Alho CJR. Biodiversity of the pantanal: response to seasonal flooding regime and to environmental degradation. Braz J Biol. 2008. https://doi.org/10.1590/S1519-69842008000500005.
Article
PubMed
Google Scholar
Abra FD, da Costa CA, Garbino GST, Medici EP. Use of unfenced highway underpasses by lowland tapirs and other medium and large mammals in central-western Brazil. Perspect Ecol Conserv. 2020;18:247–56. https://doi.org/10.1016/j.pecon.2020.10.006.
Article
Google Scholar
Allen AM, Singh NJ. Linking movement ecology with wildlife management and conservation. Front Ecol Evol. 2016. https://doi.org/10.3389/fevo.2015.00155.
Article
Google Scholar
Barnosky AD, Kraatz BP. The role of climatic change in the evolution of mammals. Bioscience. 2007. https://doi.org/10.1641/B570615.
Article
Google Scholar
Bartumeus F, Catalan J, Viswanathan GM, Raposo EP, Da Luz MGE. The influence of turning angles on the success of non-oriented animal searches. J Theor Biol. 2008. https://doi.org/10.1016/j.jtbi.2008.01.009.
Article
PubMed
Google Scholar
Bauer S, Hoye BJ. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science. 2014. https://doi.org/10.1126/science.1242552.
Article
PubMed
Google Scholar
Blackwell PG, Niu M, Lambert MS, LaPoint SD. Exact Bayesian inference for animal movement in continuous time. Methods Ecol Evol. 2016. https://doi.org/10.1111/2041-210X.12460.
Article
Google Scholar
Brooks TM, Mittermeier RA, Mittermeier CG, Fonseca GAB, Rylands AB, Konstant WR, et al. Habitat loss and extinction in the hotspots of biodiversity. Conserv Biol. 2002. https://doi.org/10.1046/j.1523-1739.2002.00530.x.
Article
Google Scholar
Calabrese JM, Fleming CH, Gurarie E. Ctmm: an r Package for analyzing animal relocation data as a continuous-time stochastic process. Methods Ecol Evol. 2016. https://doi.org/10.1111/2041-210X.12559.
Article
Google Scholar
Calabrese JM, Fleming CH, Noonan MJ, Dong X. Ctmmweb: a graphical user interface for autocorrelation-informed home range estimation. Wildl Soc Bull. 2021. https://doi.org/10.1002/wsb.1154.
Article
Google Scholar
Calder WA III. Ecological scaling: mammals and birds. Annu Rev Ecol Syst. 1983;14:213–30.
Article
Google Scholar
Calheiros DF, Fonseca Junior WC. Perspectivas de estudos ecologicos sobre o Pantanal. Empresa Brasileira de Pesquisa Agropecuaria (EMBRAPA-CPAP). Corumba, Mato Grosso do Sul, Brazil. 1996.
Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, et al. Biodiversity loss and its impact on humanity. Nature. 2012. https://doi.org/10.1038/nature11148.
Article
PubMed
Google Scholar
Cosgrove AJ, McWhorter TJ, Maron M. Consequences of impediments to animal movements at different scales: a conceptual framework and review. Divers Distrib. 2018. https://doi.org/10.1111/ddi.12699.
Article
Google Scholar
Dickie M, Serrouya R, McNay RS, Boutin S. Faster and farther: wolf movement on linear features and implications for hunting behaviour. J Appl Ecol. 2017. https://doi.org/10.1111/1365-2664.12732.
Article
Google Scholar
Doherty TS, Hays GC, Driscoll DA. Human disturbance causes widespread disruption of animal movement. Nat Ecol Evol. 2021. https://doi.org/10.1038/s41559-020-01380-1.
Article
PubMed
Google Scholar
Esfahani HS, Ramı́rez MT. Institutions, infrastructure, and economic growth. J Dev Econ. 2003. https://doi.org/10.1016/S0304-3878(02)00105-0.
Article
Google Scholar
Fahrig L. Relative effects of habitat loss and fragmentation on population extinction. J Wildl Manag. 1997;61(3):603–10.
Article
Google Scholar
Fahrig L. Non-optimal animal movement in human-altered landscapes. Funct Ecol. 2007. https://doi.org/10.1111/j.1365-2435.2007.01326.x.
Article
Google Scholar
Fernandes-Santos RC, Medici EP, Testa-Jose C, Micheletti T. Health assessment of wild lowland tapirs (Tapirus terrestris) in the highly threatened Cerrado biome. Braz J Wildl Dis. 2020. https://doi.org/10.7589/2018-10-244.
Article
Google Scholar
Fleming CH, Drescher-Lehman J, Noonan MJ, Akre TSB, Brown DJ, Cochrane MM, et al. A comprehensive framework for handling location error in animal tracking data. Ecology. 2020.
Fleming CH, Noonan MJ, Medici EP, Calabrese JM. Overcoming the challenge of small effective sample sizes in home-range estimation. Methods Ecol Evol. 2019. https://doi.org/10.1111/2041-210X.13270.
Article
Google Scholar
Fleming CH, Sheldon D, Fagan WF, Leimgruber P, Mueller T, Nandintsetseg D, et al. Correcting for missing and irregular data in home-range estimation. Ecol Appl. 2018. https://doi.org/10.1002/eap.1704.
Article
PubMed
Google Scholar
Fleming CH, Calabrese JM, Mueller T, Olson KA, Leimgruber P, Fagan WF. From fine-scale foraging to home ranges: a semivariance approach to identifying movement modes across spatiotemporal scales. Am Nat. 2014. https://doi.org/10.1086/675504.
Article
PubMed
Google Scholar
Fleming CH, Calabrese JM. A new kernel density estimator for accurate home-range and species-range area estimation. Methods Ecol Evol. 2017. https://doi.org/10.1111/2041-210X.12673.
Article
Google Scholar
Fleming CH, Deznabi I, Alavi S, Crofoot MC, Hirsch BT, Medici EP, et al. Population-level inference for home-range areas. bioRxiv. 2021. https://doi.org/10.1101/2021.07.05.451204.
Article
PubMed
PubMed Central
Google Scholar
Fundação SOS Mata Atlantica. Atlas dos remanescentes florestais da Mata Atlantica: periodo 2000–2005. 2008. http://mapas.sosma.org.br. Accessed 05 Nov 2021.
Faria H, Pires AS. Parque Estadual Morro Do Diabo—Plano de Manejo. Governo do Estado de Sao Paulo, Secretaria do Meio Ambiente, Instituto Florestal. Santa Cruz do Rio Pardo, Sao Paulo, Brazil. 2006.
Gardner AL. Mammals of South America, vol. 1: Marsupials, Xenarthrans, Shrews, and Bats. University of Chicago Press; 2008.
He P, Montiglio PO, Somveille M, Cantor M, Farine DR. The role of habitat configuration in shaping animal population processes: a framework to generate quantitative predictions. Oecologia. 2021;196:649–65. https://doi.org/10.1007/s00442-021-04967-y.
Article
PubMed
PubMed Central
Google Scholar
Hill JE, DeVault TL, Belant JL. Cause-specific mortality of the world’s terrestrial vertebrates. Glob Ecol Biogeogr. 2019. https://doi.org/10.1111/geb.12881.
Article
Google Scholar
Hill JE, DeVault TL, Wang G, Belant JL. Anthropogenic mortality in mammals increases with the human footprint. Front Ecol Environ. 2020. https://doi.org/10.1002/fee.2127.
Article
Google Scholar
Hooper DU, Adair EC, Cardinale BJ, Byrnes JEK, Hungate BA, Matulich KL, et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature. 2012. https://doi.org/10.1038/nature11118.
Article
PubMed
Google Scholar
Kahle D, Wickham H. Ggmap: spatial visualization with Ggplot2. R J. 2013;5(1):144.
Article
Google Scholar
Keys PW, Barnes EA, Carter NH. A machine-learning approach to human footprint index estimation with applications to sustainable development. Environ Res Lett. 2021. https://doi.org/10.1088/1748-9326/abe00a.
Article
Google Scholar
Lucherini M, Lovari S. Habitat richness affects home range size in the red fox Vulpes vulpes. Behav Proc. 1996. https://doi.org/10.1016/0376-6357(95)00018-6.
Article
Google Scholar
Machado RB, Ramos-Neto MB, Pereira PGP, Caldas EF, Goncalves DA, Santos NS, et al. Estimativas de perda da area do cerrado brasileiro. Relatorio Tecnico. Conservacao Internacional, Brasilia, DF, Brazil. 2004.
Mapbiomas 2021. Projeto MapBiomas - Coleção 6 da Série Anual de Mapas de Cobertura e Uso de Solo do Brasil. https://mapbiomas.org/download.
Marengo JA, Oliveira GS, Alves LM. Climate change scenarios in the Pantanal. In: Bergier I, Assine ML, editors. Dynamics of the Pantanal Wetland in South America. Springer; 2016. p. 227–38.
Google Scholar
Martinez-Garcia R, Fleming CH, Seppelt R, Fagan WF, Calabrese JM. How range residency and long-range perception change encounter rates. J Theor Biol. 2020. https://doi.org/10.1016/j.jtbi.2020.110267.
Article
PubMed
Google Scholar
Medici EP. Family Tapiridae (Tapirs). In: Wilson DE, Mittermeier RA, editors. Handbook of the mammals of the world, vol. 2. Hoofed Mammals. Lynx Edicions Barcelona; 2011. p. 182–204.
Medici EP, Mangini PR, Fernandes-Santos RC. Health assessment of wild lowland tapir (Tapirus terrestris) populations in the Atlantic Forest and Pantanal Biomes, Brazil (1996–2012). J Wildl Dis. 2014. https://doi.org/10.7589/2014-02-029.
Article
PubMed
Google Scholar
Medici EP, Abra FD. Licoes aprendidas na conservacao da anta brasileira e os desafios para mitigar uma de suas ameacas mais graves: o atropelamento em rodovias. Boletim da Sociedade Brasileira de Mastozoologia. 2019;85:152–60.
Google Scholar
Medici EP, Desbiez ALJ, Goncalves da Silva A, Jerusalinsky L, Chassot O, Montenegro OL, et al. Lowland Tapir (Tapirus terrestris) conservation workshop: final report. IUCN SSC Tapir Specialist Group & IUCN SSC Conservation Planning Specialist Group (Brazil Network). 2007.
Medici EP, Fernandes-Santos RC, Testa-Jose C, Godinho AF, Brand AF. Lowland tapir exposure to pesticides and metals in the Brazilian Cerrado. Wildl Res. 2021. https://doi.org/10.1071/WR19183.
Article
Google Scholar
Ministerio da Agricultura, Pecuaria e Abastecimento. TerraClass – Gestao Integrada da Paisagem no Bioma Cerrado. 2021.
Montgomery RA, Macdonald DW, Hayward MW. The inducible defences of large mammals to human lethality. Funct Ecol. 2020. https://doi.org/10.1111/1365-2435.13685.
Article
Google Scholar
Morato RG, Stabach JA, Fleming CH, Calabrese JM, Paula RC, Ferraz KMPM, et al. Space use and movement of a neotropical top predator: the endangered jaguar. PLoS ONE. 2016. https://doi.org/10.1371/journal.pone.0168176.
Article
PubMed
PubMed Central
Google Scholar
Nilsen EB, Herfindal I, Linnell JDC. Can intra-specific variation in carnivore home-range size be explained using remote-sensing estimates of environmental productivity? Ecoscience. 2005. https://doi.org/10.2980/i1195-6860-12-1-68.1.
Article
Google Scholar
Noonan MJ, Tucker MA, Fleming CH, Alberts SC, Ali AH, Altmann J, et al. A comprehensive analysis of autocorrelation and bias in home range estimation. Ecol Monogr. 2019. https://doi.org/10.1002/ecm.1344.
Article
Google Scholar
Noonan MJ, Fleming CH, Akre TS, Drescher-Lehman J, Gurarie E, Harrison AL, et al. Scale-insensitive estimation of speed and distance traveled from animal tracking data. Mov Ecol. 2019. https://doi.org/10.1186/s40462-019-0177-1.
Article
PubMed
PubMed Central
Google Scholar
Noonan MJ, Fleming CH, Tucker MA, Kays R, Harrison AL, Crofoot MC, et al. Effects of body size on estimation of mammalian area requirements. Conserv Biol. 2020. https://doi.org/10.1111/cobi.13495.
Article
PubMed
PubMed Central
Google Scholar
Noss AJ, Cuellar RL, Barrientos J, Maffei L, Cuellar E, Arispe R, et al. A camera trapping and radio telemetry study of lowland tapir (Tapirus terrestris) in Bolivian dry forests. Plant Divers. 2003;229:44–5.
Google Scholar
Oro D, Genovart M, Tavecchia G, Fowler MS, Martinez-Abrain A. Ecological and evolutionary implications of food subsidies from humans. Ecol Lett. 2013. https://doi.org/10.1111/ele.12187.
Article
PubMed
Google Scholar
Powers RP, Jetz W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat Clim Chang. 2019. https://doi.org/10.1038/s41558-019-0406-z.
Article
Google Scholar
Quse VB, Fernandes-Santos RC. Tapir Veterinary Manual. IUCN SSC Tapir Specialist Group (TSG). 2014.
R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org. 2021.
Relyea RA, Lawrence RK, Demarais S. Home range of desert mule deer: testing the body-size and habitat-productivity hypotheses. J Wildl Manag. 2000;64(1):146–53.
Article
Google Scholar
Rezende CL, Scarano FR, Assad ED, Joly CA, Metzger JP, Strassburg BBN, Tabarelli M, Fonseca GA, Mittermeier RA. From hotspot to hopespot: An opportunity for the Brazilian Atlantic Forest. Perspect Ecol Conserv. 2018;16:208–14. https://doi.org/10.1016/j.pecon.2018.10.002.
Article
Google Scholar
Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications Conserv Biol Conserv. 2009;142:1141–53. https://doi.org/10.1016/j.biocon.2009.02.021.
Article
Google Scholar
Rosenheim JA, Tabashnik BE. Influence of generation time on the rate of response to selection. Am Nat. 1991;137(4):527–41.
Article
Google Scholar
Salis SM, Shepherd GJ, Joly CA. Floristic comparison of mesophytic semideciduous forests of the interior of the state of Sao Paulo, Southeast Brazil. Vegetatio. 1995;119(2):155–64.
Article
Google Scholar
Sanches A, Perez WAM, Figueiredo MG, Rossini BC, Cervini M, Galetti PM, et al. Wildlife forensic DNA and lowland tapir (Tapirus terrestris) poaching. Conserv Genet Resour. 2011. https://doi.org/10.1007/s12686-010-9318-y.
Article
Google Scholar
Schick RS, Loarie SR, Colchero F, Best BD, Boustany A, Conde DA, et al. Understanding movement data and movement processes: current and emerging directions. Ecol Lett. 2008. https://doi.org/10.1111/j.1461-0248.2008.01249.x.
Article
PubMed
Google Scholar
Schlaepfer MA, Runge MC, Sherman PW. Ecological and evolutionary traps. Trends Ecol Evol. 2002. https://doi.org/10.1016/S0169-5347(02)02580-6.
Article
Google Scholar
Sih A, Ferrari MCO, Harris DJ. Evolution and behavioural responses to human-induced rapid environmental change. Evol Appl. 2011. https://doi.org/10.1111/j.1752-4571.2010.00166.x.
Article
PubMed
PubMed Central
Google Scholar
Swaddle JP, Francis CD, Barber JR, Cooper CB, Kyba CCM, Dominoni DM, et al. A framework to assess evolutionary responses to anthropogenic light and sound. Trends Ecol Evol. 2015. https://doi.org/10.1016/j.tree.2015.06.009.
Article
PubMed
Google Scholar
Thatte P, Chandramouli A, Tyagi A, Patel K, Baro P, Chhattani H, et al. Human footprint differentially impacts genetic connectivity of four wide-ranging mammals in a fragmented landscape. Divers Distrib. 2020. https://doi.org/10.1111/ddi.13022.
Article
Google Scholar
Tobler MW. The ecology of the lowland tapir in Madre de Dios, Peru: using new technologies to study large rainforest mammals. Texas A&M University. 2008.
Toews M, Juanes F, Burton AC. Mammal responses to the human footprint vary across species and stressors. J Environ Manage. 2018. https://doi.org/10.1016/j.jenvman.2018.04.009.
Article
PubMed
Google Scholar
Tucker MA, Bohning-Gaese K, Fagan WF, Fryxell JM, Moorter BV, et al. Moving in the Anthropocene: global reductions in terrestrial mammalian movements. Science. 2018. https://doi.org/10.1126/science.aam9712.
Article
PubMed
Google Scholar
Tucker MA, Busana M, Huijbregts MAJ, Ford AT. Human-induced reduction in mammalian movements impacts seed dispersal in the tropics. Ecography. 2021. https://doi.org/10.1111/ecog.05210.
Article
Google Scholar
Uezu A, Beyer DD, Metzger JP. Can agroforest woodlots work as steppingstones for birds in the Atlantic Forest region? Biodivers Conserv. 2008. https://doi.org/10.1007/s10531-008-9329-0.
Article
Google Scholar
Varela D, Flesher K, Cartes JL, Bustos S, Chalukian S, Ayala G, et al. Tapirus terrestris. The IUCN Red List of Threatened Species. 2019. https://www.iucnredlist.org/species/21474/45174127. Accessed 05 Nov 2021.
Vaughan D, Dancho M. Furrr: apply mapping functions in parallel using futures. 2021.
Venter O, Brodeur NN, Nemiroff L, Belland B, Dolinsek IJ, Grant JWA. Threats to endangered species in Canada. Bioscience. 2006;56(11):903–10.
Article
Google Scholar
Visser AW, Kiorboe T. Plankton motility patterns and encounter rates. Oecologia. 2006. https://doi.org/10.1007/s00442-006-0385-4.
Article
PubMed
Google Scholar
Wall J, Wittemyer G, Klinkenberg B, LeMay V, Blake S, Strindberg S, et al. Human footprint and protected areas shape elephant range across Africa. Curr Biol. 2021. https://doi.org/10.1016/j.cub.2021.03.042.
Article
PubMed
Google Scholar
Wickham H. Ggplot2: elegant graphics for data analysis. New York: Springer; 2016.
Book
Google Scholar
Wood SN. Generalized additive models: an introduction with R. 2nd edn. Chapman; Hall/CRC; 2017.