Dingle H. Migration: the biology of life on the move. In: Migration biology of life move. 2nd ed. Oxford: Oxford University Press; 1996.
Winkler DW, Jørgensen C, Both C, Houston AI, McNamara JM, Levey DJ, et al. Cues, strategies, and outcomes: how migrating vertebrates track environmental change. Mov Ecol. 2014;2:10.
Google Scholar
Arnaud CM, Becker PH, Dobson FS, Charmantier A. Canalization of phenology in common terns: genetic and phenotypic variations in spring arrival date. Behav Ecol. 2013;24:683–90.
Google Scholar
Alerstam T, Hedenström A, Åkesson S. Long-distance migration: evolution and determinants. Oikos. 2003;103:247–60.
Google Scholar
Nilsson C, Klaassen RHG, Alerstam T. Differences in speed and duration of bird migration between spring and autumn. Am Nat. 2013;181:837–45.
PubMed
Google Scholar
Watts HE, Cornelius JM, Fudickar AM, Pérez J, Ramenofsky M. Understanding variation in migratory movements: a mechanistic approach. Gen Comp Endocrinol. 2018;256:112–22.
CAS
PubMed
Google Scholar
Newton I. Obligater und fakultativer Vogelzug: Ökologische Aspekte. J Ornithol. 2012;153:171–80.
Google Scholar
Berthold P, Helbig AJ. The genetics of bird migration: stimulus, timing, and direction. Ibis (Lond 1859). 1992;134:35–40.
Google Scholar
Smith RJ, Moore FR. Arrival timing and seasonal reproductive performance in a long-distance migratory landbird. Behav Ecol Sociobiol. 2005;57:231–9.
Google Scholar
Marra PP, Hobson KA, Holmes RT. Linking winter and summer events in a migratory bird by using stable-carbon isotopes. Science. 1998;282:1884–6.
CAS
PubMed
Google Scholar
Gwinner E. Circannual rhythms in bird migration: control of temporal patterns and interactions with photoperiod. Bird Migr. 1990;257–68.
Gwinner E, Helm B. Circannual and circadian contributions to the timing of avian migration. Avian Migr. 2003;81–95.
Gwinner E. Circadian and circannual programmes in avian migration. J Exp Biol. 1996;199:39–48.
CAS
PubMed
Google Scholar
Newton I. Obligate and facultative migration in birds: ecological aspects. J Ornithol. 2011;153:171–80.
Google Scholar
Thorup K, Tøttrup AP, Willemoes M, Klaassen RHG, Strandberg R, Vega ML, et al. Resource tracking within and across continents in long-distance bird migrants. Sci Adv. 2017;3:e1601360.
PubMed
PubMed Central
Google Scholar
Watts HE, Robart AR, Chopra JK, Asinas CE, Hahn TP, Ramenofsky M. Seasonal expression of migratory behavior in a facultative migrant, the pine siskin. Behav Ecol Sociobiol. 2017;71:9.
Google Scholar
Mcnamara JM, Barta Z, Klaassen M, Bauer S. Cues and the optimal timing of activities under environmental changes. Ecol Lett. 2011;14:1183–90.
PubMed
PubMed Central
Google Scholar
Åkesson S, Ilieva M, Karagicheva J, Rakhimberdiev E, Tomotani B, Helm B. Timing avian long-distance migration: From internal clock mechanisms to global flights. Philos Trans R Soc B Biol Sci. 2017;372:20160252.
Google Scholar
Meunier J, Song R, Lutz RS, Andersen DE, Doherty KE, Bruggink JG, et al. Proximate cues for a short-distance migratory species: an application of survival analysis. J Wildl Manag. 2008;72:440–8.
Google Scholar
Dawson WR, Yacoe ME. Metabolic adjustments of small passerine birds for migration and cold. Am J Physiol Regul Integr Comp Physiol. 1983;14:R755–67.
Google Scholar
Emmenegger T, Hahn S, Bauer S. Individual migration timing of common nightingales is tuned with vegetation and prey phenology at breeding sites. BMC Ecol. 2014;14:9.
PubMed
PubMed Central
Google Scholar
Jarošík V, Honěk A, Magarey RD, Skuhrovec J. Developmental database for phenology models: related insect and mite species have similar thermal requirements. J Econ Entomol. 2011;104:1870–6.
PubMed
Google Scholar
Eggleton P, Inward K, Smith J, Jones DT, Sherlock E. A six year study of earthworm (Lumbricidae) populations in pasture woodland in southern England shows their responses to soil temperature and soil moisture. Soil Biol Biochem. 2009;41:1857–65.
CAS
Google Scholar
Åkesson S, Hedenström A. Wind selectivity of migratory flight departures in birds. Behav Ecol Sociobiol. 2000;47:140–4.
Google Scholar
Newton I. Weather-related mass-mortality events in migrants. Ibis (Lond 1859). 2007;149:453–67.
Google Scholar
Metcalfe J, Schmidt KL, Bezner Kerr W, Guglielmo CG, MacDougall-Shackleton SA. White-throated sparrows adjust behaviour in response to manipulations of barometric pressure and temperature. Anim Behav. 2013;86:1285–90.
Google Scholar
Wingfield JC, Pérez JH, Krause JS, Word KR, González-Gómez PL, Lisovski S, et al. How birds cope physiologically and behaviourally with extreme climatic events. Philos Trans R Soc B Biol Sci. 2017;372:20160140.
Google Scholar
Åkesson S, Hedenstrom A. Flight initiation of nocturnal passerine migrants in relation to celestial orientation conditions at twilight. J Avian Biol. 1996;27:95.
Google Scholar
Åkesson S, Walinder G, Karlsson L, Ehnbom S. Reed warbler orientation: initiation of nocturnal migratory flights in relation to visibility of celestial cues at dusk. Anim Behav. 2001;61:181–9.
PubMed
Google Scholar
Ramenofsky M, Cornelius JM, Helm B. Physiological and behavioral responses of migrants to environmental cues. J Ornithol. 2012;153:181–91.
Google Scholar
Schmaljohann H, Lisovski S, Bairlein F. Flexible reaction norms to environmental variables along the migration route and the significance of stopover duration for total speed of migration in a songbird migrant. Front Zool. 2017;14:17.
PubMed
PubMed Central
Google Scholar
Packmor F, Klinner T, Woodworth BK, Eikenaar C, Schmaljohann H. Stopover departure decisions in songbirds: do long-distance migrants depart earlier and more independently of weather conditions than medium-distance migrants? Mov Ecol. 2020;8:6.
PubMed
PubMed Central
Google Scholar
Saurola P, Valkama J, Velmala W. The Finnish Bird Ringing Atlas. Vol. I. 2013.
Bairlein F, Dierschke J, Dierschke V, Salewski V, Geiter O, Hüppop K, et al. Atlas des Vogelzugs. Ringfunde deutscher Brut- und Gastvögel. 2014;567.
Pымкeвич TA, Hocкoв ГA, Гaгинcкaя AP, Лaпшин HB, Иoвчeнкo HП, Apтeмьeв AB, et al. Migration of birds of northwest Russia: Passerines. Peнoмe; 2020.
Tomiałojć L, Stawarczyk T. Awifauna Polski: rozmieszenie, liczebność i zmiany. pro Natura; 2003.
Pulido F, Berthold P, Van Noordwijk AJ. Frequency of migrants and migratory activity are genetically correlated in a bird population: evolutionary implications. Proc Natl Acad Sci USA. 1996;93:14642–7.
CAS
PubMed
PubMed Central
Google Scholar
Haest B, Hüppop O, Bairlein F. Weather at the winter and stopover areas determines spring migration onset, progress, and advancements in Afro-Palearctic migrant birds. Proc Natl Acad Sci. 2020;117:17056–62.
CAS
PubMed
PubMed Central
Google Scholar
Fudickar AM, Schmidt A, Hau M, Quetting M, Partecke J. Female-biased obligate strategies in a partially migratory population. J Anim Ecol. 2013;82:863–71.
PubMed
Google Scholar
Newton I. The migration ecology of birds. Migr Ecol Birds. 2007.
Haila Y, Tiainen J, Vepsäläinen K. Delayed autumn migration as an adaptive strategy of birds in northern Europe: evidence from Finland. Ornis Fenn. 1986;63:1–9.
Google Scholar
Svensson L. Identification guide to European passerines. The author; 1992.
Crofoot MC, Gilby IC, Wikelski MC, Kays RW. Interaction location outweighs the competitive advantage of numerical superiority in Cebus capucinus intergroup contests. Proc Natl Acad Sci U S A. 2008;105:577–81.
CAS
PubMed
PubMed Central
Google Scholar
Zúñiga D, Gager Y, Kokko H, Fudickar AM, Schmidt A, Naef-Daenzer B, et al. Migration confers winter survival benefits in a partially migratory songbird. Elife. 2017;6:e28123.
PubMed
PubMed Central
Google Scholar
Able KP. Control of bird migration Peter Berthold. London: Chapman and Hall; 1997.
Google Scholar
R Development Core Team. A language and environment for statistical computing. R Found. Stat. Comput. Vienna: R Foundation for Statistical Computing; 2018. p. https://www.R-project.org.
Meeus JH. Astronomical algorithms. Choice Rev. 1992.
Chatelain M, Halpin CG, Rowe C. Ambient temperature influences birds’ decisions to eat toxic prey. Anim Behav. 2013;86:733–40.
CAS
PubMed
PubMed Central
Google Scholar
Mitchell GW, Newman AEM, Wikelski M, Ryan ND. Timing of breeding carries over to influence migratory departure in a songbird: an automated radiotracking study. J Anim Ecol. 2012;81:1024–33.
PubMed
Google Scholar
Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, et al. 40-Year reanalysis project. Bull Am Met Soc. 1996;77:437–70.
Google Scholar
Kemp MU, van Loon EE, Shamoun-Baranes J, Bouten W. RNCEP: global weather and climate data at your fingertips. Methods Ecol Evol. 2012;3:65–70.
Google Scholar
Glutz von Blotzheim U, Bauer KM. Handbuch der Vögel Mitteleuropas. Wiesbaden: Aula-Verlag; 1988.
Google Scholar
Kemp MU, Shamoun-Baranes J, van Loon E, McLaren JD, Dokter AM, Bouten W. Quantifying flow-assistance and implications for movement research. J Theor Biol J Theor Biol. 2012;308:56–67.
PubMed
Google Scholar
Healy K. Book review: an R and S-PLUS companion to applied regression. Soc Methods Res. 2005;34:137–40.
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:289–300.
Google Scholar
Bartlett MS. Properties of sufficiency and statistical tests. Proc R Soc Lond Ser A Math Phys Sci. 1937;160:268–82.
Google Scholar
Therneau TM, Lumley T. Survival analysis; [R package “survival” version 31–12]. Comp R Arch Netw. 2020;2:3.
Google Scholar
Gienapp P, Hemerik L, Visser ME. A new statistical tool to predict phenology under climate change scenarios. Glob Chang Biol. 2005;11:600–6.
Google Scholar
Bartoń K. Multi-model inference. 1.43.6. 2019. p. Available at: http://CRAN.R-project.org/package=M.
Guthery FS, Burnham KP, Anderson DR. Model selection and multimodel inference: a practical information-theoretic approach. J. Wildl Manag. 2003.
Hurvich CM, Tsai C-L. Regression and time series model selection in small samples. Biometrika. 1989;76:297.
Google Scholar
Harrison XA, Donaldson L, Correa-Cano ME, Evans J, Fisher DN, Goodwin CED, et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ. 2018;2018:e4794.
Google Scholar
Burnham K, Anderson D. Model selection and multimodel inference. A pract information-theoretic approach. 2004.
Kokko H. Competition for early arrival in migratory birds. J Anim Ecol. 1999;68:940–50.
Google Scholar
Reudink MW, Marra PP, Kyser TK, Boag PT, Langin KM, Ratcliffe LM. Non-breeding season events influence sexual selection in a long-distance migratory bird. Proc R Soc B Biol Sci. 2009;276:1619–26.
Google Scholar
Spottiswoode CN, Tøttrup AP, Coppack T. Sexual selection predicts advancement of avian spring migration in response to climate change. Proc R Soc B Biol Sci. 2006;273:3023–9.
Google Scholar
Nilsson C, Bäckman J, Alerstam T. Seasonal modulation of flight speed among nocturnal passerine migrants: differences between short- and long-distance migrants. Behav Ecol Sociobiol. 2014;68:1799–807.
Google Scholar
Yohannes E, Biebach H, Nikolaus G, Pearson DJ. Migration speeds among eleven species of long-distance migrating passerines across Europe, the desert and eastern Africa. J Avian Biol. 2009;40:126–34.
Google Scholar
Schmaljohann H. The start of migration correlates with arrival timing, and the total speed of migration increases with migration distance in migratory songbirds: a cross-continental analysis. Mov Ecol. 2019;7:25.
PubMed
PubMed Central
Google Scholar
Brust V, Michalik B, Hüppop O. To cross or not to cross—thrushes at the German North Sea coast adapt flight and routing to wind conditions in autumn. Mov Ecol Movement Ecol. 2019;7:1–10.
Google Scholar
Panuccio M, Dell’Omo G, Bogliani G, Catoni C, Sapir N. Migrating birds avoid flying through fog and low clouds. Int J Biometeorol. 2019;63:231–9.
CAS
PubMed
Google Scholar
Liechti F, Bruderer B. The relevance of wind for optimal migration theory. J Avian Biol. 1998;29:561.
Google Scholar
Partecke J, Gwinner E. Increased sedentariness in European blackbirds following urbanization: a consequence of local adaptation? Ecology. 2007;88:882–90.
PubMed
Google Scholar
Schaeffer PJ, Komer MC, Corder KR. Energy savings due to the use of shallow body temperature reduction in overwintering Northern Cardinals. Anim Biotelem. 2015;3:34.
Google Scholar
Gwinner E. Circannual clocks in avian reproduction and migration. Ibis (Lond 1859). 1996;138:47–63.
Google Scholar
Klaassen M. Metabolic constraints on long-distance migration in birds. J Exp Biol. 1996;199:57–64.
CAS
PubMed
Google Scholar
Buehler DM, Piersma T. Travelling on a budget: predictions and ecological evidence for bottlenecks in the annual cycle of long-distance migrants. Philos Trans R Soc B Biol Sci. 2008;363:247–66.
Google Scholar
Piersma T, Jukema J. Budgeting the flight of a long-distance migrant: changes in nutrient reserve levels of bar-tailed godwits at successive spring staging sites. Ardea. 1990;55:315–37.
Google Scholar
Schmaljohann H, Fox JW, Bairlein F. Phenotypic response to environmental cues, orientation and migration costs in songbirds flying halfway around the world. Anim Behav. 2012;84:623–40.
Google Scholar
Alerstam T. Optimal bird migration revisited. J Ornithol. 2011;152:S5-23.
Google Scholar
Klaassen RHG, Hake M, Strandberg R, Alerstam T. Geographical and temporal flexibility in the response to crosswinds by migrating raptors. Proc R Soc B Biol Sci Roy Soc. 2011;278:1339–46.
Google Scholar
Alerstam T, Lindström Å. Optimal bird migration: the relative importance of time, energy, and safety. In: Bird Migr. Springer, Berlin; 1990. p. 331–51.
Haest B, Hüppop O, van de Pol M, Bairlein F. Autumn bird migration phenology: a potpourri of wind, precipitation and temperature effects. Glob Change Biol. 2019;25:4064–80.
Google Scholar
Martin GR. The visual problems of nocturnal migration. In: Bird Migr. Springer, Berlin; 1990. p. 185–97.
Åkesson S, Helm B. Endogenous programs and flexibility in bird migration. Front Ecol Evol Front. 2020;8:78.
Google Scholar
Smith AD, McWilliams SR. What to do when stopping over: behavioral decisions of a migrating songbird during stopover are dictated by initial change in their body condition and mediated by key environmental conditions. Behav Ecol. 2014;25:1423–35.
Google Scholar
Eikenaar C, Bairlein F. Food availability and fuel loss predict Zugunruhe. J Ornithol. 2014;155:65–70.
Google Scholar
Meller K, Vähätalo AV, Hokkanen T, Rintala J, Piha M, Lehikoinen A. Interannual variation and long-term trends in proportions of resident individuals in partially migratory birds. J Anim Ecol. 2016;85:570–80.
PubMed
Google Scholar
Studds CE, Marra PP. Rainfall-induced changes in food availability modify the spring departure programme of a migratory bird. Proc R Soc B Biol Sci. 2011;278:3437–43.
Google Scholar
Chapman BB, Brönmark C, Nilsson JÅ, Hansson LA. Partial migration: an introduction. Oikos. 2011;120:1761–3.
Google Scholar
Mac Nally R, Bennett AF, Thomson JR, Radford JQ, Unmack G, Horrocks G, et al. Collapse of an avifauna: climate change appears to exacerbate habitat loss and degradation. Divers Distrib. 2009;15:720–30.
Google Scholar
Jankowiak Ł, Pietruszewska H, Wysocki D. Weather conditions and breeding season length in blackbird (Turdus merula). Folia Zool. 2014;63:245–50.
Google Scholar
Gatter W. Zugzeiten und Zugmuster im Herbst: Einfluß des Treibhauseffekts auf den Vogelzug? J Ornithol. 1992;133:427–36.
Google Scholar
Palomino D, Carrascal LM. Threshold distances to nearby cities and roads influence the bird community of a mosaic landscape. Biol Conserv. 2007;140:100–9.
Google Scholar
Robertson BA, Rehage JS, Sih A. Ecological novelty and the emergence of evolutionary traps. Trends Ecol Evol. 2013;28:552–60.
PubMed
Google Scholar
Doren BMV, Horton KG. A continental system for forecasting bird migration. Science. 2018;361:1115–8.
PubMed
Google Scholar
O’Neal BJ, Stafford JD, Larkin RP, Michel ES. The effect of weather on the decision to migrate from stopover sites by autumn-migrating ducks. Mov Ecol BioMed Cent. 2018;6:23.
Google Scholar
Burnside RJ, Salliss D, Collar NJ, Dolman PM. Birds use individually consistent temperature cues to time their migration departure. Proc Natl Acad Sci. 2021;118:2026378118.
Google Scholar
Conklin JR, Lisovski S, Battley PF. Advancement in long-distance bird migration through individual plasticity in departure. Nat Commun. 2021;12:1–9.
Google Scholar