Skip to content



Page 2 of 4

  1. Content type: Methodology article

    Accelerometers are powerful sensors in many bio-logging devices, and are increasingly allowing researchers to investigate the performance, behaviour, energy expenditure and even state, of free-living animals. ...

    Authors: Hannah J. Williams, Mark D. Holton, Emily L. C. Shepard, Nicola Largey, Brad Norman, Peter G. Ryan, Olivier Duriez, Michael Scantlebury, Flavio Quintana, Elizabeth A. Magowan, Nikki J. Marks, Abdulaziz N. Alagaili, Nigel C. Bennett and Rory P. Wilson

    Citation: Movement Ecology 2017 5:6

    Published on:

  2. Content type: Research

    We sought to quantitatively describe the fine-scale foraging behavior of northern resident killer whales (Orcinus orca), a population of fish-eating killer whales that feeds almost exclusively on Pacific salmon (

    Authors: Brianna M. Wright, John K. B. Ford, Graeme M. Ellis, Volker B. Deecke, Ari Daniel Shapiro, Brian C. Battaile and Andrew W. Trites

    Citation: Movement Ecology 2017 5:3

    Published on:

  3. Content type: Research

    Movement behaviour is fundamental to the ecology of animals and their interactions with other organisms, and as such contributes to ecosystem dynamics. Waterfowl are key players in ecological processes in wetl...

    Authors: Erik Kleyheeg, Jacintha G. B. van Dijk, Despina Tsopoglou-Gkina, Tara Y. Woud, Dieuwertje K. Boonstra, Bart A. Nolet and Merel B. Soons

    Citation: Movement Ecology 2017 5:2

    Published on:

  4. Content type: Methodology article

    The use of light level loggers (geolocators) to understand movements and distributions in terrestrial and marine vertebrates, particularly during the non-breeding period, has increased dramatically in recent y...

    Authors: Benjamin Merkel, Richard A. Phillips, Sébastien Descamps, Nigel G. Yoccoz, Børge Moe and Hallvard Strøm

    Citation: Movement Ecology 2016 4:26

    Published on:

  5. Content type: Review

    In the last thirty years, the emergence and progression of biologging technology has led to great advances in marine predator ecology. Large databases of location and dive observations from biologging devices ...

    Authors: Matt Ian Daniel Carter, Kimberley A. Bennett, Clare B. Embling, Philip J. Hosegood and Debbie J. F. Russell

    Citation: Movement Ecology 2016 4:25

    Published on:

  6. Content type: Review

    Most songbird migrants travel between their breeding areas and wintering grounds by a series of nocturnal flights. The exact nocturnal departure time for these flights varies considerably between individuals e...

    Authors: Florian Müller, Philip D. Taylor, Sissel Sjöberg, Rachel Muheim, Arseny Tsvey, Stuart A. Mackenzie and Heiko Schmaljohann

    Citation: Movement Ecology 2016 4:24

    Published on:

  7. Content type: Research

    The juvenile stage of loggerhead sea turtles (Caretta caretta) can last for decades. In the North Pacific Ocean, much is known about their seasonal movements in relation to pelagic habitat, yet understanding thei...

    Authors: D. K. Briscoe, D. M. Parker, S. Bograd, E. Hazen, K. Scales, G. H. Balazs, M. Kurita, T. Saito, H. Okamoto, M. Rice, J. J. Polovina and L. B. Crowder

    Citation: Movement Ecology 2016 4:23

    Published on:

  8. Content type: Methodology article

    We are increasingly using recording devices with multiple sensors operating at high frequencies to produce large volumes of data which are problematic to interpret. A particularly challenging example comes fro...

    Authors: Rory P. Wilson, Mark D. Holton, James S. Walker, Emily L. C. Shepard, D. Mike Scantlebury, Vianney L. Wilson, Gwendoline I. Wilson, Brenda Tysse, Mike Gravenor, Javier Ciancio, Melitta A. McNarry, Kelly A. Mackintosh, Lama Qasem, Frank Rosell, Patricia M. Graf, Flavio Quintana…

    Citation: Movement Ecology 2016 4:22

    Published on:

  9. Content type: Review

    Increased availability of high-resolution movement data has led to the development of numerous methods for studying changes in animal movement behavior. Path segmentation methods provide basics for detecting m...

    Authors: Hendrik Edelhoff, Johannes Signer and Niko Balkenhol

    Citation: Movement Ecology 2016 4:21

    Published on:

  10. Content type: Research

    Describing migratory connectivity in mobile animals is crucial for understanding the selective pressures acting on different populations throughout their life cycle. Tracking single individuals has provided va...

    Authors: Ivan Maggini, Benjamin Metzger, Maren Voss, Christian C. Voigt and Franz Bairlein

    Citation: Movement Ecology 2016 4:20

    Published on:

  11. Content type: Methodology article

    Periodicity in activity level (rest/activity cycles) is ubiquitous in nature, but whether and how these periodicities translate into periodic patterns of space use by animals is much less documented. Here we i...

    Authors: Guillaume Péron, Chris H. Fleming, Rogerio C. de Paula and Justin M. Calabrese

    Citation: Movement Ecology 2016 4:19

    Published on:

  12. Content type: Research

    Where apex predators move on the landscape influences ecosystem structure and function and is therefore key to effective landscape-level management and species-specific conservation. However the factors underl...

    Authors: Andrew M. Kittle, John K. Bukombe, Anthony R. E. Sinclair, Simon A. R. Mduma and John M. Fryxell

    Citation: Movement Ecology 2016 4:17

    Published on:

  13. Content type: Research

    Knowledge of immigration and emigration rates is crucial for understanding of population dynamics, yet little is known about these vital rates, especially for arctic songbirds. We estimated immigration in an A...

    Authors: Franz Bairlein, D. Ryan Norris, Christian C. Voigt, Erica H. Dunn and David J. T. Hussell

    Citation: Movement Ecology 2016 4:16

    Published on:

  14. Content type: Research

    Characterizing the movement patterns of animals is an important step in understanding their ecology. Various methods have been developed for classifying animal movement at both coarse (e.g., migratory vs. sede...

    Authors: Guillaume Bastille-Rousseau, Jonathan R. Potts, Charles B. Yackulic, Jacqueline L. Frair, E. Hance Ellington and Stephen Blake

    Citation: Movement Ecology 2016 4:15

    Published on:

  15. Content type: Research

    Generalist predators may vary their diet and use of habitat according to both internal state (e.g. breeding stage) and external (e.g. weather) factors. Lesser black-backed gulls Larus fuscus (Linnaeus 1758) are d...

    Authors: Natalie Isaksson, Thomas J. Evans, Judy Shamoun-Baranes and Susanne Åkesson

    Citation: Movement Ecology 2016 4:11

    Published on:

  16. Content type: Research

    Geolocators are useful for tracking movements of long-distance migrants, but potential negative effects on birds have not been well studied. We tested for effects of geolocators (0.8–2.0 g total, representing ...

    Authors: Emily L. Weiser, Richard B. Lanctot, Stephen C. Brown, José A. Alves, Phil F. Battley, Rebecca Bentzen, Joël Bêty, Mary Anne Bishop, Megan Boldenow, Loïc Bollache, Bruce Casler, Maureen Christie, Jonathan T. Coleman, Jesse R. Conklin, Willow B. English, H. River Gates…

    Citation: Movement Ecology 2016 4:12

    Published on:

  17. Content type: Research

    Freshwater lakes and rivers of the Northern Hemisphere have been freezing increasingly later and thawing increasingly earlier during the last century. With reduced temporal periods during which ice conditions ...

    Authors: Mathieu Leblond, Martin-Hugues St-Laurent and Steeve D. Côté

    Citation: Movement Ecology 2016 4:14

    Published on:

  18. Content type: Research

    The movement patterns of many southern African waterfowl are typified by nomadism, which is thought to be a response to unpredictable changes in resource distributions. Nomadism and the related movement choice...

    Authors: Dominic A. W. Henry, Judith M. Ament and Graeme S. Cumming

    Citation: Movement Ecology 2016 4:8

    Published on:

  19. Content type: Research

    The migratory patterns of animals are changing in response to global environmental change with many species forming resident populations in areas where they were once migratory. The white stork (Ciconia ciconia) ...

    Authors: Nathalie I. Gilbert, Ricardo A. Correia, João Paulo Silva, Carlos Pacheco, Inês Catry, Philip W. Atkinson, Jenny A. Gill and Aldina M. A. Franco

    Citation: Movement Ecology 2016 4:7

    Published on:

  20. Content type: Research

    Many species are distributed as metapopulations in dynamic landscapes, where habitats change through space and time. Individuals locate habitat through dispersal, and the relationship between a species and lan...

    Authors: Daniel H. Catlin, Sara L. Zeigler, Mary Bomberger Brown, Lauren R. Dinan, James D. Fraser, Kelsi L. Hunt and Joel G. Jorgensen

    Citation: Movement Ecology 2016 4:6

    Published on:

  21. Content type: Research

    Urbanization causes modification, fragmentation and loss of native habitats. Such landscape changes threaten many arboreal and gliding mammals by limiting their movements through treeless parts of a landscape ...

    Authors: Sanna Mäkeläinen, Henrik J de Knegt, Otso Ovaskainen and Ilpo K Hanski

    Citation: Movement Ecology 2016 4:5

    Published on:

    The Erratum to this article has been published in Movement Ecology 2016 4:13

  22. Content type: Research

    We still have limited knowledge about the underlying genetic mechanisms that enable migrating species of birds to navigate the globe. Here we make an attempt to get insight into the genetic architecture contro...

    Authors: John Boss, Miriam Liedvogel, Max Lundberg, Peter Olsson, Nils Reischke, Sara Naurin, Susanne Åkesson, Dennis Hasselquist, Anthony Wright, Mats Grahn and Staffan Bensch

    Citation: Movement Ecology 2016 4:4

    Published on:

  23. Content type: Research

    Island breeding birds present an ideal system for studying migratory movements in passerines because their populations are clearly demarcated, and individuals must depart on migration from a single location. T...

    Authors: Zoe J. Crysler, Robert A. Ronconi and Philip D. Taylor

    Citation: Movement Ecology 2016 4:3

    Published on:

  24. Content type: Research

    Daily magnitudes and fluxes of landbird migration are often measured via nocturnal traffic rates aloft or diurnal densities within terrestrial habitats during stopover. However, these measures are not consiste...

    Authors: Kyle G. Horton, W. Gregory Shriver and Jeffrey J. Buler

    Citation: Movement Ecology 2016 4:1

    Published on:

  25. Content type: Research

    The scale at which animals perceive their environment is a strong fitness determinant, yet few empirical estimates of animal detection ranges exist, especially in mammalian predators. Using daily Argos satelli...

    Authors: Sandra Lai, Joël Bêty and Dominique Berteaux

    Citation: Movement Ecology 2015 3:37

    Published on:

  26. Content type: Methodology article

    The study of inter-individual interactions (often termed spatial-temporal interactions, or dynamic interactions) from remote tracking data has focused primarily on identifying the presence of such interactions...

    Authors: Jed A. Long, Stephen L. Webb, Trisalyn A. Nelson and Kenneth L. Gee

    Citation: Movement Ecology 2015 3:38

    Published on:

  27. Content type: Research

    Marine environments are inherently dynamic, yet marine predators are often long-lived and employ strategies where consistency, individual specialization, routine migrations, and spatial memory are key componen...

    Authors: Rachael A. Orben, Rosana Paredes, Daniel D. Roby, David B. Irons and Scott A. Shaffer

    Citation: Movement Ecology 2015 3:36

    Published on:

  28. Content type: Methodology article

    Solar archival tags (henceforth called geolocators) are tracking devices deployed on animals to reconstruct their long-distance movements on the basis of locations inferred post hoc with reference to the geograph...

    Authors: Eldar Rakhimberdiev, David W. Winkler, Eli Bridge, Nathaniel E. Seavy, Daniel Sheldon, Theunis Piersma and Anatoly Saveliev

    Citation: Movement Ecology 2015 3:25

    Published on:

  29. Content type: Research

    In order to understand the impact of grazing livestock on pasture ecosystems, it is essential to quantify pasture use intensity at a fine spatial scale and the factors influencing its distribution. The observa...

    Authors: Hermel Homburger, Andreas Lüscher, Michael Scherer-Lorenzen and Manuel K. Schneider

    Citation: Movement Ecology 2015 3:35

    Published on:

  30. Content type: Research

    Climate-driven environmental change in the North Pacific has been well documented, with marked effects on the habitat and foraging behavior of marine predators. However, the mechanistic linkages connecting cli...

    Authors: Lesley H. Thorne, Elliott L. Hazen, Steven J. Bograd, David G. Foley, Melinda G. Conners, Michelle A. Kappes, Hyemi M. Kim, Daniel P. Costa, Yann Tremblay and Scott A. Shaffer

    Citation: Movement Ecology 2015 3:27

    Published on:

  31. Content type: Research

    The spatiotemporal distribution of animals is dependent on a suite of factors, including the distribution of resources, interactions within and between species, physiological limitations, and requirements for ...

    Authors: Michelle A. Kappes, Scott A. Shaffer, Yann Tremblay, David G. Foley, Daniel M. Palacios, Steven J. Bograd and Daniel P. Costa

    Citation: Movement Ecology 2015 3:34

    Published on:

  32. Content type: Research

    In the open ocean, eddies and associated structures (fronts, filaments) have strong influences on the foraging activities of top-predators through the enhancement and the distribution of marine productivity, z...

    Authors: Cecile Bon, Alice Della Penna, Francesco d’Ovidio, John Y.P. Arnould, Timothée Poupart and Charles-André Bost

    Citation: Movement Ecology 2015 3:32

    Published on:

  33. Content type: Methodology article

    Detailed information about animal location and movement is often crucial in studies of natural behaviour and how animals respond to anthropogenic activities. Dead-reckoning can be used to infer such detailed i...

    Authors: Paul J. Wensveen, Len Thomas and Patrick J. O. Miller

    Citation: Movement Ecology 2015 3:31

    Published on:

  34. Content type: Research

    Marine predators are ecosystem sentinels because their foraging behaviour and reproductive success reflect the variability occurring in the lower trophic levels of the ecosystem. In an era of environmental cha...

    Authors: Michel Widmann, Akiko Kato, Ben Raymond, Frédéric Angelier, Benjamin Arthur, Olivier Chastel, Marie Pellé, Thierry Raclot and Yan Ropert-Coudert

    Citation: Movement Ecology 2015 3:30

    Published on:

  35. Content type: Software article

    Smart tags attached to freely-roaming animals recording multiple parameters at infra-second rates are becoming commonplace, and are transforming our understanding of the way wild animals behave. Interpretation...

    Authors: James S. Walker, Mark W. Jones, Robert S. Laramee, Mark D. Holton, Emily LC Shepard, Hannah J. Williams, D. Michael Scantlebury, Nikki, J. Marks, Elizabeth A. Magowan, Iain E. Maguire, Owen R. Bidder, Agustina Di Virgilio and Rory P. Wilson

    Citation: Movement Ecology 2015 3:29

    Published on:

  36. Content type: Research

    To meet the minimum energetic requirements needed to support parents and their provisioned offspring, the timing of breeding in birds typically coincides with periods of high food abundance. Seasonality and sy...

    Authors: Melinda G. Conners, Elliott L. Hazen, Daniel P. Costa and Scott A. Shaffer

    Citation: Movement Ecology 2015 3:28

    Published on:

  37. Content type: Research

    Behaviour and time spent active and inactive are key factors in animal ecology, with important consequences for bioenergetics. For the first time, here, we equipped the gastropod Tectus (= Trochus) niloticus with...

    Authors: Aurélie Jolivet, Laurent Chauvaud, Julien Thébault, Anthony A. Robson, Pascal Dumas, George Amos and Anne Lorrain

    Citation: Movement Ecology 2015 3:26

    Published on:

  38. Content type: Research

    Whether, and how, animals move requires them to assess their environment to determine the most appropriate action and trajectory, although the precise way the environment is scanned has been little studied. We...

    Authors: Gwendoline Ixia Wilson, Brad Norman, James Walker, Hannah J. Williams, M. D. Holton, D. Clarke and Rory P. Wilson

    Citation: Movement Ecology 2015 3:24

    Published on:

  39. Content type: Methodology article

    Research on wild animal ecology is increasingly employing GPS telemetry in order to determine animal movement. However, GPS systems record position intermittently, providing no information on latent position o...

    Authors: O. R. Bidder, J. S. Walker, M. W. Jones, M. D. Holton, P. Urge, D. M. Scantlebury, N. J. Marks, E. A. Magowan, I. E. Maguire and R. P. Wilson

    Citation: Movement Ecology 2015 3:23

    Published on:

  40. Content type: Research

    The energy requirements of free-ranging marine mammals are challenging to measure due to cryptic and far-ranging feeding habits, but are important to quantify given the potential impacts of high-level predator...

    Authors: JL Maresh, T. Adachi, A. Takahashi, Y. Naito, DE Crocker, M. Horning, TM Williams and DP Costa

    Citation: Movement Ecology 2015 3:22

    Published on:

  41. Content type: Research

    Waterfowl can exploit distant ephemeral wetlands in arid environments and provide valuable insights into the response of birds to rapid environmental change, and behavioural flexibility of avian movements. Cur...

    Authors: John F. McEvoy, David A. Roshier, Raoul F. H. Ribot and Andy T. D. Bennett

    Citation: Movement Ecology 2015 3:21

    Published on: