Piersma T, Drent J. Phenotypic flexibility and the evolution of organismal design. Trends Ecol Evol. 2003;18:228–33.
Article
Google Scholar
Åkesson S, Helm B. Endogenous programs and flexibility in bird migration. Front Ecol Evo. 2020;8:78.
Article
Google Scholar
Alerstam T, Lindström Å. Optimal bird migration: the relative importance of time, energy, and safety. In: Gwinner E, editor. Bird migration. Springer; 1990. p. 331–51.
Chapter
Google Scholar
Alerstam T. Optimal bird migration revisited. J Ornithol. 2011;152:5–23.
Article
Google Scholar
Gill RE, Douglas DC, Handel CM, Tibbitts TL, Hufford G, Piersma T. Hemispheric-scale wind selection facilitates bar-tailed godwit circum-migration of the Pacific. Anim Behav. 2014;90:117–30.
Article
Google Scholar
Budaev S, Jørgensen C, Mangel M, Eliassen S, Giske J. Decision-making from the animal perspective: bridging ecology and subjective cognition. Front Ecol Evol. 2019;7:164.
Article
Google Scholar
Åkesson S, Hedenström A. Wind selectivity of migratory flight departures in birds. Behav Ecol Sociobiol. 2000;47:40–144.
Google Scholar
Sjöberg S, Alerstam T, Åkesson S, Schulz A, Weidauer A, Coppack T, Muheim R. Weather and fuel reserves determine departure and flight decisions in passerines migrating across the Baltic Sea. Anim Behav. 2015;104:59–68.
Article
Google Scholar
Morganti M, Mellone U, Bogliani G, Saino N, Ferri A, Spina F, Rubolini D. Flexible tuning of departure decisions in response to weather in black redstarts Phoenicurus ochruros migrating across the Mediterranean Sea. J Avian Biol. 2011;42:323–34.
Article
Google Scholar
Deppe JL, Ward MP, Bolus RT, Diehl RH, Celis-Murillo A, Zenzal TJ, et al. Fat, weather, and date affect migratory songbirds’ departure decisions, routes, and time it takes to cross the Gulf of Mexico. Proc Natl Acad Sci. 2015;112:E6331–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Senner NR, Stager M, Verhoeven MA, Cheviron ZA, Piersma T, Bouten W. High-altitude shorebird migration in the absence of topographical barriers: avoiding high air temperatures and searching for profitable winds. Proc R Soc B. 2018;285:20180569.
Article
PubMed
PubMed Central
Google Scholar
Vardanis Y, Klaassen RH, Strandberg R, Alerstam T. Individuality in bird migration: routes and timing. Biol Lett. 2011;7:502–5.
Article
PubMed
PubMed Central
Google Scholar
Stanley CQ, MacPherson M, Fraser KC, McKinnon EA, Stutchbury BJ. Repeat tracking of individual songbirds reveals consistent migration timing but flexibility in route. PLoS ONE. 2012;7:e40688.
Article
CAS
PubMed
PubMed Central
Google Scholar
Senner NR, Verhoeven MA, Abad-Gómez JM, Alves JA, Hooijmeijer JCEW, Howison RA, et al. High migratory survival and highly variable migratory behavior in black-tailed godwits. Front Ecol Evol. 2019;7:1–11.
Article
Google Scholar
Hromádková T, Pavel V, Flousek J, Briedis M. Seasonally specific responses to wind patterns and ocean productivity facilitate the longest animal migration on Earth. Mar Ecol Prog Ser. 2020;638:1–12.
Article
Google Scholar
Oudman T, Laland K, Ruxton G, Tombre I, Shimmings P, Prop J. Young birds switch but old birds lead: how barnacle geese adjust migratory habits to environmental change. Front Ecol Evol. 2020;7:1–15.
Article
Google Scholar
Fraser KC, Shave A, de Greef E, Siegrist J, Garroway CJ. Individual variability in migration timing can explain long-term, population-level advances in a songbird. Front Ecol Evol. 2019;7:1–7.
Article
Google Scholar
Sergio F, Tanferna A, De Stephanis R, Jiménez LL, Blas J, Tavecchia G, et al. Individual improvements and selective mortality shape lifelong migratory performance. Nature. 2014;515(7527):410–3.
Article
CAS
PubMed
Google Scholar
Strandberg R, Klaassen RHG, Olofsson P, Alerstam T. Daily travel schedules of adult Eurasian Hobbies Falco subbuteo—variability in flight hours and migration speed along the route. Ardea. 2009;97:287–95.
Article
Google Scholar
DeLuca WV, Woodworth BK, Rimmer CC, Marra PP, Taylor PD, McFarland KP, et al. Transoceanic migration by a 12 g songbird. Biol Lett. 2015;11:20141045.
Article
PubMed
PubMed Central
Google Scholar
Hill JM, Sandercock BK, Renfrew RB. Migration patterns of Upland Sandpipers in the western hemisphere. Front Ecol Evol. 2019;7:1–18.
Article
Google Scholar
Åkesson S, Bianco G, Hedenstrom A. Negotiating an ecological barrier: crossing the Sahara in relation to winds by common swifts. Philos Trans R Soc B Biol Sci. 2016;371(1704):20150393.
Article
Google Scholar
Gómez C, Bayly NJ, Norris DR, Mackenzie SA, Rosenberg KV, Taylor PD, Hobson KA, Cadena CD. Fuel loads acquired at a stopover site influence the pace of intercontinental migration in a boreal songbird. Sci Rep. 2017;7:1–1.
Article
CAS
Google Scholar
Efrat R, Hatzofe O, Nathan R. Landscape-dependent time versus energy optimizations in pelicans migrating through a large ecological barrier. Funct Ecol. 2019;33:2161–71.
Article
Google Scholar
Farmer AH, Wiens JA. Optimal migration schedules depend on the landscape and the physical environment: a dynamic modeling view. J Avian Biol. 1998;29:405–15.
Article
Google Scholar
Klaassen RHG, Strandberg R, Hake M, Alerstam T. Flexibility in daily travel routines causes regional variation in bird migration speed. Behav Ecol Sociobiol. 2008;62:1427–32.
Article
Google Scholar
Strandberg R, Alerstam T. The strategy of fly-and-forage migration, illustrated for the osprey (Pandion haliaetus). Behav Ecol Sociobiol. 2007;61:1865–75.
Article
Google Scholar
Nilsson C, Klaassen RHG, Alerstam T. Differences in speed and duration of bird migration between spring and autumn. Am Nat. 2013;181:837–45.
Article
PubMed
Google Scholar
Alerstam T. Flight by night or day? Optimal daily timing of bird migration. J Theor Biol. 2009;258:530–6.
Article
PubMed
Google Scholar
Klaassen RHG, Ens BJ, Shamoun-Baranes J, Exo KM, Bairlein F. Migration strategy of a flight generalist, the Lesser Black-backed Gull Larus fuscus. Behav Ecol. 2012;23:58–68.
Article
Google Scholar
Kilpi M, Saurola P. Migration and survival areas of Caspian terns, Sterna caspia from the Finnish coast. Ornis Fenn. 1984;61:24–9.
Google Scholar
Staav R. Svenska skräntärnors flyttning. Presentation av återfyndsmaterial med kartor. Fauna Flora. 2000;95:159–68.
Google Scholar
Shiomi K, Lötberg U, Åkesson S. Seasonal distributions of Caspian terns Hydroprogne caspia from Swedish populations, revealed by recoveries and resightings of ringed birds. Ring Migr. 2015;30:22–36.
Article
Google Scholar
Rueda-Uribe C, Lötberg U, Ericsson M, Tesson SVM, Åkesson S. First tracking of declining Caspian Terns (Hydroprogne caspia) breeding in the Baltic Sea reveals high migratory dispersion and disjunct annual ranges as obstacles to effective conservation. J Avian Biol. 2021;52(9):e02743.
Article
Google Scholar
Cramp S. Handbook of the birds of Europe, the Middle East and North Africa. Terns to Woodpeckers, vol. 4. Oxford: Oxford University Press; 1985.
Google Scholar
Hedenström A, Åkesson S. Ecology of tern flight in relation to wind, topography and aerodynamic theory. Philos Trans R Soc B Biol Sci. 2016;371(1704):20150396.
Article
Google Scholar
Åkesson S, Lötberg U, Rueda-Uribe C. Data from: study “Tracking of Caspian Terns (Hydroprogne caspia) in the Swedish Baltic Sea 2017–2020”. Movebank Data Repository. 2022. https://doi.org/10.5441/001/1.hg1v55ct.
Article
Google Scholar
Signer J, Fieberg J, Avgar T. Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses. Ecol Evol. 2019;9:880–90.
Article
PubMed
PubMed Central
Google Scholar
Hollister, JW. elevatr: access elevation data from various APIs. R package version 0.3.1. 2020. https://CRAN.R-project.org/package=elevatr/
Bivand R, Lewin-Koh N. maptools: tools for handling spatial objects. R package version 1.0–2. 2020. https://CRAN.R-project.org/package=maptools
Benhamou S. How to reliably estimate the tortuosity of an animal’s path: straightness, sinuosity, or fractal dimension? J Theor Biol. 2004;229:209–20.
Article
PubMed
Google Scholar
Almeida PJAL, Vieira MV, Kajin M, German FM, Cerqueira R. Indices of movement behaviour: conceptual background, effects of scale and location errors. Zoologia. 2010;27:674–80.
Article
Google Scholar
Péron G, Calabrese JM, Duriez O, Fleming CH, García-Jiménez R, Johnston A, et al. The challenges of estimating the distribution of flight heights from telemetry or altimetry data. Animal Biotelem. 2020;8:1–13.
Article
Google Scholar
Kemp MU, Shamoun-Baranes J, van Loon EE, McLaren JD, Dokter AM, Bouten W. Quantifying flow-assistance and implications for movement research. J Theor Biol. 2012;308:56–67. https://doi.org/10.1016/j.jtbi.2012.05.026.
Article
PubMed
Google Scholar
Kemp MU, van Loon EE, Shamoun-Baranes J, Bouten W. RNCEP: global weather and climate data at your fingertips. Methods Ecol Evol. 2012;3:65–70.
Article
Google Scholar
Friedl M, Sulla-Menashe D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC. 2019.https://doi.org/10.5067/MODIS/MCD12Q1.006
Tuck SL, Phillips HR, Hintzen RE, Scharlemann JP, Purvis A, Hudson LN. MODISTools–downloading and processing MODIS remotely sensed data in R. Ecol Evol. 2014;4:4658–68.
Article
PubMed
PubMed Central
Google Scholar
Busetto L, Ranghetti L. MODIStsp: an R package for automatic preprocessing of MODIS land products time series. Comput Geosci. 2016;97:40–8.
Article
Google Scholar
Quinn G, Keough M. Experimental design and data analysis for biologists. Cambridge: Cambridge University Press; 2002.
Book
Google Scholar
Grueber CE, Nakagawa S, Laws RJ, Jamieson IG. Multimodel inference in ecology and evolution: challenges and solutions. J Evol Biol. 2011;24:699–711.
Article
CAS
PubMed
Google Scholar
Bartoń K. MuMIn: multi-model inference. R package version 1.43.17. 2020. https://CRAN.R-project.org/package=MuMIn
Nakagawa S, Freckleton RP. Model averaging, missing data and multiple imputation: a case study for behavioural ecology. Behav Ecol Sociobiol. 2010;65:103–16.
Article
Google Scholar
Zeileis A, Hothorn T. Diagnostic checking in regression relationships. R News. 2002;2:7–10.
Google Scholar
Hartig F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.3.3.0. 2020.
Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.
Article
Google Scholar
R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2019.
Google Scholar
South A. rnaturalearth: World Map Data from Natural Earth. R package version 0.1.0. 2017. https://CRAN.R-project.org/package=rnaturalearth
Adamík P, Emmenegger T, Briedis M, Gustafsson L, Henshaw I, Krist M, et al. Barrier crossing in small avian migrants: individual tracking reveals prolonged nocturnal flights into the day as a common migratory strategy. Sci Rep. 2016;6:1–9.
Article
CAS
Google Scholar
Coppack T, Becker SF, Becker PJ. Circadian flight schedules in night-migrating birds caught on migration. Biol Lett. 2008;4:619–22.
Article
PubMed
PubMed Central
Google Scholar
Helm B, Visser ME. Heritable circadian period length in a wild bird population. Proc R Soc B. 2010;277:3335–42.
Article
PubMed
PubMed Central
Google Scholar
Hadjikyriakou TG, Nwankwo EC, Virani MZ, Kirschel ANG. Habitat availability influences migration speed, refueling patterns and seasonal flyways of a fly-and-forage migrant. Mov Ecol. 2020;8:1–14.
Article
Google Scholar
Dias MP, Granadeiro JP, Catry P. Do seabirds differ from other migrants in their travel arrangements? On route strategies of Cory’s shearwater during its trans-equatorial journey. PLoS ONE. 2012;7(11):e49376.
Article
CAS
PubMed
PubMed Central
Google Scholar
Åkesson S, Klaassen R, Holmgren J, Fox JW, Hedenström A. Migration routes and strategies in a highly aerial migrant, the common swift Apus apus, revealed by light-level geolocators. PLoS ONE. 2012;7:1–9.
Article
CAS
Google Scholar
Åkesson S, Bianco G. Wind-assisted sprint migration in northern swifts. iScience. 2021;24:102474.
Article
PubMed
PubMed Central
Google Scholar
Imlay TL, Saldanha S, Taylor PD. The fall migratory movements of bank swallows, Riparia riparia: fly-and-forage migration? Avian Conserv Ecol. 2020;15:1–11.
Google Scholar
Hedenström A. Migration by soaring or flapping flight in birds: the relative importance of energy cost and speed. Philos Trans R Soc Lond B Biol Sci. 1993;342:353–61.
Article
Google Scholar
Sjöberg S, Malmiga G, Nord A, Andersson A, Bäckman J, Tarka M, et al. Extreme altitudes during diurnal flights in a nocturnal songbird migrant. Science. 2021;372:646–8 (in press).
Article
PubMed
CAS
Google Scholar
Norevik G, Åkesson S, Andersson A, Bäckman J, Hedenström A. Flight altitude dynamics of migrating European nightjars across regions and seasons. J Exp Biol. 2021;224(20):jeb242836.
Article
PubMed
PubMed Central
Google Scholar
Alerstam T, Hake M, Kjellén N. Temporal and spatial patterns of repeated migratory journeys by ospreys. Anim Behav. 2006;71:555–66.
Article
Google Scholar
Aben J, Signer J, Heiskanen J, Pellikka P, Travis JMJ. What you see is where you go: visibility influences movement decisions of a forest bird navigating a three-dimensional-structured matrix. Biol Lett. 2021;17:20200478.
Article
PubMed
PubMed Central
Google Scholar
Åkesson S, Walinder G, Karlsson L, Ehnbom S. Reed warbler orientation: initiation of nocturnal migratory flights in relation to visibility of celestial cues at dusk. Anim Behav. 2001;61:181–9.
Article
PubMed
Google Scholar
Emlen ST, Demong NJ. Orientation strategies used by free-flying bird migrants: a radar tracking study. In: Schmidt-Koenig K, Keeton WT, editors. Animal migration, navigation, and homing. Berlin: Springer; 1978. p. 283–93.
Chapter
Google Scholar
Kramer G. Weitere Analyse der Faktoren, welche die Zugaktivität des gekäfigten Vogels orientieren. Naturwissenschaften. 1950;37:377–8.
Article
Google Scholar
Wiltschko R, Wiltschko RO, Walker MI, Wiltschko WO. Sun-compass orientation in homing pigeons: compensation for different rates of change in azimuth? J Exp Biol. 2000;203:889–94.
Article
CAS
PubMed
Google Scholar
Åkesson S, Boström J, Liedvogel M, Muheim R. Animal navigation. In: Hansson LA, Åkesson S, editors. Animal movement across scales. Oxford: Oxford University Press; 2014.
Google Scholar
Streby HM, Kramer GR, Peterson SM, Lehman JA, Buehler DA, Andersen DE. Tornadic storm avoidance behavior in breeding songbirds. Curr Biol. 2015;25:98–102.
Article
CAS
PubMed
Google Scholar
Biro D, Freeman R, Meade J, Roberts S, Guilford T. Pigeons combine compass and landmark guidance in familiar route navigation. Proc Natl Acad Sci. 2007;104:7471–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hedenström A, Åkesson S. Adaptive airspeed adjustment and compensation for wind drift in the common swift: differences between day and night. Anim Behav. 2017;127:117–23.
Article
Google Scholar
Serres JR, Evans TJ, Åkesson S, Duriez O, Shamoun-Baranes J, Ruffier F, et al. Optic flow cues help explain altitude control over sea in freely flying gulls. J R Soc Interface. 2019;16(159):20190486.
Article
PubMed
PubMed Central
Google Scholar
Åkesson S. Coastal migration and wind drift compensation in nocturnal passerine migrants. Ornis Scand. 1993;24:87–94.
Article
Google Scholar
Lantz SM, Gawlik DE, Cook MI. The effects of water depth and submerged aquatic vegetation on the selection of foraging habitat and foraging success of wading birds. The Condor. 2010;112:460–9.
Article
Google Scholar
Paszkowski CA, Tonn WM. Community concordance between the fish and aquatic birds of lakes in northern Alberta, Canada: the relative importance of environmental and biotic factors. Freshw Biol. 2000;43:421–37.
Article
Google Scholar
Jozefik M. Caspian tern, Hydroprogne caspia PALL., in Poland -the biology of migration period. Acta Ornithol. 1969;11:381–443.
Google Scholar
Svensson S, Svensson M, Tjernberg M. Svensk Fågelatlas. Gothenburg: Vår Fågelvärld; 1999. p. 31.
Google Scholar
Bergman G. Single-breeding versus colonial breeding in the Caspian Tern Hydroprogne caspia, the Common Tern Sterna hirundo and the Arctic Tern Sterna paradisaea. Ornis Fenn. 1980;57:141–52.
Google Scholar
Lötberg U, Isaksson N, Åkesson S. Fågelsundets skräntärnor - en rapport om skräntärnorna i Björns skärgård. Gothenburg: Sveriges Ornitologiska Förening and BirdLife Sverige; 2020.
Google Scholar
Hario M, Kastepõld T, Kilpi M, Staav R, Stjernberg T. Status of Caspian terns Sterna caspia in the Baltic. Ornis Fenn. 1987;64:154–7.
Google Scholar
Zwarts L, Bijlsma RJ, van der Kamp J, Wymenga E. Living on the edge. Wetlands and birds in a changing Sahel. Zeist: KNNV Publishers; 2009.
Google Scholar