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Abstract 

Movement facilitates and alters species interactions, the resulting food web structures, species distribution patterns, 
community structures and survival of populations and communities. In the light of global change, it is crucial to gain 
a general understanding of how movement depends on traits and environmental conditions. Although insects and 
notably Coleoptera represent the largest and a functionally important taxonomic group, we still know little about 
their general movement capacities and how they respond to warming. Here, we measured the exploratory speed 
of 125 individuals of eight carabid beetle species across different temperatures and body masses using automated 
image-based tracking. The resulting data revealed a power-law scaling relationship of average movement speed with 
body mass. By additionally fitting a thermal performance curve to the data, we accounted for the unimodal tempera-
ture response of movement speed. Thereby, we yielded a general allometric and thermodynamic equation to predict 
exploratory speed from temperature and body mass. This equation predicting temperature-dependent movement 
speed can be incorporated into modeling approaches to predict trophic interactions or spatial movement patterns. 
Overall, these findings will help improve our understanding of how temperature effects on movement cascade from 
small to large spatial scales as well as from individual to population fitness and survival across communities.

Keywords Exploratory speed, Climate warming, Image-based tracking, Movement ecology, Ectotherms, Thermal 
response, Allometry

Background
Movement is the essential link of species to their envi-
ronment and each other, and is therefore vital to sustain 
individual as well as population survival and fitness [33, 
56]. On smaller scales, it mediates accessing spatially dis-
tributed or mobile resources [56] and is thus one of the 
major processes driving trophic interactions [37, 39, 60, 

69]. On larger scales, movement is the elementary pro-
cess that shapes the spatial distribution of species [44] 
and also connects populations, communities, and entire 
ecosystems [53, 68]. Current knowledge about the move-
ment patterns and processes of larger vertebrates is more 
comprehensive than ever before [23, 37, 46, 57]. Contrary 
and despite the immense importance of insects to our 
ecosystems highlighted by the multitude of their diver-
sity, abundance and functional roles [28, 78], we still lack 
systematic information on their movement behavior and 
dynamics [45, 48].

This gap in our understanding of insect move-
ment is partially caused by the difficulties of applying 
tracking technologies to small organisms. Laboratory 
measurements using camera tracking can help over-
come these limitations. While they cannot be used to 
assess natural movement patterns that depend on the 
environment like habitat structure or microclimates 
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[74, 76], they can help gain a deepened understanding 
about movement parameters and fundamental move-
ment capacities. This information can then be used to 
inform mechanistic models, which can support predic-
tions of potential movement patterns in natural envi-
ronments [36]. Such movement parameters include 
maneuverability or movement speed. Movement speed, 
for instance, captures the movement intensity and its 
body-size dependence [37, 38, 43], which allows gener-
alizations from a few measured species to the multitude 
of other species in the wild. During attacks or escapes, 
animals move at maximum speed. In contrast, they use 
a more constant and less demanding routine speed dur-
ing dispersal (travel speed, minimizing the energy costs 
or habitat exploration (exploratory speed; maximizing 
the energy gain [18]. The relative exploratory speed of 
interacting species, for instance, is the major constraint 
on encounter and subsequent consumption rates, and 
thus drives interaction strengths [39, 60].

Because many physiological and behavioral processes 
of insects such as metabolism [12, 14, 15, 25, 32, 34] or 
growth rates [30, 67] are strongly driven by ambient tem-
perature, all higher level processes that arise from them 
such as demography and movement are also strongly 
temperature-dependent [29, 35, 71]. Yet, studies on the 
consequences of climate warming on insect movement 
remain challenging and scarce compared to less diverse 
taxa [24]. Hitherto, studies on the thermal sensitiv-
ity of movement have with some exceptions [41] mostly 
focused on vertebrates like lizards or other single species 
[3, 13, 16, 17], and we still lack information on these sen-
sitivities across wider taxonomic and body size ranges. A 
general thermal scaling relationship of movement speed 
across different species and body sizes will, in the long 
term, help to gain a mechanistic understanding of how 
terrestrial insects will respond to climate warming.

Here, we contribute to filling this gap by assessing the 
general allometric and thermal response of exploratory 
speed of ground beetles. Coleoptera are the largest taxo-
nomic group of insects and occur in almost every ecosys-
tem [28]. The group of Carabids holds an important role 
as predators, fulfilling, for instance, the ecosystem service 
of biological control [24]. We assessed the movement of 
125 individuals of eight Carabid beetle species varying 
by an order of magnitude in body size using automated 
image-based tracking [6, 19]. We hypothesized that 
exploratory speed should follow a power-law relationship 
with body mass and show a unimodal response to tem-
perature. The main objective of this study was to yield a 
general allometric and thermodynamic equation to pre-
dict exploratory speed from temperature and body mass.

Methods and materials
Study organisms and experimental design
We measured the thermal response of exploratory speed 
of 125 individuals of eight Central European Carabid bee-
tle species (Carabidae) in the laboratory using automated 
image-based tracking [6, 19]. We collected the beetles 
in the surrounding area of Leipzig, Saxony, Germany 
(51.2910° N, 12.3220° E and 51.2799° N, 12.4119° E) dur-
ing 2018–2020 using pitfall traps. Thereby, we obtained 
the following species for our experiment: Carabus 
granulatus, Carabus nemoralis, Pterostichus cristatus, 
Pterostichus melanarius, Abax parallelus, Nebria brevi-
collis, Harpalus affinis, and Anchomenus dorsalis with 
body masses ranging from 10 mg (Anchomenus dorsalis) 
to 303  mg (Pterostichus cristatus). As our main objec-
tive was quantifying a general allometric and thermal 
response of movement speed, we grouped the species 
into body mass classes to get a representative number 
of replicates across body masses (see Additional file  1: 
Tables S1–S3). However, this approach inhibited spe-
cies-specific analysis of thermal responses. We kept all 
species separately in boxes (30 × 40  cm) filled with soil, 
leaves, and bark as habitat structure. The boxes were kept 
in a room with daylight to maintain a natural circadian 
rhythm at an ambient temperature of ~ 19  °C. We fed 
beetles ad  libitum with beetle jelly from a commercial 
supplier and watered the boxes with a spray bottle. The 
individuals were kept for a maximum of one week before 
measurements.

For the filming records, we used two reach-in environ-
mental chambers in which we placed circular acrylic-
tubes of 490  mm diameter as arenas (Fig.  1). To create 
a non-uniform background and to avoid a directional 
bias of moving beetles, we covered the sides with a ran-
dom black-white pattern. Additionally, we applied insect 
escape protection lacquer (Polytetrafluorethen) on the 
first 4 cm of the acrylic tube to prevent the beetles from 
climbing up the arena wall. We located a high-resolution 
camera (Prosilica GT 1920; Allied Vision; 1936 × 1454 
pixel) orthogonally above the arena. The bottom of each 
arena was covered with white paper (80 g/m2), which was 
exchanged every new day of recording or when a different 
species was recorded. We tracked a maximum of three 
individuals per day and per environmental chamber. 
To track the beetles, we used an open-source software 
application (Vimba-Viewer) using the C +  + framework 
of the camera producer (Allied Vision) at a frame rate of 
38 pictures per seconds. The internal real time clock of 
the camera provided high precision timestamps for every 
frame. We developed C +  + applications and scripts for 
extracting movement trajectories with real world coor-
dinates and timestamps [10]. We analyzed the trajectory 
data, which consists of x–y-coordinates and time stamps 
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using the R-package trajr [54]. Prior experiments 
with non-moving animals showed that artificial changes 
in position and direction may be recorded although the 
beetle was inactive [38]. To remove these spurious move-
ment periods, we set thresholds and excluded move-
ment data if speeds were lower than 0.6  mm/s (start) 
and 0.3  mm/s (stop). Before starting a film recording 
session, we weighed each individual and kept the beetles 
separately in small boxes with perforated lids and added 
beetle jelly to the boxes to make sure that all beetles 

were in the same condition and well fed before starting 
the measurements. Following an acclimation time of two 
hours in the environmental chamber at the respective 
temperature, we released one single beetle into the arena 
per session. After a time delay of ten minutes to account 
for the temporarily open doors of the climate chamber, a 
one-hour film recording was initiated. We assume that a 
two hour acclimation time is sufficient to provide reliable 
results in our experiment. If, however, longer acclimation 
times would be needed, we can expect a slight underesti-
mation of movement speed in our results.

Fig. 1 The experimental setup of the automated image-based tracking of beetles in an environmental reach-in chamber. A Sketch of the 
experimental setup. B Sketch of an automated image-based tracking sequence including x- and y-coordinates for each timestamp. C Actual 
experimental setup in an environmental reach-in chamber
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We used a temperature gradient of 14 levels from 8 to 
32  °C. This temperature range was limited by the tech-
nical constraints of the environmental reach-in chamber 
and the high-resolution camera and does therefore not 
capture very low temperatures like they occur in nature 
(see Additional file  1: Table  S5). However, the highest 
temperature level of 32  °C still meets realistic tempera-
tures in the environment of species occurrences (Addi-
tional file  1: Table  S4). During the recording, we kept a 
constant temperature and took three separate records 
for every temperature level using different individuals. In 
total, we recorded movement, weight, and temperature 
data for 125 individuals across eight species.

Analyses and statistics
To analyze the thermal response of movement speed, we 
fitted thermal performance curves (TPC) to our data by 
applying the nls_multstart function from the rTPC 
package [59]. Although different species will show vari-
ations in e.g. thermal optima, our main goal here was to 
predict the average thermal response across our species. 
We compared five different models included in this pack-
age, which we assumed as most relatable to our move-
ment data [1]: Gaussian, Modified Gaussian, Quadratic, 
Pawar (a modified Sharpe-Schoolfield equation; [50] 
and Weibull. We compared these models by using the 
Akaike information criterion (AIC) to find the most par-
simonious model. Based on the best model fit, we chose 
the respective equation and incorporated an additional 
power-law scaling with body mass [38], which yielded a 
final equation for predicting the exploratory speed from 
body mass and temperature. We used the nls function 
in R to fit the respective equation to our data.

Since we did not have sufficient individuals from all 
species to measure every species equally often across all 
temperature levels, we aggregated them in size classes 
(Additional file 1: Table S1–S3). Therefore, we could not 
test for species-specific responses or thermal optima. 
To account for species-specific responses, we used a lin-
ear model to test how the residuals of the general scal-
ing model (exploratory speed depending on body mass 
and temperature, see above) vary with species identities 
as well as their habitat preferences (see Additional file 1: 
Table S1).

All statistical analyses and calculations were performed 
using R 4.2.1 [61]. We used the following R-packages for 
the graphical presentation: ggplot2 [77], grafify [72], 
and sjPlot [52].

Results
We measured movement speed of in total 125 individu-
als of ground beetles ranging between a body mass of 
10 mg and 303 mg with an average body mass of 105 mg. 

The measured movement speed lay between 0.008   ms−1 
and 0.11  ms−1. The data showed much variation (Fig. 2), 
which we aimed to explain by allometric and temperature 
effects. Subsequently, we carried out a sensitivity analy-
sis on the residuals of this general scaling relationship to 
detect indications of species-specific responses (e.g., spe-
cies-specific habitat and also thermal preferences).

The main goal of our study was to predict the general 
allometric and thermal response of exploratory speed 
across the species of our experiment. The thermal per-
formance models we tested provided fairly similar fits to 
the data (Fig. 2B). AIC comparisons identified the Pawar 
model [50] and the Weibull model as the most parsimo-
nious models (Table  1). We chose the Pawar model, a 
modified Sharpe-Schoolfield equation (frequently used 
to quantify the thermal response of ecological processes; 
[70], with the lowest AIC (delta AIC < 1.18) for all further 
analyses.

We modified the Pawar model (the modified Sharpe-
Schoolfield equation; [50] by adding a body mass term, 
which yielded the following equation:

describing how movement speed v [m  s−1] depends on 
body mass M [mg] and temperature T (°C). Here, the 
intercept a0 represents the movement speed at the refer-
ence temperature Tref (here: 15 °C) and b is the allometric 
exponent. E is the activation energy (eV), which controls 
the rise of the curve up to the peak, Eh is the de-activa-
tion energy (eV), which sets the rate at which movement 
speed decreases after the peak, k is the Boltzmann con-
stant (8.617 ⋅  10−5 eV  K−1), and Topt is the optimum tem-
perature at which movement speed is maximized (across 
species). Note that species-specific temperature optima 
likely vary, but could not be accurately predicted based 
on our data. Detailed information on the number of indi-
viduals per species, respective body-mass levels and the 
number of measurements per species and temperature 
treatment can be found in the Additional file  1: Tables 
S1–S3.

To illustrate both temperature and body-size effects, 
we used our allometric and thermodynamic equation 
to predict movement speed  [ms−1] for different body 
masses [mg] (across the temperature gradients) or at 
different temperature levels (across the body size gradi-
ent) temperature levels [°C]. Our results demonstrate 
a continuous increase in exploratory speed with body 
mass (Fig. 3B). Since a power law scaling with body mass 
with an exponent less than one (i.e. b = 0.12 CI = 0.02 

(1)

v = a0M
b
·

exp
−E
k

1

T+273.15
−

1
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E

Eh−E · exp
Eh
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Topt+273.15
−

1

T+273.15



Page 5 of 11Terlau et al. Movement Ecology           (2023) 11:27  

– 0.15) indicates that this increase is steeper from small 
to medium species than from medium to large species, 
medium and large species are at a given temperature 
quite similar in their exploratory speed (Fig. 3A, medium 
and dark blue lines at a given temperature), whereas 
small species are much slower (Fig. 3A, light blue line at a 
given temperature).

The scaling of exploratory speed with temperature 
exhibits a more complex unimodal pattern (Fig.  3A). 
Speeds are increasing from low to intermediate temper-
atures (Fig.  3B, orange versus red lines) but decreasing 

Fig. 2 The unimodal scaling of exploratory speed  [ms−1] with temperature [°C] of carabid beetles (n = 125, number of species = 8). A Five different 
thermal performance models included in the rTPC package [59] in comparison. B The final selected model based on AIC comparison (Table 2), a 
modified Sharpe-Schoolfield equation (pawar model, [50], blue curve). Gray curves show the other tested models in comparison

Table 1 AIC comparison of five thermal performance models 
included in the rTPC package [59] for movement speed  [ms−1]

Model name AIC ΔAIC

Gaussian − 591.13 11.75

Modified Gaussian − 600.46 2.42

Quadratic − 600.26 2.62

Weibull − 601.70 1.18

Pawar − 602.88 0
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Fig. 3 A The predicted scaling of movement speed  [ms−1] with temperature [°C] for three different body masses [mg] (blue color scale) based on 
Eq. (1). B The predicted scaling of movement speed  [ms−1] with body mass [mg] for three different temperature levels [°C] (orange-dark red color 
code)
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from intermediate to high temperatures (Fig. 3B, red ver-
sus dark red lines). These differences are reflected in the 
model parameters with an activation energy E of 0.37 eV 
for the increasing part and a deactivation energy Eh of 
3.11 eV for the decreasing part of the unimodal relation-
ship (Table  2). Overall, this implies a steady increase in 
exploratory speed with warming up to the optimum tem-
perature that is followed by a sharp decrease (Fig. 3A).

Subsequently, we carried out a sensitivity analysis using 
linear models to test how the residuals of the general 
scaling model (Fig. 3, Table 2) depend either on species 
identities or on their habitat preferences. Here, we tested 
whether the residuals for any group defined by either 
species identity (i.e. taxonomy) or habitat preference (i.e. 
species grouped by their habitat preferences) deviate sig-
nificantly from zero representing the model prediction. 
These analyses did not show any significant effects of spe-
cies identities (Additional file  1: Table  S6, Figure S1) or 
habitat preferences (Additional file  1: Tables S7, Figure 
S2). Overall, these sensitivity analyses show that devia-
tions of our empirical data points from our model predic-
tions cannot be explained by species identities or habitat 
preferences.

Discussion
Despite their abundance and functional importance, we 
still know little about the thermal sensitivity of move-
ment of insects. Here, we experimentally measured the 
movement of differently-sized beetles across a tem-
perature-gradient using image-based tracking [6, 19]. 
Thereby, we provide an allometric and thermodynamic 
model for predicting exploratory speed from body size 
and temperature.

Similar to Hirt et  al. [38] we found a power-law scal-
ing of exploratory speed with body mass with a slightly 
smaller allometric exponent (0.12 ± 0.04 compared to 
0.19 ± 0.04; [38]. To account for the temperature-depend-
ence of movement speed [3, 13, 17], we fitted a thermal 
performance curve to our data, which was best described 
by the modified Sharpe-Schoolfield equation [50]. While 

some of the variation in the measured speed data finds 
an explanation in body mass effects (Fig. 3A) or tempera-
ture effects (Fig. 3B) that are both accounted for by our 
fitted model (Eq.  1, Table  2), there is also unexplained 
variation that is potentially related to species-specific 
responses. Analyses of effects resulting from species and 
habitat preferences on residuals showed no significant 
effects (Additional file  1: Tables S6–S7, Figures  S1–S2). 
This suggests that in our data set, species identities and 
habitat preferences do not contribute towards explain-
ing variation in exploratory speed after accounting for 
the effects of body mass and ambient temperature. Nev-
ertheless, we caution that larger datasets covering more 
species may find signatures of species-specific effects. In 
particular, our sensitivity test for species-specific effects 
was inspired by findings of shorter acclimation times for 
smaller animals also making larger animals more sensi-
tive to higher temperatures [49, 64]. Additionally, ther-
mal performance generally depends on age (life-history 
stage), body size and geographic location [58]. Since all 
individuals of our study were collected within the same 
area around Leipzig (Germany), we can assume that 
the species in our study should not differ much regard-
ing adaptation to the geographic location in general, but 
rather regarding their species-specific habitat prefer-
ences (Additional file  1: Table  S1) and hence respective 
microclimatic preferences [8]. As thermal responses gen-
erally vary among species and even populations [9, 55, 
58], incorporating species-specific responses should be 
addressed in future research employing individuals or 
species from different geographic origins and climatic 
regimes in their habitats. Extending our approach across 
species from different biomes would be important for 
global predictions of the consequences of warming for 
animal movement.

Our general model relating animal exploratory speed 
to body mass and ambient temperature has broad impli-
cations for ecological processes. Movement speed is a 
crucial movement trait that strongly affects interactions, 
habitat connectivity, species distributions, and ultimately 

Table 2 Parameter values for Eq. (1), the modified Sharpe-Schoolfield equation after Kontopoulos et al. [50] with an additional body-
mass term

Predictors Variable Estimates Std. Error CI p

intercept a 0.03 0.004 0.02 – 0.04  < 0.001

body mass exponent b 0.12 0.04 0.02 – 0.15 0.002

activation energy E 0.37 0.09 0.19 – 0.55  < 0.001

deactivation energy Eh 3.11 1.33 0.41 – 5.60 0.021

optimum temperature Topt 26.33 1.20 24.22 – 28.72  < 0.001

Observations 125
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survival capacities of animals. The allometric and ther-
modynamic dependency of movement speed shown here 
has thus broad implications on small- and large-scale 
processes by implying that (1) larger animals have higher 
movement rates and (2) higher temperatures have vari-
able effects on movement speed depending on the initial 
climatic conditions. While animals living in areas where 
they have not yet reached their optimal temperature will 
respond with higher average movement speeds to warm-
ing, animals from warmer climates that already live at 
or beyond their optimal temperature, will exhibit lower 
average movement speeds.

On smaller scales, higher movement speed as induced 
by higher body sizes or partially higher temperatures, 
should lead to higher encounter rates between preda-
tor and prey [60]. These higher encounter rates in turn 
yield higher attack rates and ultimately feeding rates 
[62]. Thus, together with prey preferences and prey den-
sity, movement speed is an important driver of interac-
tion strengths and has direct consequences for energy 
fluxes (i.e., energy consumption across trophic groups) 
within food webs and therefore communities [5, 11]. 
With changing environments (e.g. due to climate warm-
ing), studies have found shifts in distribution patterns 
and habitat use [26, 51, 73, 75], which imply restructured 
food webs, including new as well as lost interaction links, 
and therefore altered interaction structure and strength 
of a whole food web [7]. The fact that both distribution 
shifts and consequently changes in species composi-
tion as well as the resulting local interactions depend 
on movement capacities, highlights the importance of 
understanding the trait-based response of movement to 
temperature to predict future communities re-shuffled by 
climate change.

On larger scales, higher movement speeds should on 
average result in higher travel distances of bigger spe-
cies and thereby increase the connectivity of habitats and 
the linkage to other populations, species, or resources 
[36, 65]. This habitat connectivity could even increase 
under climate warming for species living in temper-
ate regions but be detrimentally disrupted in warmer or 
colder climates depending on the relative temperature 
increase [63] and the thermal sensitivity of species [2, 
23]. Since anthropogenic global change also causes dis-
turbances such as habitat modification or fragmentation 
[66], our results suggests that under future conditions, 
larger animals living in temperate environments will be 
capable of longer travel distances to find new habitats 
and resources, whereas their movement capacity may 
become more limited in warm (e.g., tropic or Mediterra-
nean) environments, which has strong consequences for 
their individual fitness and also survival of populations 
[22]. However, trophic interactions not only play a crucial 

role for the survival of individuals and populations, but 
also gene flow between populations, which is particularly 
achieved by dispersal [4]. Overall, the unimodal response 
of movement speed to warming will have opposing and 
cascading effects on individual fitness, species interac-
tions, food webs, and species distributions.

The negative effects of warming on movement speed, 
however, can also be mitigated in nature, which cannot 
be captured under laboratory conditions like in our study. 
These coping mechanisms include either reducing move-
ment or seeking shelter (shadow) and thereby lowering 
the overall energy loss [47, 74] or shifting activity peri-
ods (seasonal and diurnal). This, however, can potentially 
create activity mismatches between trophic levels, hence 
imposing cascading effects across food webs [71], which 
highlights the importance of considering the combined 
effects of temperature and habitat structure on move-
ment speed and behavior in more complex experimental 
settings or field studies. Our thermal and allometric scal-
ing relationships can serve as a baseline for these studies.

Since small invertebrates are hard to track and monitor, 
trait-based modeling approaches can be a powerful tool 
to make predictions on the general effects of warming 
on invertebrate movement. Integrating our equation in 
such models could enable predictions on trophic interac-
tions or spatial patterns. For instance, biological rates like 
metabolism and growth also show a temperature- and 
body-mass dependence. These processes interactively 
drive energy gains via feeding and losses via metabolic 
expenditure and thus determine the energetic capacity of 
animals. Regarding ongoing and fast proceeding climate 
change, it raises the question how animals will energeti-
cally cope with increasing temperature and more often 
heat extremes [27]. If, for instance, energy loss increases 
faster than energy intake (i.e., feeding), this would create 
energetic discrepancies [40]. Thus, a synthesis approach 
integrating physiological rates and movement as a cen-
tral process of species interactions may provide impor-
tant insights in animal survival capacities under climate 
warming. Therefore, however, it is important to meas-
ure the thermal response of movement speed across a 
wider range of taxonomic groups, which would also allow 
testing for differences due to taxonomic traits, mode of 
locomotion, diet or ecological requirements. This would 
also include taxa from different climatic regions since 
we would expect varying thermal responses depending 
on the initial climatic condition [20, 21]. Similar to other 
studies (e.g., [31], we were unable to measure a tempera-
ture gradient covering the entire thermal performance 
gradient of all species due to technical limitations. If 
future studies could extend this temperature range fur-
ther, it would improve our predictions, especially at the 
lower and upper critical temperature limits.
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Conclusions
Movement speed is an essential movement trait of animals 
shaping central ecological patterns and processes, mak-
ing it important to understand how it will be altered by 
global change drivers such as climate warming. Although 
insects and Coleoptera in particular represent the larg-
est taxonomic group, we still know little about the effects 
of climate change on this huge and ecologically important 
group. Our experimental approach provides a mathemati-
cal equation for predicting movement speed of Central 
European ground beetles (Carabidae) from temperature 
and body mass. This equation can be used to inform mod-
eling approaches and will thereby help to better under-
stand and predict the consequences of warming on species 
interactions, food web structures, species distribution pat-
terns, and therefore ultimately survival of populations and 
communities.
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