Skip to main content

Advertisement

Articles

Page 4 of 4

  1. Content type: Methodology article

    Migratory species face numerous threats related to human encroachment and climate change. Several migratory populations are declining and individuals are losing their migratory behaviour. To understand how hab...

    Authors: Mael Le Corre, Christian Dussault and Steeve D Côté

    Citation: Movement Ecology 2014 2:19

    Published on:

  2. Content type: Review

    Dispersal of pollen and seeds are essential functions of plant species, with far-reaching demographic, ecological and evolutionary consequences. Interest in plant dispersal has increased with concerns about th...

    Authors: Juan J Robledo-Arnuncio, Etienne K Klein, Helene C Muller-Landau and Luis Santamaría

    Citation: Movement Ecology 2014 2:16

    Published on:

  3. Content type: Research

    Dispersal has a critical influence on demography and gene flow and as such maintaining connectivity between populations is an essential element of modern conservation. Advances in satellite radiotelemetry are ...

    Authors: Joshua Killeen, Henrik Thurfjell, Simone Ciuti, Dale Paton, Marco Musiani and Mark S Boyce

    Citation: Movement Ecology 2014 2:15

    Published on:

  4. Content type: Research

    Foraging movements of animals shape their efficiency in finding food and their exposure to the environment while doing so. Our goal was to test the optimal foraging theory prediction that territorial acorn woo...

    Authors: Pamela G Thompson, Peter E Smouse, Douglas G Scofield and Victoria L Sork

    Citation: Movement Ecology 2014 2:12

    Published on:

  5. Content type: Research

    Many animals are known to have improved navigational efficiency when moving together as a social group. One potential mechanism for social group navigation is known as the ‘many wrongs principle’, where inform...

    Authors: Edward A Codling and Nikolai WF Bode

    Citation: Movement Ecology 2014 2:11

    Published on:

  6. Content type: Commentary

    Billions of organisms travel through the air, influencing population dynamics, community interactions, ecosystem services and our lives in many different ways. Yet monitoring these movements are technically ve...

    Authors: Judy Shamoun-Baranes, Jose A Alves, Silke Bauer, Adriaan M Dokter, Ommo Hüppop, Jarmo Koistinen, Hidde Leijnse, Felix Liechti, Hans van Gasteren and Jason W Chapman

    Citation: Movement Ecology 2014 2:9

    Published on:

  7. Content type: Research

    How foragers move across the landscape to search for resources and obtain energy is a central issue in ecology. Direct energetic quantification of animal movements allows for testing optimal foraging theory pr...

    Authors: Maite Louzao, Thorsten Wiegand, Frederic Bartumeus and Henri Weimerskirch

    Citation: Movement Ecology 2014 2:8

    Published on:

  8. Content type: Review

    Seed dispersal alters gene flow, reproduction, migration and ultimately spatial organization of dryland ecosystems. Because many seeds in drylands lack adaptations for long-distance dispersal, seed transport b...

    Authors: Sally E Thompson, Shmuel Assouline, Li Chen, Ana Trahktenbrot, Tal Svoray and Gabriel G Katul

    Citation: Movement Ecology 2014 2:7

    Published on:

    The Correction article to this article has been published in Movement Ecology 2014 2:14

  9. Content type: Methodology article

    Animal-borne accelerometers measure body orientation and movement and can thus be used to classify animal behaviour. To univocally and automatically analyse the large volume of data generated, we need classifi...

    Authors: Roeland A Bom, Willem Bouten, Theunis Piersma, Kees Oosterbeek and Jan A van Gils

    Citation: Movement Ecology 2014 2:6

    Published on:

  10. Content type: Research

    This study investigates the ranging behavior of elephants in relation to precipitation-driven dynamics of vegetation. Movement data were acquired for five bachelors and five female family herds during three ye...

    Authors: Gil Bohrer, Pieter SA Beck, Shadrack M Ngene, Andrew K Skidmore and Ian Douglas-Hamilton

    Citation: Movement Ecology 2014 2:2

    Published on:

  11. Content type: Review

    The primary focus of studies examining metapopulation processes in dynamic or disturbance-dependent landscapes has been related to spatiotemporal changes in the habitat patches themselves. However, like the ha...

    Authors: Sara L Zeigler and William F Fagan

    Citation: Movement Ecology 2014 2:1

    Published on:

  12. Content type: Research

    Adaptive movement behaviors allow individuals to respond to fluctuations in resource quality and distribution in order to maintain fitness. Classically, studies of the interaction between ecological conditions...

    Authors: Leo Polansky, Iain Douglas-Hamilton and George Wittemyer

    Citation: Movement Ecology 2013 1:13

    Published on:

  13. Content type: Research

    Leatherback turtles are renowned for their trans-oceanic migrations. However, despite numerous movement studies, the precise drivers of movement patterns in leatherbacks remain elusive. Many previous studies o...

    Authors: Robert S Schick, Jason J Roberts, Scott A Eckert, Patrick N Halpin, Helen Bailey, Fei Chai, Lei Shi and James S Clark

    Citation: Movement Ecology 2013 1:11

    Published on:

  14. Content type: Research

    Conservation strategies derived from research carried out in one part of the range of a widely distributed species and then uniformly applied over multiple regions risk being ineffective due to regional variat...

    Authors: Nicole Davies, Galina Gramotnev, Leonie Seabrook, Adrian Bradley, Greg Baxter, Jonathan Rhodes, Daniel Lunney and Clive McAlpine

    Citation: Movement Ecology 2013 1:8

    Published on:

  15. Content type: Methodology article

    Arrays of passive receivers are a widely used tool for tracking the movements of acoustically-tagged fish in marine ecosystems; however, the spatial and temporal heterogeneity of coral reef environments pose c...

    Authors: Nicholas A Farmer, Jerald S Ault, Steven G Smith and Erik C Franklin

    Citation: Movement Ecology 2013 1:7

    Published on:

  16. Content type: Review

    Movement of organisms is one of the key mechanisms shaping biodiversity, e.g. the distribution of genes, individuals and species in space and time. Recent technological and conceptual advances have improved ou...

    Authors: Florian Jeltsch, Dries Bonte, Guy Pe'er, Björn Reineking, Peter Leimgruber, Niko Balkenhol, Boris Schröder, Carsten M Buchmann, Thomas Mueller, Niels Blaum, Damaris Zurell, Katrin Böhning-Gaese, Thorsten Wiegand, Jana A Eccard, Heribert Hofer, Jette Reeg…

    Citation: Movement Ecology 2013 1:6

    Published on:

  17. Content type: Research

    The need to obtain food is a critical proximate driver of an organism’s movement that shapes the foraging and survival of individual animals. Consequently, the relationship between hunger and foraging has rece...

    Authors: Orr Spiegel, Roi Harel, Wayne M Getz and Ran Nathan

    Citation: Movement Ecology 2013 1:5

    Published on:

  18. Content type: Research

    Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, na...

    Authors: Kamran Safi, Bart Kranstauber, Rolf Weinzierl, Larry Griffin, Eileen C Rees, David Cabot, Sebastian Cruz, Carolina Proaño, John Y Takekawa, Scott H Newman, Jonas Waldenström, Daniel Bengtsson, Roland Kays, Martin Wikelski and Gil Bohrer

    Citation: Movement Ecology 2013 1:4

    Published on:

  19. Content type: Methodology article

    The movement of animals is strongly influenced by external factors in their surrounding environment such as weather, habitat types, and human land use. With advances in positioning and sensor technologies, it ...

    Authors: Somayeh Dodge, Gil Bohrer, Rolf Weinzierl, Sarah C Davidson, Roland Kays, David Douglas, Sebastian Cruz, Jiawei Han, David Brandes and Martin Wikelski

    Citation: Movement Ecology 2013 1:3

    Published on: