Soulsbury CD, Iossa G, Baker PJ, White PCL, Harris S. Behavioral and spatial analysis of extraterritorial movements in red foxes (Vulpes vulpes). J Mammal. 2011;92(1):190–9.
Google Scholar
Supp SR, Koons DN, Ernest SKM. Using life history trade-offs to understand core-transient structuring of a small mammal community. Ecosphere. 2015;6(10):art187.
Google Scholar
Van Moorter B, Rolandsen CM, Basille M, Gaillard J-M. Movement is the glue connecting home ranges and habitat selection. J Anim Ecol. 2016;85(1):21–31.
PubMed
Google Scholar
Friedemann G, Leshem Y, Kerem L, Shacham B, Bar-Massada A, McClain KM, et al. Multidimensional differentiation in foraging resource use during breeding of two sympatric top predators. Sci Rep. 2016;6(1):35031.
PubMed
PubMed Central
CAS
Google Scholar
Ahearn SC, Dodge S, Simcharoen A, Xavier G, Smith JLD. A context-sensitive correlated random walk: a new simulation model for movement. Int J Geogr Inf Sci. 2017;31(5):867–83.
Google Scholar
Bischof R, Loe LE, Meisingset EL, Zimmermann B, Van Moorter B, Mysterud A. A migratory northern ungulate in the pursuit of spring: jumping or surfing the green wave? Am Nat. 2012;180(4):407–24.
PubMed
Google Scholar
Bartlam-Brooks HLA, Beck PSA, Bohrer G, Harris S. In search of greener pastures: using satellite images to predict the effects of environmental change on zebra migration. J Geophys Res Biogeosci. 2013;118(4):1427–37.
Google Scholar
Bohrer G, Beck PS, Ngene SM, Skidmore AK, Douglas-Hamilton I. Elephant movement closely tracks precipitation-driven vegetation dynamics in a Kenyan forest-savanna landscape. Mov Ecol. 2014;2(1):2.
PubMed
PubMed Central
Google Scholar
Rickbeil GJM, Hermosilla T, Coops NC, White JC, Wulder MA. Barren-ground caribou (Rangifer tarandus groenlandicus) behaviour after recent fire events; integrating caribou telemetry data with Landsat fire detection techniques. Glob Change Biol. 2017;23(3):1036–47.
Google Scholar
Gurarie E, Hebblewhite M, Joly K, Kelly AP, Adamczewski J, Davidson SC, et al. Tactical departures and strategic arrivals: Divergent effects of climate and weather on caribou spring migrations. Ecosphere. 2019;10(12):e02971.
Google Scholar
Kays R, Crofoot MC, Jetz W, Wikelski M. Terrestrial animal tracking as an eye on life and planet. Science. 2015;348(6240). https://science.sciencemag.org/content/348/6240/aaa2478.
Kays R, McShea WJ, Wikelski M. Born-digital biodiversity data: millions and billions. Divers Distrib. 2020;26(5):644–8.
Google Scholar
Mandel JT, Bohrer G, Winkler DW, Barber DR, Houston CS, Bildstein KL. Migration path annotation: cross-continental study of migration-flight response to environmental conditions. Ecol Appl. 2011;21(6):2258–68.
PubMed
Google Scholar
Davidson SC, Bohrer G, Gurarie E, LaPoint S, Mahoney PJ, Boelman NT, et al. Ecological insights from three decades of animal movement tracking across a changing Arctic. Science. 2020;6:712–5.
Google Scholar
Patterson TA, Hartmann K. Designing satellite tagging studies: estimating and optimizing data recovery. Fish Oceanogr. 2011;20(6):449–61.
Google Scholar
McGowan J, Beger M, Lewison RL, Harcourt R, Campbell H, Priest M, et al. Integrating research using animal-borne telemetry with the needs of conservation management. J Appl Ecol. 2017;54(2):423–9.
Google Scholar
Patterson TA, Parton A, Langrock R, Blackwell PG, Thomas L, King R. Statistical modelling of individual animal movement: an overview of key methods and a discussion of practical challenges. AStA Adv Stat Anal. 2017;101(4):399–438.
Google Scholar
Wikelski M, Kays RW, Kasdin NJ, Thorup K, Smith JA, Swenson GW Jr. Going wild: what a global small-animal tracking system could do for experimental biologists. J Exp Biol. 2007;210(2):181–6.
PubMed
Google Scholar
Gottwald J, Zeidler R, Friess N, Ludwig M, Reudenbach C, Nauss T. Introduction of an automatic and open-source radio-tracking system for small animals. Methods Ecol Evol. 2019;10(12):2163–72.
Google Scholar
Hebblewhite M, Haydon DT. Distinguishing technology from biology: a critical review of the use of GPS telemetry data in ecology. Philos Trans R Soc B Biol Sci. 2010;365(1550):2303–12.
Google Scholar
Navarro A, Oliva V, Zamorano MJ, Ginés R, Izquierdo MS, Astorga N, et al. Evaluation of PIT system as a method to tag fingerlings of gilthead seabream (Sparus auratus L.): effects on growth, mortality and tag loss. Aquaculture. 2006;257(1):309–15.
Google Scholar
Jepsen N, Thorstad EB, Havn T, Lucas MC. The use of external electronic tags on fish: an evaluation of tag retention and tagging effects. Anim Biotelemetry. 2015;3(1):49.
Google Scholar
Bainbridge L, Stockwell M, Valdez J, Klop-Toker K, Clulow S, Clulow J, et al. Tagging tadpoles: retention rates and impacts of visible implant elastomer (VIE) tags from the larval to adult amphibian stages. Herpetol J. 2015;8:133–40.
Google Scholar
Fieberg J, Kuehn DW, DelGiudice GD. Understanding variation in autumn migration of northern white-tailed deer by long-term study. J Mammal. 2008;89(6):1529–39.
Google Scholar
Fieberg JR, Conn PB. A hidden Markov model to identify and adjust for selection bias: an example involving mixed migration strategies. Ecol Evol. 2014;4(10):1903–12.
PubMed
PubMed Central
Google Scholar
Mueller T, Fagan WF. Search and navigation in dynamic environments—from individual behaviors to population distributions. Oikos. 2008;117(5):654–64.
Google Scholar
Mueller T, Olson KA, Dressler G, Leimgruber P, Fuller TK, Nicolson C, et al. How landscape dynamics link individual- to population-level movement patterns: a multispecies comparison of ungulate relocation data. Glob Ecol Biogeogr. 2011;20(5):683–94.
Google Scholar
La Sorte FA, Fink D, Hochachka WM, DeLong JP, Kelling S. Population-level scaling of avian migration speed with body size and migration distance for powered fliers. Ecology. 2013;94(8):1839–47.
PubMed
Google Scholar
Kottelenberg D, Hemerik L, Saponari M, van der Werf W. Shape and rate of movement of the invasion front of Xylella fastidiosa spp. pauca in Puglia. Sci Rep. 2021;11(1):1061.
PubMed
PubMed Central
CAS
Google Scholar
Gallo T, Waitt D. Creating a successful citizen science model to detect and report invasive species. Bioscience. 2011;61(6):459–65.
Google Scholar
Kamenova S, Bartley T, Bohan D, Boutain J, Colautti R, Domaizon I, et al. Invasions toolkit: current methods for tracking the spread and impact of invasive species. Adv Ecol Res. 2017;1:56.
Google Scholar
Angert AL, Crozier LG, Rissler LJ, Gilman SE, Tewksbury JJ, Chunco AJ. Do species’ traits predict recent shifts at expanding range edges? Ecol Lett. 2011;14(7):677–89.
PubMed
Google Scholar
Devictor V, van Swaay C, Brereton T, Brotons L, Chamberlain D, Heliölä J, et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat Clim Change. 2012;2(2):121–4.
Google Scholar
Sunday JM, Pecl GT, Frusher S, Hobday AJ, Hill N, Holbrook NJ, et al. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol Lett. 2015;18(9):944–53.
PubMed
Google Scholar
Michel NL, Saunders SP, Meehan TD, Wilsey CB. Effects of stewardship on protected area effectiveness for coastal birds. Conserv Biol. 2021. https://doi.org/10.1111/cobi.13698.
Article
PubMed
Google Scholar
Sullivan BL, Aycrigg JL, Barry JH, Bonney RE, Bruns N, Cooper CB, et al. The eBird enterprise: an integrated approach to development and application of citizen science. Biol Conserv. 2014;1(169):31–40.
Google Scholar
Teitelbaum CS, Mueller T. Beyond migration: causes and consequences of nomadic animal movements. Trends Ecol Evol. 2019;34(6):569–81.
PubMed
Google Scholar
Schlägel UE, Grimm V, Blaum N, Colangeli P, Dammhahn M, Eccard JA, et al. Movement-mediated community assembly and coexistence. Biol Rev. 2020;95(4):1073–96.
PubMed
Google Scholar
Shamoun-Baranes J, Alves JA, Bauer S, Dokter AM, Hüppop O, Koistinen J, et al. Continental-scale radar monitoring of the aerial movements of animals. Mov Ecol. 2014;2(1):9.
Google Scholar
La Sorte FA, Lepczyk CA, Burnett JL, Hurlbert AH, Tingley MW, Zuckerberg B. Opportunities and challenges for big data ornithology. The Condor. 2018;120(2):414–26.
Google Scholar
Estrada A, Morales-Castilla I, Caplat P, Early R. Usefulness of species traits in predicting range shifts. Trends Ecol Evol. 2016;31(3):190–203.
PubMed
Google Scholar
Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, et al. A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci. 2008;105(49):19052–9.
PubMed
PubMed Central
CAS
Google Scholar
Dickinson JL, Zuckerberg B, Bonter DN. Citizen science as an ecological research tool: challenges and benefits. Annu Rev Ecol Evol Syst. 2010;41(1):149–72.
Google Scholar
Blumstein DT, Mennill DJ, Clemins P, Girod L, Yao K, Patricelli G, et al. Acoustic monitoring in terrestrial environments using microphone arrays: applications, technological considerations and prospectus. J Appl Ecol. 2011;48(3):758–67.
Google Scholar
Kays R, Kranstauber B, Jansen P, Carbone C, Rowcliffe M, Fountain T, et al. Camera traps as sensor networks for monitoring animal communities. In: 2009 IEEE 34th conference on local computer networks. Zurich, Switzerland: IEEE; 2009 [cited 2021 May 25]. p. 811–8. http://ieeexplore.ieee.org/document/5355046/.
Jachowski DS, Katzner T, Rodrigue JL, Ford WM. Monitoring landscape-level distribution and migration Phenology of Raptors using a volunteer camera-trap network. Wildl Soc Bull. 2015;39(3):553–63.
Google Scholar
Newson SE, Evans HE, Gillings S. A novel citizen science approach for large-scale standardised monitoring of bat activity and distribution, evaluated in eastern England. Biol Conserv. 2015;1(191):38–49.
Google Scholar
Campos-Cerqueira M, Aide TM. Improving distribution data of threatened species by combining acoustic monitoring and occupancy modelling. Methods Ecol Evol. 2016;7(11):1340–8.
Google Scholar
Gilbert NA, Pease BS, Anhalt-Depies CM, Clare JDJ, Stenglein JL, Townsend PA, et al. Integrating harvest and camera trap data in species distribution models. Biol Conserv. 2021;258:109147.
Google Scholar
Mair L, Harrison PJ, Jönsson M, Löbel S, Nordén J, Siitonen J, et al. Evaluating citizen science data for forecasting species responses to national forest management. Ecol Evol. 2017;7(1):368–78.
PubMed
Google Scholar
Coxen CL, Frey JK, Carleton SA, Collins DP. Species distribution models for a migratory bird based on citizen science and satellite tracking data. Glob Ecol Conserv. 2017;1(11):298–311.
Google Scholar
Gandomi A, Haider M. Beyond the hype: big data concepts, methods, and analytics. Int J Inf Manag. 2015;35(2):137–44.
Google Scholar
Callaghan CT, Rowley JJL, Cornwell WK, Poore AGB, Major RE. Improving big citizen science data: Moving beyond haphazard sampling. PLoS Biol. 2019;17(6):e3000357.
PubMed
PubMed Central
CAS
Google Scholar
Welvaert M, Caley P. Citizen surveillance for environmental monitoring: combining the efforts of citizen science and crowdsourcing in a quantitative data framework. Springerplus. 2016;5(1):1890.
PubMed
PubMed Central
Google Scholar
Cove MV, Kays R, Bontrager H, Bresnan C, Lasky M, Frerichs T, et al. SNAPSHOT USA 2019: a coordinated national camera trap survey of the United States. Ecology. n/a(n/a):e03353.
Rowley JJL, Callaghan CT, Cutajar T. FrogID: CitIzen scientists provide validated biodiversity data on frogs of AustralIa. Herpetol Conserv Biol. 2019;14:155–70.
Google Scholar
Holyoak M, Casagrandi R, Nathan R, Revilla E, Spiegel O. Trends and missing parts in the study of movement ecology. Proc Natl Acad Sci. 2008;105(49):19060–5.
PubMed
PubMed Central
CAS
Google Scholar
Kelling S, Johnston A, Bonn A, Fink D, Ruiz-Gutierrez V, Bonney R, et al. Using semistructured surveys to improve citizen science data for monitoring biodiversity. Bioscience. 2019;69(3):170–9.
PubMed
PubMed Central
Google Scholar
Fox R, Warren MS, Brereton TM, Roy DB, Robinson A. A new Red List of British butterflies. Insect Conserv Divers. 2011;4(3):159–72.
Google Scholar
Huuskonen A, Saltikoff E, Holleman I. The operational weather radar network in Europe. Bull Am Meteorol Soc. 2014;95(6):897–907.
Google Scholar
Van Horn G, Mac Aodha O, Song Y, Cui Y, Sun C, Shepard A, et al. The iNaturalist species classification and detection dataset. In: 2018 IEEE/CVF conference on computer vision and pattern recognition. Salt Lake City, UT: IEEE; 2018 [cited 2021 May 27]. p. 8769–78. https://ieeexplore.ieee.org/document/8579012/.
Prudic KL, McFarland KP, Oliver JC, Hutchinson RA, Long EC, Kerr JT, et al. eButterfly: leveraging massive online citizen science for butterfly conservation. Insects. 2017;8(2):53.
PubMed Central
Google Scholar
Bonney R, Cooper CB, Dickinson J, Kelling S, Phillips T, Rosenberg KV, et al. Citizen science: a developing tool for expanding science knowledge and scientific literacy. Bioscience. 2009;59(11):977–84.
Google Scholar
Planillo A, Fiechter L, Sturm U, Voigt-Heucke S, Kramer-Schadt S. Citizen science data for urban planning: comparing different sampling schemes for modelling urban bird distribution. Landsc Urban Plan. 2021;5:211.
Google Scholar
Rapacciuolo G, Young A, Johnson R. Deriving indicators of biodiversity change from unstructured community-contributed data. Oikos. 2021. https://doi.org/10.1111/oik.08215.
Article
Google Scholar
Johnston A, Hochachka WM, Strimas-Mackey ME, Gutierrez VR, Robinson OJ, Miller ET, et al. Analytical guidelines to increase the value of community science data: an example using eBird data to estimate species distributions. Divers Distrib. 2021. https://doi.org/10.1111/ddi.13271.
Article
Google Scholar
Fink D, Hochachka WM, Zuckerberg B, Winkler DW, Shaby B, Munson MA, et al. Spatiotemporal exploratory models for broad-scale survey data. Ecol Appl Publ Ecol Soc Am. 2010;20(8):2131–47.
Google Scholar
Sicacha-Parada J, Steinsland I, Cretois B, Borgelt J. Accounting for spatial varying sampling effort due to accessibility in Citizen Science data: a case study of moose in Norway. Spat Stat. 2021;42:100446.
Google Scholar
Ditmer MA, Iannarilli F, Tri AN, Garshelis DL, Carter NH. Artificial night light helps account for observer bias in citizen science monitoring of an expanding large mammal population. J Anim Ecol. 2021;90(2):330–42.
PubMed
Google Scholar
GBIF. What is GBIF? [Internet]. The Global Biodiversity Information Facility. 2021 [cited 2021 May 20]. https://www.gbif.org/
HerpMapper. HerpMapper - Global Herp Atlas [Internet]. HerpMapper. [cited 2021 May 20]. https://www.herpmapper.org/
Pollard E. A method for assessing changes in the abundance of butterflies. Biol Conserv. 1977;12(2):115–34.
Google Scholar
Pollard E, Yates TJ. Monitoring butterflies for ecology and conservation: the British butterfly monitoring scheme. Berlin: Springer; 1994. p. 296.
Google Scholar
NEXRAD on AWS—Registry of Open Data on AWS [Internet]. 2021 [cited 2021 May 20]. https://registry.opendata.aws/noaa-nexrad/.
Information (NCEI) NC for E, Information (NCEI) NC for E. NOAA Next Generation Radar (NEXRAD) Level 2 Base Data [Internet]. [cited 2021 May 20]. https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00345.
Holleman I, Delobbe L, Zgonc A. Update on the European weather radar network (OPERA). In: OPERA, Proceedings of ERAD 2008. 2008.
McShea WJ, Forrester T, Costello R, He Z, Kays R. Volunteer-run cameras as distributed sensors for macrosystem mammal research. Landsc Ecol. 2016;31(1):55–66.
Google Scholar
Rowley JJL, Callaghan CT. The FrogID dataset: expert-validated occurrence records of Australia’s frogs collected by citizen scientists. ZooKeys. 2020;17(912):139–51.
Google Scholar
Chilson PB, Bridge E, Frick WF, Chapman JW, Kelly JF. Radar aeroecology: exploring the movements of aerial fauna through radio-wave remote sensing. Biol Lett. 2012;8(5):698–701.
PubMed
PubMed Central
Google Scholar
Shamoun-Baranes J, Bauer S, Chapman JW, Desmet P, Dokter AM, Farnsworth A, et al. Weather radars’ role in biodiversity monitoring. Science. 2021; 372(6539). https://research.wur.nl/en/publications/weather-radars-role-in-biodiversity-monitoring.
Chapman JW, Drake VA, Reynolds DR. Recent insights from radar studies of insect flight. Annu Rev Entomol. 2010;56(1):337–56.
Google Scholar
Mizrahi D, Fogg T, Magarian V, Elia P, Hodgetts D, La Puma D. Radar monitoring of bird and bat movement patterns on block island and its coastal waters. 2010.
Heist KW, Bowden TS, Ferguson J, Rathbun NA, Olson EC, Nolfi DC, et al. Radar quantifies migrant concentration and Dawn reorientation at a Great Lakes shoreline. Mov Ecol. 2018;6(1):15.
PubMed
PubMed Central
Google Scholar
Kelly JF, Pletschet SM. Accuracy of swallow roost locations assigned using weather surveillance radar. Remote Sens Ecol Conserv. 2018;4(2):166–72.
Google Scholar
Bridge ES, Pletschet SM, Fagin T, Chilson PB, Horton KG, Broadfoot KR, et al. Persistence and habitat associations of Purple Martin roosts quantified via weather surveillance radar. Landsc Ecol. 2016;31(1):43–53.
Google Scholar
Buler JJ, Lakshmanan V, La Puma D. Improving weather radar data processing for biological research applications: final report. 2012;15.
Dokter AM, Liechti F, Stark H, Delobbe L, Tabary P, Holleman I. Bird migration flight altitudes studied by a network of operational weather radars. J R Soc Interface. 2011;8(54):30–43.
PubMed
Google Scholar
Farnsworth A, Van Doren BM, Hochachka WM, Sheldon D, Winner K, Irvine J, et al. A characterization of autumn nocturnal migration detected by weather surveillance radars in the northeastern USA. Ecol Appl Publ Ecol Soc Am. 2016;26(3):752–70.
Google Scholar
Lin T-Y, Winner K, Bernstein G, Mittal A, Dokter AM, Horton KG, et al. MistNet: measuring historical bird migration in the US using archived weather radar data and convolutional neural networks. Methods Ecol Evol. 2019;10(11):1908–22.
Google Scholar
Sheldon D, Winner K, Bhambhani P, Bernstein G. darkecology/wsrlib: Version 0.2.0 [Internet]. Zenodo; 2019 [cited 2021 May 20]. https://zenodo.org/record/3352264#.YKavvoNKhH4.
Saltikoff E, Friedrich K, Soderholm J, Lengfeld K, Nelson B, Becker A, et al. An overview of using weather radar for climatological studies: successes, challenges, and potential. Bull Am Meteorol Soc. 2019;100(9):1739–52.
Google Scholar
Nussbaumer R, Benoit L, Mariethoz G, Liechti F, Bauer S, Schmid B. Modelling the flow of nocturnal bird migration with year-round European weather radar network. bioRxiv. 2020;19.
Smith AD, Paton PWC, McWilliams SR. Using nocturnal flight calls to assess the fall migration of warblers and sparrows along a coastal ecological barrier. PLoS ONE. 2014;9(3):e92218.
PubMed
PubMed Central
Google Scholar
Townsend PA, Clare J, Liu N, Stenglein JL, Anhalt-Depies C, Deelen TRV, et al. Integrating remote sensing and jurisdictional observation networks to improve the resolution of ecological management. bioRxiv. 2020;2020.06.08.140848.
Lasky M, Parsons A, Schuttler S, Mash A, Larson L, Norton B, et al. Candid critters: challenges and solutions in a large-scale citizen science camera trap project. Citiz Sci Theory Pract. 2021;6(1):4.
Google Scholar
Banner KM, Irvine KM, Rodhouse TJ, Wright WJ, Rodriguez RM, Litt AR. Improving geographically extensive acoustic survey designs for modeling species occurrence with imperfect detection and misidentification. Ecol Evol. 2018;8(12):6144–56.
PubMed
PubMed Central
Google Scholar
Chen G, Han TX, He Z, Kays R, Forrester T. Deep convolutional neural network based species recognition for wild animal monitoring. In: 2014 IEEE international conference on image processing (ICIP). 2014. p. 858–62.
Swanson A, Kosmala M, Lintott C, Simpson R, Smith A, Packer C. Snapshot Serengeti, high-frequency annotated camera trap images of 40 mammalian species in an African savanna. Sci Data. 2015;2(1):150026.
PubMed
PubMed Central
Google Scholar
Glover-Kapfer P, Soto-Navarro CA, Wearn OR. Camera-trapping version 3.0: current constraints and future priorities for development. Remote Sens Ecol Conserv. 2019;5(3):209–23.
Google Scholar
Wearn OR, Glover-Kapfer P. Snap happy: camera traps are an effective sampling tool when compared with alternative methods. R Soc Open Sci. 2019;6(3):181748.
PubMed
PubMed Central
Google Scholar
Whytock RC, Świeżewski J, Zwerts JA, Bara-Słupski T, Pambo AFK, Rogala M, et al. Robust ecological analysis of camera trap data labelled by a machine learning model. Methods Ecol Evol. 2021. https://doi.org/10.1111/2041-210X.13576.
Article
Google Scholar
Sugai LSM, Desjonquères C, Silva TSF, Llusia D. A roadmap for survey designs in terrestrial acoustic monitoring. Remote Sens Ecol Conserv. 2020;6(3):220–35.
Google Scholar
Iannarilli F, Erb J, Arnold TW, Fieberg JR. Evaluating species-specific responses to camera-trap survey designs. Wildl Biol. 2021. https://doi.org/10.2981/wlb.00726.full.
Article
Google Scholar
Reichert BE, Bayless M, Cheng TL, Coleman JTH, Francis CM, Frick WF, et al. NABat: a top-down, bottom-up solution to collaborative continental-scale monitoring. Ambio. 2021;50(4):901–13.
PubMed
PubMed Central
Google Scholar
Tape KD, Gustine DD. Capturing migration phenology of terrestrial wildlife using camera traps. Bioscience. 2014;64(2):117–24.
Google Scholar
Farnsworth A. Flight calls and their value for future ornithological studies and conservation research. Auk. 2005;122(3):733–46.
Google Scholar
Watson MJ, Wilson DR, Mennill DJ. Anthropogenic light is associated with increased vocal activity by nocturnally migrating birds. The Condor. 2016;118(2):338–44.
Google Scholar
Gibb R, Browning E, Glover-Kapfer P, Jones KE. Emerging opportunities and challenges for passive acoustics in ecological assessment and monitoring. Methods Ecol Evol. 2019;10(2):169–85.
Google Scholar
MacKenzie DI, Nichols JD, Royle JA, Pollock KH, Bailey L, Hines JE. Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. Amsterdam: Elsevier; 2017. p. 668.
Google Scholar
Redhead JW, Fox R, Brereton T, Oliver TH. Assessing species’ habitat associations from occurrence records, standardised monitoring data and expert opinion: a test with British butterflies. Ecol Indic. 2016;1(62):271–8.
Google Scholar
Pocock MJO, Tweddle JC, Savage J, Robinson LD, Roy HE. The diversity and evolution of ecological and environmental citizen science. PLoS ONE. 2017;12(4):e0172579.
PubMed
PubMed Central
Google Scholar
Farley SS, Dawson A, Goring SJ, Williams JW. Situating ecology as a big-data science: current advances, challenges, and solutions. Bioscience. 2018;68(8):563–76.
Google Scholar
Gauthreaux SA, Belser CG. Displays of bird movements on the WSR-88D: patterns and quantification. Weather Forecast. 1998;13(2):453–64.
Google Scholar
Gauthreaux SA Jr, Livingston JW, Belser CG. Detection and discrimination of fauna in the aerosphere using Doppler weather surveillance radar. Integr Comp Biol. 2008;48(1):12–23.
PubMed
Google Scholar
Buler J, Diehl R. Quantifying bird density during migratory stopover using weather surveillance radar. IEEE Trans Geosci Remote Sens. 2009;47(8):2741–51.
Google Scholar
WDSS-II [Internet]. [cited 2021 May 20]. http://www.wdssii.org/.
Dokter AM, Desmet P, Spaaks JH, van Hoey S, Veen L, Verlinden L, et al. bioRad: biological analysis and visualization of weather radar data. Ecography. 2019;42(5):852–60.
Google Scholar
Norouzzadeh MS, Nguyen A, Kosmala M, Swanson A, Palmer MS, Packer C, et al. Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning. Proc Natl Acad Sci. 2018;115(25):E5716–25.
PubMed
PubMed Central
CAS
Google Scholar
Schneider S, Taylor GW, Kremer SC. Deep Learning Object Detection Methods for Ecological Camera Trap Data. ArXiv180310842 Cs [Internet]. 2018 Mar 28 [cited 2021 May 20]. http://arxiv.org/abs/1803.10842.
Tabak MA, Norouzzadeh MS, Wolfson DW, Sweeney SJ, Vercauteren KC, Snow NP, et al. Machine learning to classify animal species in camera trap images: applications in ecology. Methods Ecol Evol. 2019;10(4):585–90.
Google Scholar
Willi M, Pitman RT, Cardoso AW, Locke C, Swanson A, Boyer A, et al. Identifying animal species in camera trap images using deep learning and citizen science. Methods Ecol Evol. 2019;10(1):80–91.
Google Scholar
Weinstein BG. MotionMeerkat: integrating motion video detection and ecological monitoring. Methods Ecol Evol. 2015;6(3):357–62.
Google Scholar
Zamora-Gutierrez V, Ortega J, Avila-Flores R, Aguilar-Rodríguez PA, Alarcón-Montano M, Avila-Torresagatón LG, et al. The Sonozotz project: assembling an echolocation call library for bats in a megadiverse country. Ecol Evol. 2020;10(11):4928–43.
PubMed
PubMed Central
Google Scholar
Fink D, Auer T, Johnston A, Ruiz-Gutierrez V, Hochachka WM, Kelling S. Modeling avian full annual cycle distribution and population trends with citizen science data. Ecol Appl. 2020;30(3):e02056.
PubMed
PubMed Central
Google Scholar
Greig EI, Wood EM, Bonter DN. Winter range expansion of a hummingbird is associated with urbanization and supplementary feeding. Proc R Soc B Biol Sci. 1852;2017(284):20170256.
Google Scholar
Bonter DN, Cooper CB. Data validation in citizen science: a case study from Project FeederWatch. Front Ecol Environ. 2012;10(6):305–7.
Google Scholar
Reichert BE, Lausen C, Loeb S, Weller T, Allen R, Britzke E, et al. A guide to processing bat acoustic data for the North American Bat Monitoring Program (NABat). U.S. Geological Survey; 2018 p. 33 p. (Open-File Report). Report No.: 2018–1068.
Knape J, Korner-Nievergelt F. On assumptions behind estimates of abundance from counts at multiple sites. Methods Ecol Evol. 2016;7(2):206–9.
Google Scholar
Link WA, Schofield MR, Barker RJ, Sauer JR. On the robustness of N-mixture models. Ecology. 2018;99(7):1547–51.
PubMed
Google Scholar
O’Connell AF, Bailey LL. Inference for Occupancy and Occupancy Dynamics. In: O’Connell AF, Nichols JD, Karanth KU, editors. Camera Traps in Animal Ecology: Methods and Analyses [Internet]. Tokyo: Springer Japan; 2011 [cited 2021 May 20]. p. 191–204. https://doi.org/10.1007/978-4-431-99495-4_11.
Miller DAW, Pacifici K, Sanderlin JS, Reich BJ. The recent past and promising future for data integration methods to estimate species’ distributions. Methods Ecol Evol. 2019;10(1):22–37.
Google Scholar
Fletcher RJ, Hefley TJ, Robertson EP, Zuckerberg B, McCleery RA, Dorazio RM. A practical guide for combining data to model species distributions. Ecology. 2019;100(6):e02710.
PubMed
Google Scholar
Isaac NJB, Jarzyna MA, Keil P, Dambly LI, Boersch-Supan PH, Browning E, et al. Data integration for large-scale models of species distributions. Trends Ecol Evol. 2020;35(1):56–67.
PubMed
Google Scholar
Supp SR, La Sorte FA, Cormier TA, Lim MCW, Powers DR, Wethington SM, et al. Citizen-science data provides new insight into annual and seasonal variation in migration patterns. Ecosphere. 2015;6(1):art15.
Google Scholar
Johnston A, Moran N, Musgrove A, Fink D, Baillie SR. Estimating species distributions from spatially biased citizen science data. Ecol Model. 2020;422:108927.
Google Scholar
Scotson L, Fredriksson G, Ngoprasert D, Wong W-M, Fieberg J. Projecting range-wide sun bear population trends using tree cover and camera-trap bycatch data. PLoS ONE. 2017;12(9):e0185336.
PubMed
PubMed Central
Google Scholar
Warton DI, Renner IW, Ramp D. Model-based control of observer bias for the analysis of presence-only data in ecology. PLoS ONE. 2013;8(11):e79168.
PubMed
PubMed Central
Google Scholar
Fithian W, Elith J, Hastie T, Keith DA. Bias correction in species distribution models: pooling survey and collection data for multiple species. Methods Ecol Evol. 2015;6(4):424–38.
PubMed
Google Scholar
Phillips SJ, Dudík M, Elith J, Graham CH, Lehmann A, Leathwick J, et al. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl Publ Ecol Soc Am. 2009;19(1):181–97.
Google Scholar
Botella C, Joly A, Monestiez P, Bonnet P, Munoz F. Bias in presence-only niche models related to sampling effort and species niches: lessons for background point selection. PLoS ONE. 2020;15(5):e0232078.
PubMed
PubMed Central
CAS
Google Scholar
Pacifici K, Reich BJ, Miller DAW, Gardner B, Stauffer G, Singh S, et al. Integrating multiple data sources in species distribution modeling: a framework for data fusion*. Ecology. 2017;98(3):840–50.
PubMed
Google Scholar
Matthiopoulos J, Fieberg J, Aarts G. Species-Habitat Associations: Spatial data, predictive models, and ecological insights [Internet]. University of Minnesota Libraries Publishing; 2020 [cited 2021 May 27]. http://conservancy.umn.edu/handle/11299/217469.
Fan J, Han F, Liu H. Challenges of big data analysis. Natl Sci Rev. 2014;1(2):293–314.
PubMed
Google Scholar
Dormann CF. Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Glob Ecol Biogeogr. 2007;16(2):129–38.
Google Scholar
Record S, Fitzpatrick MC, Finley AO, Veloz S, Ellison AM. Should species distribution models account for spatial autocorrelation? A test of model projections across eight millennia of climate change. Glob Ecol Biogeogr. 2013;22(6):760–71.
Google Scholar
Miller JA. Species distribution models: spatial autocorrelation and non-stationarity. Prog Phys Geogr Earth Environ. 2012;36(5):681–92.
Google Scholar
Roberts DR, Bahn V, Ciuti S, Boyce MS, Elith J, Guillera-Arroita G, et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography. 2017;40(8):913–29.
Google Scholar
Schliep EM, Lany NK, Zarnetske PL, Schaeffer RN, Orians CM, Orwig DA, et al. Joint species distribution modelling for spatio-temporal occurrence and ordinal abundance data. Glob Ecol Biogeogr. 2018;27(1):142–55.
Google Scholar
De Marco PJ, Nóbrega CC. Evaluating collinearity effects on species distribution models: an approach based on virtual species simulation. PLoS ONE. 2018;13(9):e0202403.
Google Scholar
Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography. 2013;36(1):27–46.
Google Scholar
Fourcade Y, Besnard AG, Secondi J. Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Glob Ecol Biogeogr. 2018;27(2):245–56.
Google Scholar
Nilsson C, Dokter AM, Verlinden L, Shamoun-Baranes J, Schmid B, Desmet P, et al. Revealing patterns of nocturnal migration using the European weather radar network. Ecography. 2019;42(5):876–86.
Google Scholar
La Sorte FA, Fink D. Migration distance, ecological barriers and en-route variation in the migratory behaviour of terrestrial bird populations. Glob Ecol Biogeogr. 2017;26(2):216–27.
Google Scholar
Coleman T, Mentch L, Fink D, La Sorte FA, Winkler DW, Hooker G, et al. Statistical inference on tree swallow migrations with random forests. J R Stat Soc Ser C Appl Stat. 2020;69(4):973–89.
Google Scholar
Hurlbert AH, Liang Z. Spatiotemporal variation in avian migration phenology: citizen science reveals effects of climate change. PLoS ONE. 2012;7(2):e31662.
PubMed
PubMed Central
CAS
Google Scholar
Wood SN. Generalized Additive Models: An Introduction with R, Second Edition [Internet]. Routledge & CRC Press. 2006 [cited 2021 May 28]. https://www.routledge.com/Generalized-Additive-Models-An-Introduction-with-R-Second-Edition/Wood/p/book/9781498728331.
Fink D, Damoulas T, Dave J. Adaptive spatio-temporal exploratory models: hemisphere-wide species distributions from massively crowdsourced eBird data. Proc AAAI Conf Artif Intell. 2013;27(1). https://ojs.aaai.org/index.php/AAAI/article/view/8484.
Wikle CK. Hierarchical Bayesian models for predicting the spread of ecological processes. Ecology. 2003;84(6):1382–94.
Google Scholar
Auger-Méthé M, Newman K, Cole D, Empacher F, Gryba R, King AA, et al. A guide to state–space modeling of ecological time series. Ecol Monogr. in press;n/a(n/a):e01470.
Wilman H, Belmaker J, Simpson J, de la Rosa C, Rivadeneira MM, Jetz W. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology. 2014;95(7):2027–2027.
Google Scholar
Sheard C, Neate-Clegg MHC, Alioravainen N, Jones SEI, Vincent C, MacGregor HEA, et al. Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat Commun. 2020;11(1):2463.
PubMed
PubMed Central
CAS
Google Scholar
Jeliazkov A, Mijatovic D, Chantepie S, Andrew N, Arlettaz R, Barbaro L, et al. A global database for metacommunity ecology, integrating species, traits, environment and space. Sci Data. 2020;7(1):6.
PubMed
PubMed Central
Google Scholar
Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol. 2009;24(3):127–35.
PubMed
Google Scholar
Pinheiro J, Bates D. Mixed-effects models in S and S-PLUS. New York: Springer; 2000. (Statistics and Computing). https://www.springer.com/gp/book/9780387989570.
La Sorte FA, Fink D, Hochachka WM, Kelling S. Convergence of broad-scale migration strategies in terrestrial birds. Proc R Soc B Biol Sci. 1823;2016(283):20152588.
Google Scholar
Menz MHM, Brown BV, Wotton KR. Quantification of migrant hoverfly movements (Diptera: Syrphidae) on the West Coast of North America. R Soc Open Sci. 2019;6(4):190153.
PubMed
PubMed Central
Google Scholar
Mayor SJ, Guralnick RP, Tingley MW, Otegui J, Withey JC, Elmendorf SC, et al. Increasing phenological asynchrony between spring green-up and arrival of migratory birds. Sci Rep. 2017;7(1):1902.
PubMed
PubMed Central
Google Scholar
Sivakumar AH, Sheldon D, Winner K, Burt CS, Horton KG. A weather surveillance radar view of Alaskan avian migration. Proc R Soc B Biol Sci. 1950;2021(288):20210232.
Google Scholar
Hooten MB, Wikle CK. A hierarchical Bayesian non-linear spatio-temporal model for the spread of invasive species with application to the Eurasian Collared-Dove. Environ Ecol Stat. 2008;15(1):59–70.
Google Scholar
Williams JE, Blois JL. Range shifts in response to past and future climate change: can climate velocities and species’ dispersal capabilities explain variation in mammalian range shifts? J Biogeogr. 2018;45(9):2175–89.
Google Scholar
Youngflesh C, Socolar J, Amaral BR, Arab A, Guralnick RP, Hurlbert AH, et al. Migratory strategy drives species-level variation in bird sensitivity to vegetation green-up. Nat Ecol Evol. 2021;29:1–8.
Google Scholar
La Sorte FA, Fink D, Hochachka WM, Farnsworth A, Rodewald AD, Rosenberg KV, et al. The role of atmospheric conditions in the seasonal dynamics of North American migration flyways. J Biogeogr. 2014;41(9):1685–96.
Google Scholar
La Sorte FA, Fink D, Hochachka WM, DeLong JP, Kelling S. Spring phenology of ecological productivity contributes to the use of looped migration strategies by birds. Proc R Soc B Biol Sci. 2014;281(1793):20140984.
Google Scholar
Flockhart DTT, Larrivée M, Prudic KL, Norris DR. Estimating the annual distribution of monarch butterflies in Canada over 16 years using citizen science data. FACETS. 2019. https://doi.org/10.1139/facets-2018-0011.
Article
Google Scholar
La Sorte FA, Hochachka WM, Farnsworth A, Sheldon D, Fink D, Geevarghese J, et al. Migration timing and its determinants for nocturnal migratory birds during autumn migration. J Anim Ecol. 2015;84(5):1202–12.
PubMed
Google Scholar
Zuckerberg B, Fink D, La Sorte FA, Hochachka WM, Kelling S. Novel seasonal land cover associations for eastern North American forest birds identified through dynamic species distribution modelling. Divers Distrib. 2016;22(6):717–30.
Google Scholar
La Sorte FA, Fink D, Blancher PJ, Rodewald AD, Ruiz-Gutierrez V, Rosenberg KV, et al. Global change and the distributional dynamics of migratory bird populations wintering in Central America. Glob Change Biol. 2017;23(12):5284–96.
Google Scholar
Pettorelli N, Smith J, Pecl GT, Hill JK, Norris K. Anticipating arrival: tackling the national challenges associated with the redistribution of biodiversity driven by climate change. J Appl Ecol. 2019;56(10):2298–304.
Google Scholar
La Sorte FA, Fink D, Buler JJ, Farnsworth A, Cabrera-Cruz SA. Seasonal associations with urban light pollution for nocturnally migrating bird populations. Glob Change Biol. 2017;23(11):4609–19.
Google Scholar
La Sorte FA, Horton KG. Seasonal variation in the effects of artificial light at night on the occurrence of nocturnally migrating birds in urban areas. Environ Pollut. 2021;270:116085.
PubMed
Google Scholar
Vardi R, Berger-Tal O, Roll U. iNaturalist insights illuminate COVID-19 effects on large mammals in urban centers. Biol Conserv. 2021;254:108953.
PubMed
PubMed Central
Google Scholar
Johnston A, Auer T, Fink D, Strimas-Mackey M, Iliff M, Rosenberg KV, et al. Comparing abundance distributions and range maps in spatial conservation planning for migratory species. Ecol Appl. 2020;30(3):e02058.
PubMed
CAS
Google Scholar
Flockhart DTT, Wassenaar LI, Martin TG, Hobson KA, Wunder MB, Norris DR. Tracking multi-generational colonization of the breeding grounds by monarch butterflies in eastern North America. Proc R Soc B Biol Sci. 2013;280(1768):20131087.
Google Scholar
Linden DW, Sirén APK, Pekins PJ. Integrating telemetry data into spatial capture–recapture modifies inferences on multi-scale resource selection. Ecosphere. 2018;9(4):e02203.
Google Scholar
Michelot T, Blackwell PG, Matthiopoulos J. Linking resource selection and step selection models for habitat preferences in animals. Ecology. 2019;100(1):e02452.
PubMed
Google Scholar
Lopez-Marcano S, Jinks EL, Buelow CA, Brown CJ, Wang D, Kusy B, et al. Automatic detection of fish and tracking of movement for ecology. Ecol Evol. 2021. https://doi.org/10.1002/ece3.7656.
Article
PubMed
PubMed Central
Google Scholar
Risch D, Castellote M, Clark CW, Davis GE, Dugan PJ, Hodge LE, et al. Seasonal migrations of North Atlantic minke whales: novel insights from large-scale passive acoustic monitoring networks. Mov Ecol. 2014;2(1):24.
PubMed
PubMed Central
Google Scholar
Horvitz N, Wang R, Wan F-H, Nathan R. Pervasive human-mediated large-scale invasion: analysis of spread patterns and their underlying mechanisms in 17 of China’s worst invasive plants. J Ecol. 2017;105(1):85–94.
Google Scholar
Koide D, Yoshida K, Daehler CC, Mueller-Dombois D. An upward elevation shift of native and non-native vascular plants over 40 years on the island of Hawai’i. J Veg Sci. 2017;28(5):939–50.
Google Scholar
Fan L, Chen S, Liang S, Sun X, Chen H, You L, et al. Assessing long-term spatial movement of wheat area across China. Agric Syst. 2020;185:102933.
Google Scholar