model with two well-distinguished behavioural states describing periods of inactivity and forag-
ing, and found no evidence of individual variation in behavioural dynamics. Inactive periods were most common 
(79% of time), and foraging was most likely during low, incoming tides; while inactivity was more likely as the high 
tide receded. Model selection removed time (hour) of day and water temperature (°C) as covariates, suggesting that 
they do not influence Giant Mud Crab behavioural dynamics at the temporal scale investigated.

Conclusions Our study is the first to quantitatively link fine-scale movement and behaviour of Giant Mud Crab to 
environmental variation. Our results suggest Giant Mud Crab are a predominantly sessile species, and support their 
status as an opportunistic scavenger. We demonstrate a relationship between the tidal cycle and foraging that is likely 
to minimize predation risk while maximizing energetic efficiency. These results may explain why tidal covariates influ-
ence catch rates in swimming crabs, and provide a foundation for standardisation and interpretation of catch-per-
unit-effort data—a commonly used metric in fisheries science.
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Background
Animal movement is a fundamental ecological pro-
cess whereby individual-level behaviours (e.g., foraging, 
migration) give rise to emergent properties of popula-
tions (e.g., growth rates, abundance, distribution; [1]). 
For mobile species, quantifying individual movement 
underpins effective fisheries management (reviewed in 
[2, 3]). For example, catch-per-unit-effort (or catch rate) 
data is commonly used as an index of abundance in stock 
assessment, assuming the probability of capture (i.e., 
catchability) is constant for all individuals [4, 5]. How-
ever, this is rarely the case and catchability is closely 
linked to patterns in foraging, especially in fisheries that 
employ baited gear [6]. For endothermic species, forag-
ing is typically promoted by warmer temperatures due to 
increased metabolism [6]. To account for this and ensure 
catch rate data is a reliable index of abundance, so-called 
‘catch rate standardization’ (i.e., some form of regression 
between catch rate and environmental covariates) must 
be undertaken to remove the effect of environmental var-
iation [4, 5]. As such, identifying specific behaviours (e.g., 
foraging; [7, 8]) and quantifying the influence of environ-
mental variation on them can be useful in standardiza-
tion and interpretation of catch-per-unit-effort data [9]. 
Furthermore, assessing how these behaviours are allo-
cated among different habitats can be used to inform the 
design of marine protected areas [10, 11] and abundance 
surveys, prioritize restoration of degraded habitats [12, 
13] and target release locations for stocking of hatchery 
reared individuals.

Acoustic telemetry is a powerful method for quanti-
fying the movement of marine organisms and has been 
broadly applied in fisheries research [2, 3, 14]. Recently, 
hyperbolic positioning systems have allowed researchers 
to track animals at increasingly fine spatiotemporal scales 
(e.g., metres and minutes; see Hyperbolic positioning for 
technical details; [15–17]). In addition, accelerometry 
has enabled detailed insight into the behavioural struc-
ture of animal movement [18, 19]. These technological 
advances have been accompanied by a proliferation of 
novel statistical approaches to analyze such data [20–22]. 
Hidden Markov models are stochastic time-series mod-
els that classify observed animal movement or acceler-
ometry data into unobserved (or ‘hidden’) states, which 
can be interpreted as proxies for behavioural states of the 
tagged animal [23–25]. These models are a natural choice 
for analyzing animal movement [23, 25] and accelerom-
etry [24], since they explicitly model the serial depend-
ence structure that is typical of such data. Furthermore, 
hidden Markov models are highly flexible, and can be 
extended to model the influence of environmental covar-
iates on animal behaviour (e.g., water temperature; [26]) 

while accounting for individual-level variation in behav-
iour (e.g., [27–29]).

The Giant Mud Crab (Scylla serrata) is a large portu-
nid crab (Family: Portunidae) that is widely distributed 
throughout the Indo-West Pacific [30]. Crabs within this 
family are commonly referred to as the ‘swimming crabs’, 
due to their efficient swimming ability afforded by flat-
tened paddles on their fifth legs (i.e., pleopods or swim-
merets; [31]). In Australia, the species supports seasonal 
commercial and recreational fisheries [32, 33], with the 
main method of harvest being the deployment of baited 
traps (or pots; [34, 35]) during the austral spring–sum-
mer (Hewitt et al., unpublished data). Adult crabs inhabit 
sub- and intertidal habitats in estuaries, such as mud-
flats and mangroves [36, 37]. As a predominantly ses-
sile species, daily movements occur at fine spatial scales 
(e.g., 219–910  m  d−1; [38]) with high site fidelity [36], 
however adults are capable of long distance migrations 
(e.g., ~ 30–200  km; [39–41]). Adult crabs are carnivo-
rous, opportunistic scavengers [42–44] and are generally 
thought to forage nocturnally [38, 43] using a combina-
tion of olfaction and contact chemoreception [44, 45]. 
Foraging is promoted by warmer temperatures (i.e., 
25–30 °C; [46]), and stable isotope analysis suggests they 
derive their nutrition from a combination of seagrass 
[47, 48], mangrove [49] and saltmarsh habitats [48, 50]. 
Finally, for species that inhabit shallow waters, the tidal 
cycle imposes frequent changes in local conditions (e.g., 
the availability of intertidal foraging habitat). Tidal cur-
rents may also promote movement via selective tidal-
stream transport [51]; a behaviour whereby individuals 
use tidal currents/flow to minimize the energetic costs 
associated with movement [52] that has been exhibited 
by Giant Mud Crab [39, 41, 53].

In this study, we sought to investigate the environ-
mental drivers of fine-scale movement and behaviour of 
free-ranging adult Giant Mud Crab in a creek adjoining 
a temperate southeast Australian estuary. Specifically, 
this was achieved by: (1) tracking the movement of adult 
crabs with accelerometer-equipped acoustic tags using 
a hyperbolic positioning system; and (2) using a hid-
den Markov model to classify movement and accelera-
tion data into discrete behaviours, and model transitions 
between these behaviours as a function of environmental 
covariates [24, 25].

Methods
Study site and array design
This study was conducted in Fenninghams Island Creek 
(32.75° S, 152.05° E), a small tributary to Port Stephens, 
a mature wave-dominated barrier estuary [54] situated 
on the temperate mid-north coast of New South Wales 
(NSW, Australia; Fig.  1). Fenninghams Island Creek is 
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a narrow, relatively shallow creek (0.2–2  m depth) that 
encompasses typical estuarine habitats including unveg-
etated soft sediments (sub- and intertidal), seagrass (Zos-
tera sp.), mangrove (Avicennia marina) and saltmarsh 
(Sporobolus virginicus, Sarcocornia quinqueflora and 
Suaeda australis; Fig. 1). It has a maximum tidal range of 
approximately 2 m, and mangrove and saltmarsh habitats 
are inundated twice daily (especially during spring tides). 
The study area is a ‘Sanctuary Zone’ within the Port Ste-
phens Great Lakes Marine Park, which prohibits fishing 
or crab-trapping, allowing this study to proceed without 
the risk of fishing mortality or any effect of baited traps 
on movement. However, it is possible that some crabs 
may migrate in and out of the study area and be exposed 
to fishing in adjacent areas [39, 40]. Oyster farming is 
permitted, and tray cultivation is practiced along both 
shorelines of the creek (Fig. 1).

A hyperbolic positioning system (hereafter referred to 
as the ‘array’), employing 10 Innovasea VR2W receivers 
and co-located synchronisation (or ‘sync’) tags (Innova-
sea, Nova Scotia, Canada) was established along approxi-
mately 500  m of Fenninghams Island Creek (Fig.  1). 
Range testing of similar arrays in comparable systems 
(e.g., [55, 56]) informed a receiver spacing of 100–200 m. 
Each receiver and sync tag were chained to existing infra-
structure (e.g., oyster trays, jetty), or independent moor-
ings consisting of a float and anchor attached by chain, 

approximately 0.3–0.4  m from the bottom. To monitor 
positional error throughout the study, two fixed-position 
reference tags (V9-2x-BLU-3), with identical program-
ming as tags deployed on crabs (see Tag programming 
below), except with a longer random transmission inter-
val (240–360  s), were deployed within and immediately 
adjacent to the array (Fig. 1). Since the position of these 
tags were known, the distance between the estimated 
position (see Hyperbolic positioning) and their actual 
position provides an indication of the performance of the 
array throughout the study [17]. The reference tag adja-
cent to the array stopped transmitting after one day, and 
was missing at the conclusion of the study, so only detec-
tions from the reference tag within the array were used 
in subsequent analysis. Water temperature (°C) and con-
ductivity (mS  cm−1) was monitored throughout the dura-
tion of the study using a HOBO U24-002-C conductivity/
salinity logger (Onset Computer Corporation, Massachu-
setts, USA).

Receivers were retrieved and downloaded using 
VUE software (v. 2.6.2; Innovasea, Amirix, Nova Sco-
tia, Canada) after the estimated battery life of the last 
tag deployed had passed (~ 7  months). Detection data 
was subsequently uploaded to the Integrated Marine 
Observing System Animal Tracking Facility (IMOS ATF; 
https:// anima ltrac king. aodn. org. au; [3]) which was also 

Fig. 1 Map of a Fenninghams Island Creek showing the locations of receivers and fixed-position reference tags within the array, as well as the 
distribution of seagrass, mangrove and saltmarsh. Oyster farming infrastructure is indicated by the grey outline. The location of Fenninghams Island 
Creek and within Port Stephens (inset; Sanctuary Zones in red), and b on the east Australian coast is indicated

https://animaltracking.aodn.org.au
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interrogated for any additional tag detections outside of 
our array.

Crab capture and tagging
Giant Mud Crab were captured during the late austral 
summer (February 2020) using round collapsible mesh 
traps (i.e., pots; 0.9  m diameter × 0.27  m high), with 
55  mm mesh and two semi-closed funnel entrances 
(0.25 × 0.05  m). Traps were deployed for approximately 
24 h periods along 750 m of Fenninghams Island Creek 
(within and just upstream of the array). Captured crabs 
were cooled for 10–20  s in an ice/sea-water slurry (to 
decrease aggressive behaviour; following 39) and sub-
sequently measured (to the nearest mm) for carapace 
length (CL; distance between the frontal notch and pos-
terior carapace margin), sexed and moult-staged (fol-
lowing [57]). Only adult crabs (> 100 mm CL) that were 
likely to have recently moulted (i.e., post- or inter-moult; 
[57]) were tagged, to limit the probability of tag loss dur-
ing ecdysis [58]. Innovasea V9A-2H accelerometer tags 
(hereafter ‘tags’; length: 43 mm, wet weight: 3.3 g; Inno-
vasea, Nova Scotia, Canada) were affixed to the poste-
rior carapace using instant adhesive (Loctite 406, Henkel 
Adhesives, Australia) which has shown tag retention of at 
least 3 months [39]. After tagging, crabs were gently sub-
merged alongside the research vessel and once normal 
activity (e.g., attempted swimming) had resumed crabs 
were released within the bounds of the array. In general, 
negative impacts (e.g., stress, limb loss) are low for crabs 
handled and released in this manner [34]. During tag-
ging, two previously tagged crabs were recaptured that 
had lost their tags, evidenced by adhesive present on the 
carapace. These crabs were re-tagged and data from the 
initial tags was excluded from our analysis (identified as 
continuous transmission from a single point), resulting in 
movement data from 18 crabs.

Tag programming
Tags were programmed to emit a unique signal (69 kHz) 
with high power output (151 dB re 1 µPa at 1 m) at ran-
dom intervals between 150 and 210  s (180  s nominal). 
High power output was chosen in an attempt to over-
come potential signal attenuation owing to burial of 
crabs [38, 46, 59] and the presence of seagrass within the 
study site [60]. Random signal transmission times were 
employed to minimize potential signal overlap (i.e., code-
collision) which can block detection. Tags were equipped 
with an accelerometer programmed to record tri-axial 
acceleration data, which represents a general index of 
activity, analogous to overall dynamic body acceleration 
(ODBA; [61, 62]). Measurements are transmitted as a 
root mean square (RMS) acceleration vector with a range 
0–3.4 m  s−2 [63]. Since Giant Mud Crab are expected to 

be predominantly slow-moving [38, 43, 46], acceleration 
data was recorded at 5 Hz (i.e., 5 samples  s−1) over a 20 s 
window to capture ‘bursts’ of acceleration (H. Pedersen, 
pers. comm.). See Taylor, McPhan [63] for a discussion of 
accelerometer programming. Battery life was estimated 
196 d at these settings.

Hyperbolic positioning
Positions of tagged crabs were estimated by Innovasea 
using proprietary hyperbolic positioning algorithms. This 
approach estimates the position of tagged animals based 
on the time-difference-of-arrival (TDOA or multilatera-
tion) of detections at 3 or more receivers within an array. 
Assuming no measurement error, detection on a pair of 
receivers defines a hyperbola on which a tag may have 
been during signal transmission. Detection on a third 
receiver defines a second hyperbola, and the intersec-
tion of the two is the position of the tag [17]. Using this 
approach, the time of a detection is converted to dis-
tance based on signal propagation speed. Signal propa-
gation speed was estimated via the Coppens equation 
[64] using measured water temperature (°C) and salinity 
and an assumed depth of 1.8  m, assuming ideal signal 
propagation (i.e., spreads spherically at a constant speed; 
[17]). Innovasea receiver clocks can drift by up to 4  s 
 d−1 (dependent on water temperature) leading to differ-
ences in time among receiver clocks (i.e., clock skew). To 
account for this, detections from sync tags were used to 
calculate the skew between receiver clocks and synchro-
nize detection times (see Smith [17] for technical details).

Overall, detections from our fixed-position refer-
ence tag indicated that location error within the array 
was low and positively-skewed for the duration of the 
study (Additional file  1: Fig.  S1), with a mean error of 
2.77 ± 9.24  m (SD) and median of 1.26  m (interquartile 
range = 0.78  m), and 93% of positions were within 5  m 
of their actual (known) location. In general, these results 
indicate that measurement error was low for the duration 
of the study.

Data processing
All subsequent analysis was undertaken using R (v. 4.0.2; 
[65]). Visual inspection suggested no ‘tagging effects’ 
(e.g., elevated/decreased activity) were apparent in the 
tagged population (Additional file  1: Fig.  S2), and we 
included detections from the first day of tracking in our 
analysis to preserve our sample size. In general, hidden 
Markov models are formulated in discrete-time, mean-
ing they require temporally regular observations [66], 
but see Glennie et al. [67]. Many factors can contribute to 
temporally irregular observations in our study, including 
temporary emigration from the array, burial [59] and ran-
dom transmission intervals in our tags. To accommodate 
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this, we predicted temporally regular locations at 5, 10 
and 15-min intervals by modelling crab movement as a 
continuous-time correlated random walk using the R 
package ‘crawl’ [68]. We refer readers to Johnson, London 
[69] for a full mathematical description of this model. 
Before predicting temporally regular locations, detec-
tions were split into ‘tracks’ where the interval between 
detections were greater than 4 times the interpolation 
interval (i.e., 20, 40 and 60-min). This was to ensure we 
did not introduce unreasonable uncertainty or bias our 
data by consecutively predicting locations within these 
longer temporal gaps, which would result in straight and 
constant movement [70]. Furthermore, tracks with less 
than 100 detections were excluded, as those with few 
observations can give rise to issues with numerical sta-
bility (i.e., non-convergence), and typically reveal less 
about behavioural state dynamics [71]. Locations were 
estimated using a state-space framework, allowing incor-
poration of measurement error in location estimates [69]. 
This was achieved by transforming the error (in metres) 
along the longitudinal and latitudinal axes, derived from 
the fixed-position reference tag, into a covariance matrix 
and approximating it with a bivariate Gaussian distribu-
tion during model fitting [69]. Locations were estimated 
via maximum likelihood, and thus require initial esti-
mates of parameter values. To ensure adequate explo-
ration of the likelihood surface and convergence (to a 
global maxima) we used 50 random perturbations of the 
initial parameter values and retained output from the 
model with the highest log-likelihood [72].

Since we predicted locations less frequently (i.e., every 
5-, 10-, 15-min) than the random transmission inter-
val of our tags (i.e., every 4–6  min) it was possible that 
there were some intervals where no acceleration data was 
recorded as no detection was recorded but a location was 
predicted. Relatively few missing values is typically not an 
issue when fitting hidden Markov models [23], and the 
missing observations did not contribute to the likelihood 
during model fitting.

Behavioural state classification
Behaviour of tagged crabs was modelled using a hidden 
Markov model [73] via maximum likelihood using the R 
package ‘momentuHMM’ [72]. Hidden Markov models 
are stochastic time-series models with two components: 
an observable (possibly multivariate) state-dependent 
process, and an unobservable (‘hidden’) state-pro-
cess [24, 25]. The state-dependent process consists of 
observed animal detections or metrics derived from 
them (e.g., step length, turning angle), while the state-
process is a series of N-states, that are taken to repre-
sent the underlying behavioural modes of the animal [24, 
25]. Two assumptions govern this model structure: (1) 

observations that comprise the state-dependent process 
are assumed to be conditionally independent, with the 
observation at time t conditional on the state at time t, 
and independent of all other states and observations; and 
(2) the state-process is a Markov chain, which means the 
probability of being in a given state at time t is completely 
determined by the state active at time t − 1. Transitions 
between states are governed by an N × N transition prob-
ability matrix, the entries in which denote the probabil-
ity of switching states between time t and t + 1 [72], with 
entries on the main diagonal representing the probability 
of remaining in the same state (i.e., state-dwell probabili-
ties; [24]). Hidden Markov models thereby link observed 
animal movement to unobserved (or ‘hidden’) underlying 
behavioural modes and provide a description of how they 
change through time [23–25].

In our case, observations that comprised the state-
dependent processes included step length (m; i.e., dis-
tance moved) and mean acceleration (m  s−2) between 
time t and t + 1 and turning angle (radians) between 
detections at t − 1, t and t + 1, where 0 radians corre-
sponds to straight-line movement and ± π radians indi-
cates course reversal. Step lengths and mean acceleration 
values were modelled using a zero-inflated gamma dis-
tribution, to account for instances where no movement 
occurred (i.e., step length = 0 m or acceleration = 0 m  s−2; 
[72]). Note, the zero-inflated gamma distribution is 
defined only for non-negative real numbers (i.e., ≥ 0), 
and standard deviations greater than the mean reflect 
highly positively-skewed distributions and do not imply 
negative values. Turning angles were modelled using a 
wrapped Cauchy distribution, which is a probability dis-
tribution that results from ‘wrapping’ the Cauchy dis-
tribution around the unit circle, with a concentration 
parameter ranging between 0 and 1 that measures how 
concentrated turning angles are around the mean [72]. 
For each state, the mean (± standard deviation, SD) step 
length and acceleration was estimated using a log-link 
function, while turning angle mean was fixed at 0 radians 
(i.e., straight-line movement) and concentration was esti-
mated using the logit-link function [72]. Initial parameter 
estimates were obtained using the same approach as with 
predicting temporally regular locations (see Data pro-
cessing), whereby the fitting procedure was run 50 times 
with randomly selected initial values and output from 
the model with the highest log-likelihood was retained 
[72, 74]. A prior for the log-density of the working scale 
parameter distributions (N[0, 100]) was specified to avoid 
estimates near the boundary.

A central challenge when fitting hidden Markov mod-
els is deciding on the number of states (N) to estimate, 
which must be specified a priori, since traditional model 
selection techniques (e.g., minimizing information 
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criteria) tend to select models that include more states 
than are biologically meaningful/interpretable [75, 76]. 
This is because state estimation is data-driven, meaning 
the estimated states may not correspond to a biologically 
meaningful behaviour, rather they provide proxies for 
them and require post-hoc interpretation [24, 25]. In this 
context, adding more states may simply be capturing ran-
dom noise in the data rather than uncovering additional 
behavioural states. Pohle, Langrock [76] argue that the 
number of states should be chosen pragmatically, based 
on statistical and biological intuition. We expected Giant 
Mud Crab to exhibit 2–3 discrete behaviours, namely: 
inactivity/resting, foraging and possibly some inter-habi-
tat migration [36, 38, 46, 77, 78], therefore we limited our 
analysis to two- and three-state models (i.e., N ϵ {2, 3}).

Behavioural state dynamics
Individual-level variation in behaviour is common among 
free-ranging animals, due to true differences (e.g., ani-
mal ‘personality’; [79]), different environmental contexts 
[80] or as an artefact of variable deployment lengths 
between individuals [28, 81]. This can be accommodated 
by including discrete-valued random effects (e.g., sex, 
individual) in a mixed hidden Markov model [27–29, 80]. 
To do so, K mixtures (K ϵ {1, …, 4}) were included in a 
‘null’ model (i.e., without any environmental covariates), 
with crab ID as a discrete-valued random effect. Under 
this formulation, each K represents a distinct transi-
tion probability matrix allowing for up to 4 behavioural 
‘types’ among individuals [28, 82]. For K = 1, behavioural 
dynamics are assumed to be the same for all individuals 
(i.e., no random effects; [81]), while for K > 1 the behav-
ioural dynamics of a given individual are governed by one 
of K transition probability matrices [27, 28]. It may be 
possible that > 4 behavioural ‘types’ exist and limiting K 
to a maximum of 4 was a heuristic choice, aimed at maxi-
mizing parsimony (i.e., assuming only a few behavioural 
types) and computational tractability. Following Isojunno 
et  al. [80], these models were compared using Akaike 
information criteria (AIC) to select the optimal value for 
K, where the lowest value is indicative of the best fitting 
model [83]. Models were fit to data from each interpola-
tion interval (i.e., 5, 10 and 15-min) and selected among 
based on model pseudo-residuals, which fulfil the role of 
normal-theory regression residuals for hidden Markov 
models [73].

The selected interpolation interval and random-effects 
structure was then used to model the influence of envi-
ronmental covariates on behavioural transitions. Typi-
cally, entries within the transition probability matrix 
are assumed to be constant, however we relaxed this 
assumption and estimated the effect of a suite of time-
varying environmental covariates on these probabilities 

(i.e., we assume the Markov chain is non-homogenous; 
[27]). This was achieved using a multinomial logit-link 
function which ensures all transition probabilities are 
between 0 and 1, and the rows of the transition proba-
bility matrix sum to 1 [74]. State transition probabilities 
were modelled as a function of water temperature (°C); 
an interaction term between tide height (m above Port 
Stephens Height Datum [PSHD]), and the difference 
in tide height over 15-min intervals (hereafter ∆-tide 
height); habitat type; and a cyclic effect of time (hour) of 
day. Cyclic effects were estimated via two periodic func-
tions, cos( 2π t

24
) and sin( 2π t

24
) , where t is the time (hour) of 

day (0–24) and 24 is the assumed daily periodicity of the 
function [29, 71, 84]. ∆-tide height includes informa-
tion about both the direction of the tide (positive/nega-
tive values = flood/ebb tide) and the strength of tidal 
currents, where greater absolute values imply stronger 
tidal currents. Tide data was obtained from a nearby 
tide gauge (~ 4 km away; 32.72° S, 152.02° E) maintained 
by Manly Hydraulics Laboratory [85]. Habitat data was 
obtained from NSW Department of Primary Industries 
Fisheries Spatial Data Portal (https:// www. dpi. nsw. gov. 
au/ about- us/ resea rch- devel opment/ spati al- data- por-
tal). This dataset includes information on the distribu-
tion of common estuarine habitats, including: seagrass, 
mangroves and saltmarsh [86], with a spatial resolu-
tion of approximately ± 2 m (G. West, pers. comm.). To 
account for edge effects around seagrass meadows [87, 
88] a buffer of 1.26 m was applied (matching the median 
error in our array; see Hyperbolic positioning). All pos-
sible combinations of covariates were fit (including ‘null’ 
models with no covariates), however the tidal covari-
ates were only included together. These models were 
compared using AIC, where the model with the low-
est value was selected as the true model [83]. Station-
ary state probabilities were derived from the transition 
probability matrix and can be interpreted as the prob-
ability of exhibiting a given state for some fixed value 
of a covariate (i.e., when the system is in equilibrium). 
Finally, behavioural states at each location were esti-
mated using the Viterbi algorithm, which derives the 
most likely sequence of states given the observations 
and fitted model [25, 73]. Model fit was again assessed 
by inspecting pseudo-residuals.

Results
Model selection and diagnostics
For all interpolation intervals (5-, 10- and 15-min), we 
found no evidence of individual-level variation in crab 
behaviour (i.e., K = 1 mixture had the lowest AIC). Fur-
thermore, AIC increased with increasing K suggesting 
that it is unlikely that > 4 behavioural ‘types’ exist within 
the tagged population (Additional file  1: Table  S1). 

https://www.dpi.nsw.gov.au/about-us/research-development/spatial-data-portal
https://www.dpi.nsw.gov.au/about-us/research-development/spatial-data-portal
https://www.dpi.nsw.gov.au/about-us/research-development/spatial-data-portal
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Therefore, we modelled the influence of environmental 
covariates on crab behavioural dynamics using a ‘stand-
ard’ hidden Markov model (i.e., without random effects). 
Model pseudo-residuals indicated that data interpolated 
at 15-min intervals provided the best fit relative to the 
5- and 10-min data (Additional file 1:  Fig.  S3). On this 
basis, we report only results from the model fit to data 
interpolated at 15-min intervals. Furthermore, we only 
report results from our two-state model, since the three-
state model simply decomposed one state (‘inactive’ state, 
see Crab behavioural states) into two and would not have 
changed our biological interpretation. Finally, model 
selection for covariate inclusion indicated that the model 
including an interaction between tide height and ∆-tide 
height provided the best fit (Additional file 1:  Table S2).

There was evidence of a diel cycle in behaviour not 
captured by this model, indicated by cyclic residual auto-
correlation for both step length and acceleration with 
a ~ 12 h period (Additional file 1:  Fig. S3b, f ). However, 
the model that included a cyclic effect of time of day 
did not improve this. Ultimately, model fit was deemed 
adequate since hidden Markov models do not need to 
produce perfectly independent pseudo-residuals [24, 73] 
and small violations of this are generally of little concern 
when estimating behavioural state dynamics is the main 
goal of analysis [28] as is the case here.

The selected model was fit to 75 tracks from 13 indi-
viduals, ranging in size from 119 to 135 mm CL (Table 1). 
The length of tracks ranged from ~ 8  h–20 d, with an 
average of 1.5 ± 3.2 d. We found no evidence of tagging 
effects and only 9 of these 75 tracks included detections 
from a crab on the same day as tagging (further limiting 
any possible influence of tagging effects in our analysis). 
One female crab (ID = 7792) was detected in the coastal 
ocean (via the IMOS ATF) approximately 150 km north 
at the Port Macquarie offshore artificial reef (~ 31.42° S) 
27 days after the last detection in our array.

Crab behavioural states
Our analysis identified behavioural states with considera-
ble overlap in terms of their step length and turning angle 
concentration, however there was clear separation in 
terms of acceleration (Fig. 2). State 1 is likely to represent 
foraging (hereafter ‘foraging state’) since crabs spent little 
time in this state (21%) and exhibited greater, but highly 
variable, step.lengths (mean ± SD = 13.98 ± 18.10  m 
15  min−1) and acceleration (0.59 ± 0.63 m  s−2 15  min−1), 
coupled with moderately concentrated turning angles 
(concentration = 0.51; Fig.  2; Table  2), indicative of a 
combination of straight-line movement and direction 
changes. In the foraging state, crabs also had the lowest 

probability of no movement (Table  2). However, they 
exhibited a higher probability of exhibiting no accelera-
tion which is likely due to the relatively high variability 
in acceleration while in this state (Table 2). Crabs spent 
most of their time in State 2 (79%), which is likely to cor-
respond to periods of inactivity (hereafter ‘inactive state’). 
Crabs in this state exhibited much shorter step lengths 
(mean ± SD = 0.75 ± 0.93  m 15   min−1), low acceleration 
(0.04 ± 0.01  m   s−2 15   min−1), and relatively highly con-
centrated turning angles (concentration = 0.70), indica-
tive of infrequent changes in direction (Fig.  2; Table  2). 
An example track, with the most likely sequence of states 
is depicted in Fig. 3.

Behavioural state dynamics
States were highly persistent through time, indicated by 
very high state-dwell probabilities (i.e., diagonal entries 
in Table  3). Based on our model selection, water tem-
perature (°C), time (hour) of day and habitat type were 
removed from our model, implying these covariates 
explain little about crab behavioural dynamics. The inter-
action between tide height (m) and ∆-tide height (m 
15-min−1) suggested that crabs were most likely to be 
foraging during the low (< 0.5 m) incoming tide (Fig. 4), 
and more likely to be inactive as the high tide recedes 
(Fig.  4). Overall, crabs were always more likely to be 
inactive than foraging (Fig.  5), but they were approxi-
mately twice as likely to be foraging at low tide than at 
high (Fig. 5a). Conversely, crabs were approximately 1.25 
times more likely to be inactive at high tide relative to low 
(Fig.  5a). The probability of foraging was higher during 
an incoming tide than an outgoing tide (Fig.  5b), while 
the opposite is true for the inactive state which becomes 
more likely as the tide recedes (Fig. 5b).

Discussion
Our study is the first to quantitatively link fine-scale 
movement and behaviour of Giant Mud Crab to envi-
ronmental variation. This was achieved using high spatial 
and temporal resolution, accelerometer-equipped acous-
tic tags and high temporal resolution environmental data. 
Modelling data with a hidden Markov model allowed the 
classification of observations and provided insight into 
the fine-scale drivers of behaviour for the species. Our 
analysis shows that the tidal cycle is an important driver 
of foraging, that allows crabs to minimize visual preda-
tion risk, and optimize the energetic efficiency of forag-
ing. Quantifying movement and behaviour of mobile 
exploited species is important for developing effective 
fisheries management [2, 3], and our results contribute 
to the evidence base that underpins management actions 
for this species.
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Fine‑scale movement and behaviour of Giant Mud Crab
Direct observation of aquatic animal behaviour is chal-
lenging, especially in turbid estuarine waters. The main 
advantage of hidden Markov models when applied to 
animal movement is the classification of observed move-
ment and acceleration into ‘states’ that may correspond 
to biologically meaningful behaviours [23–25]. In our 
analysis, Giant Mud Crab were inactive for a majority of 
the time (79%), which shows they are a predominantly 
sessile species [38, 43, 46]. Adult Giant Mud Crab are 
considered opportunistic scavengers [42], and forag-
ing is facilitated via a combination of olfaction [45] and 
contact chemoreception [44]. Crabs generally exhibit an 
initial ‘searching’ response towards olfactory cues [45] to 
find the approximate location of the food [78], followed 
by further tactile investigation using the dactyls of the 
walking legs to find the exact location of the prey/food 
item [44]. This description of foraging is well explained 
by the foraging state in our model, which includes a com-
bination of long and short movements with higher over-
all activity (i.e., acceleration), and variability in terms of 
directional persistence.

For aquatic species that inhabit shallow-water habi-
tats, the semidiurnal (i.e., twice daily) tidal cycle imposes 

a regular change in the prevailing conditions [51]. We 
found that Giant Mud Crab are most likely to forage 
when the tide is low (< 0.5 m) and incoming, while they 
are most likely to be inactive on an outgoing, high tide. 
This likely reflects exploration of shallow or intertidal for-
aging habitat (e.g., mangroves, mudflats; [49, 77]) as the 
tide is rising and they become inundated. Larger preda-
tors (e.g., Carcharhinus leucas, Bull Shark) are unlikely 
to be able to access these habitats when water levels are 
shallower, thereby lowering predation risk—a strategy 
employed by other estuarine species (e.g., Acanthopagrus 
australis, Yellowfin Bream; 63). Similarly, the high prob-
ability of inactivity during high tide likely reflects a pred-
ator avoidance strategy, since Giant Mud Crab typically 
bury in the mud during periods of inactivity [38, 46]. 
This description of foraging behaviour closely matches 
observations of the distribution of Giant Mud Crab in 
an intertidal region in a nearby estuary (Moreton Bay, 
Queensland; [77]). Additionally, foraging during strong 
incoming tides may also be indicative of the use of selec-
tive tidal-stream transport [52], a behaviour exhibited by 
the species elsewhere [39, 41, 53]. If crabs use incoming 
tides to facilitate movement this may decrease the ener-
getic cost of foraging [52], thereby minimizing the ener-
getic trade-off of searching for prey [89]. However, this 
may come at the cost of being able to efficiently sample 
olfactory queues, since swimming with the current is 
likely to result in a crab remaining in the same olfactory 
‘patch’.

In general, warmer temperatures promote foraging 
in Giant Mud Crab [46]. This is likely due to increased 
metabolism [90], which may increase their motivation 
to feed and energetic requirements [6, 91]. However, our 
analysis suggests that water temperature is not an impor-
tant driver of fine-scale movement and behaviour of 
Giant Mud Crab. It is likely that the results presented in 

Fig. 2 State-dependent probability distributions (lines) and histograms of observations (grey bars) for a step length (m), b turning angle (radians) 
and c) acceleration (m  s−2). Note x-axis on (a, c) has been truncated to aid visualization and excludes the upper ~ 3% of observations

Table 2 State-dependent parameter estimates for tagged Giant 
Mud Crab

a The zero-inflated gamma distribution used to model step length and 
acceleration is defined only for non-negative real numbers (i.e., ≥ 0), and 
standard deviations greater than the mean reflect highly positively-skewed 
distributions

State Step length (m)a Turning 
angle (radians)

Acceleration  
(m  s−2)a

Mean ± SD Pr(0) Concentration Mean ± SD Pr(0)

1 13.98 ± 18.10 << 0.001 0.51 0.59 ± 0.63 0.006

2 0.75 ± 0.93 0.014 0.70 0.04 ± 0.02 0.002
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Hill [46] represent the seasonal influence of temperature 
(since they included a period of acclimation) on Giant 
Mud Crab behaviour, while our analysis is aimed at a 
much finer temporal resolution (e.g., observations every 

15-min over several days) over which the variation of 
estuarine water temperature is comparatively low. Future 
studies could employ longer random transmission inter-
vals in tags, thereby preserving battery life and enabling 
inter-seasonal tracking of individuals. Such data may be 
amenable to analysis using a ‘hierarchical’ hidden Markov 
model, which models state processes that operate at dif-
ferent timescales [92, 93], provided the assumed depend-
ence structure is appropriate (see Glennie et al. [67]).

We did not find any evidence of nocturnal foraging, 
which is thought to represent a visual-predator avoid-
ance strategy and has previously been reported for 
the species [38, 43]. However, in highly turbid waters 

Fig. 3 a Example track from a tagged female Giant Mud Crab (ID: 7795) and b the time-series of Viterbi-decoded behavioural states and the 
corresponding probabilities of c State 1 (foraging; yellow) and d State 2 (inactive; purple)

Table 3 State transition probabilities of tagged Giant Mud Crab

Diagonal entries indicate the probability of staying in the same state (i.e., state-
dwell probabilities)

Current state Next state

1 2

1 0.91 0.09

2 0.04 0.96
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visual predation is somewhat reduced and overall pre-
dation pressure is likely to be much more diffuse. This 
may explain the lack of diel rhythm in Giant Mud Crab 
behaviour in the present study, and elsewhere (e.g., [94]). 
Similarly, our analysis suggests that habitat type has little 
influence on crab behavioural dynamics, reflecting their 
status as opportunistic scavengers [42–44]. This is further 
supported by several stable isotope studies that saltmarsh 
grass (i.e., Sporobolus virginicus; [48, 50]), seagrass [47] 
and mangroves [49] all contribute to Giant Mud Crab 
nutrition. Ultimately, stable isotopes provide an indica-
tion as to which habitats form the base of an animals diet, 
and it is likely that crabs tagged in the present study are 
carnivorous; feeding on benthic macroinvertebrates (e.g., 

gastropods, crustaceans and molluscs; 43) that are pri-
mary consumers across these habitats.

Implications for fisheries management
Quantifying drivers of animal movement is important 
for effective fisheries assessment, and management that 
relies on it [2, 3]. For example, catch-per-unit-effort data 
is assumed to represent an index of relative abundance, 
and forms the basis of most contemporary stock assess-
ments [95]. However, use of catch-per-unit-effort as an 
index of abundance assumes that catchability of target 
individuals is constant [4, 5], and it is important to con-
sider how environmental variation (e.g., low tempera-
tures) influences foraging and responding to baited traps 

Fig. 4 Stationary state probabilities as function of the interaction between tide height (m) and ∆-tide height (m 15-min−1) in tagged Giant Mud 
Crab

Fig. 5 Stationary state probabilities (± 95% CI) as a function of a tide height (m) and b ∆-tide height (m 15-min−1)
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[6], when standardizing and interpreting catch rates [5]. 
Our results suggest that the tidal cycle is closely related 
to patterns in foraging, which could influence catchabil-
ity, making it an important covariate to consider for catch 
rate standardisation, as is the case for the closely related 
Blue Swimmer Crab (Portunus armatus; [96]). However, 
crab fishers may deploy traps for several days at a time, 
which may lead to an apparent decoupling of the relation-
ship between catchability in the tidal cycle in catch data. 
While our analysis suggests water temperature does not 
affect fine-scale behaviours, many studies have shown a 
strong temperature effect on Giant Mud Crab catch rates 
[32, 97] and it is likely that this is still an important covar-
iate to include in catch rate standardization.

Several fisheries management strategies require infor-
mation about the partitioning of time and behaviours 
among habitats. For example, stocking of hatchery-
reared individuals requires that release locations support 
the suite of habitats required to support routine behav-
iours (e.g., foraging). Our analysis suggests that Giant 
Mud Crab may be highly adaptable in this regard, since 
they did not exhibit a clear preference for foraging in a 
particular habitat. However, overall productivity of the 
system must also be considered (e.g., [90, 98]), and spe-
cific habitats (e.g., seagrass) may confer other benefits 
(e.g., enhanced survival of juveniles) that are not consid-
ered in our analysis [99].

Technical considerations and caveats
Tag loss is an important concern in acoustic tagging stud-
ies [100, 101], especially when externally tagging crus-
taceans, as the exoskeleton will be shed during ecdysis 
[58]. In our study, this was avoided by only tagging large, 
recently moulted individuals (see Crab capture and tag-
ging) and our approach was largely successful, resulting 
in only two tag loss incidents. These were likely a conse-
quence of re-entering a trap rather than ecdysis, as glue 
was present on the carapace of these individuals and they 
were still in ‘hard-shell’ condition [57] when recaptured. 
Ultimately, the number of tagged crabs was within the 
range appropriate for making behavioural inferences at a 
population scale [101].

Recently, ‘tagging effects’ (e.g., elevated activity) have 
been documented in other crab species (e.g., Snow Crab, 
Chionoecetes opilio), which is typically dealt with by dis-
carding detections from the first day of tracking [102, 
103]. While we found no evidence of changes in activ-
ity, tagging effects in crabs may manifest themselves in 
ways not amenable to visual inspection of activity, such 
as burial (i.e., seeking refuge) or emigration from the 
area. However, our analysis requires relatively long series 
of consecutive detections (≥ 100), permitting only small 
interruptions (≤ 1 h) otherwise the data is excluded, and 

it is likely burial, or emigration would violate these condi-
tions. Furthermore, catch-and-release does not typically 
induce high levels of stress in the species [34] and pre-
vious tagging studies have not found evidence of tagging 
effects [38, 39] giving us confidence that they have not 
influenced the analysis presented here.

The importance of accounting for individual-level vari-
ation in behaviour is increasingly being recognized in 
animal tracking studies [79]. This variation can be due to 
true differences (i.e., animal ‘personality’; [79]), variable 
deployment lengths and different (unmeasured) envi-
ronmental contexts encountered by tagged individuals 
[28]. In our analysis, we found no evidence of individ-
ual-level variation in fine-scale behavioural dynamics of 
Giant Mud Crab. This may be because we only tagged 
large, adult crabs (119–135  mm CL) that had recently 
moulted or because our sample size was low relative to 
the frequency that individual variation is exhibited within 
the population. It is possible to modify this approach to 
account for sex-specific differences in behaviour (e.g., 
[29]), however this approach typically requires larger 
sample sizes to be reliable [81] and previous studies 
have not detected any differences in fine-scale behav-
iour between sexes [46]. Conversely, at greater temporal 
scales (e.g., seasonal) differences in movement have been 
observed. For example, mature female Giant Mud Crab 
typically migrate to oceanic waters to spawn [39, 40, 53], 
facilitating the broad-scale dispersal of larvae [104] which 
may explain the detection of a tagged female ~ 150  km 
north of our array in the coastal ocean. While males are 
typically thought to remain within estuaries, there have 
been a few examples of broad-scale migrations reported 
[41].

Measurement error within our array was generally 
low (median = 1.26  m) and consistent with inherent 
GPS error (2–3  m; [17]), which was used to define the 
‘known’ positions of receivers and reference tags. Addi-
tionally, some error may have been due to the presence 
of structurally complex habitats such as seagrass, man-
groves and oyster farming infrastructure, which can 
lead to issues with signal attenuation [60], refraction, or 
reflection (sometimes refered to as ‘multipath’; [105]). 
Measurement error can increase the overlap between 
state-dependent distributions (e.g., similar step lengths) 
which may lead to difficulty differentiating states [106]. 
The inclusion of acceleration—which is not subject to any 
location measurement error—buffers against this in our 
analysis, and acceleration within the foraging state was 
markedly different from the inactive state. Despite this, 
some state misclassification may have still occurred. For 
example, we would expect crabs in the inactive state to 
have relatively low concentration in their turning angles, 
given consecutive location estimates around the true 
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location. However, the relatively high concentration in 
this state may imply that some very fine-scale (i.e., < 1 m), 
low-acceleration foraging movements (e.g., scavenging 
on a fish carcass) were assigned to the inactive state, or 
that resting crabs may drift in currents to some extent. 
State classification can be further aided by fitting hid-
den Markov models in a semi-supervised context via 
the incorporation of ‘known’ (or labelled) states, which 
are typically derived from laboratory observations [24]. 
However, movements in a laboratory setting may not 
be representative of free-ranging animals [24, 107] and 
incorporation of labelled data can be practically and com-
putationally challenging (V. Leos-Barajas, pers. comm.).

Finally, acoustic tags must be submerged to record 
detections, and while it is possible for Giant Mud Crab to 
spend prolonged periods out of the water, this is uncom-
mon for adults in the size range tagged [77] giving us 
confidence that this did not exert undue influence on the 
results presented here.

Conclusions
Our description of Giant Mud Crab behavioural dynam-
ics are in close agreement with observations of Giant Mud 
Crab behaviour [43–46] and qualitatively similar to a pre-
vious active-tracking study (that did not record/report any 
environmental data; [38]). Furthermore, these results pro-
vide a mechanistic explanation of the observed distribu-
tion of the species across sub–intertidal habitats [77]. We 
demonstrate the importance of the tidal cycle in driving 
foraging of Giant Mud Crab, likely as a strategy to mini-
mize predation and maximize energetic efficiency, similar 
to other estuarine species [63]. Determining such rela-
tionships adds to the evidence base supporting fisheries 
management [2, 3] and the patterns resolve aid the stand-
ardisation and interpretation of catch-per-unit-effort data.
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