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Movement Ecology

Modeling the movement of Oecophylla 
smaragdina on short-length scales 
in an unfamiliar environment
L. Charoonratana1,2, T. Thiwatwaranikul1,2, P. Paisanpan1,2, S. Suksombat2,3 and M. F. Smith1,2* 

Abstract 

The movement of individual weaver ants, of Oecophylla smaragdina, was previously tracked within an unfamiliar 
arena. We develop an empirical model, based on Brownian motion with a linear drag and constant driving force, 
to explain the observed distribution of ants over position and velocity. Parameters are fixed according to the isotropic, 
homogeneous distribution observed near the middle of the arena. Then, with no adjustable parameters, the model 
accounts for all features of the measured population distribution. The tendency of ants to remain near arena edges 
is largely explained as a statistical property of bounded stochastic motion though evidence for active wall-following 
behavior appears in individual ant trajectories. Members of this ant species are capable of impressive feats of collec-
tive action and long-range navigation. But we argue that they use a simplistic algorithm, captured semi-quantitatively 
by the model provided, to navigate within the confined region.
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Introduction
The social coherence of ant colonies has fascinated nat-
uralists for centuries [1, 2]. Members of a colony work 
together to complete elaborate tasks. It requires the com-
bined effort of many weaver ants, of Oecophylla smar-
agdina [3, 4] from tropical Asia and Australia, to bend 
and glue tree leaves while building their nest. This spe-
cies, along with one other in the genus, is also notable 
for its colonies use of ‘living bridges’, made of hundreds 

of individuals, to negotiate gaps. Such collective action is 
only possible when individuals move in a precise manner 
and communicate, on both short and long length scales 
[5–7], to influence the motion of others. The weaver ants 
are known to employ a sophisticated system of commu-
nication, combining chemical signals with body motion 
to deliver distinct directives [3, 4, 8–10].

There is a large volume of literature on how the motion 
of one ant is influenced by messages received from 
another [2, 8, 11] and on the tools that an individual ant 
uses to navigate [12–23]. Desert ants [24, 25] in an unfa-
miliar environment use their view of the panorama [26] 
and path integration of their vector displacement [27] to 
navigate back to the nest. When foraging, they may carry 
out systematic searches of the local territory, moving in 
widening circles like other insects [28, 29], or merge navi-
gational tactics with searching algorithms when they have 
incomplete knowledge of their whereabouts [30–32].

The movement of insects that do not have a certain 
destination is often modeled as a generalised random 
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walk [33–36] similar to Brownian motion. Observed 
by Brown in 1827 and explained theoretically by Ein-
stein and Langevin in the early 1900s [37–41], Brown-
ian motion is exemplified by a small grain immersed in 
water that moves erratically because it receives impulses 
from collisions with neighboring molecules. Its veloc-
ity changes, like those of a crawling ant, are difficult to 
predict so they are treated as random quantities. While 
having this stochastic component, ant movement is also 
partly deterministic because the ant responds predictably 
to features in the local environment [42].

Ants are among many animals, including other insects 
[43], fish [44], rodents [45] and even humans during an 
evacuation [46] that exhibit wall-following. This is the 
tendency to move along a one-dimensional inhomoge-
neity within a two-dimensional space [47–49] (when 
the animal maintains bodily contact with the wall, it is 
termed thigmotaxis). The behavior has plausible adap-
tive value since a physical wall offers partial shelter and 
any 1D feature can be used as a directional guide [48–50]. 
Faced with a choice between two otherwise identical 
bridges, black garden ants select the one with a wall along 
its edge [51]. Rock ants tends to move parallel to distant 
walls [52] while desert ants follow the mid-lines between 
rows of shrubs [53]. Models of the Brownian motion of 
cockroaches [54] and harvester ants [55] in a confined 
space include position-dependent terms that represent 
an affinity for arena boundaries [56].

We previously carried out an experimental study [57] 
of the motion of a single weaver ant confined to a feature-
less, unfamiliar arena. An individual ant was snatched 
from a nest, placed on a square ceramic tile bounded 
by water, and its motion tracked. The only macroscopic 
inhomogeneity of the arena is its boundary, to which 
the ant tended to remain close. We chose the weaver ant 
because of its propensity for correlated action and its 
availability in our area.

In this paper we develop a model, based on Langevin 
theory, of the movement algorithm exhibited by the 
weaver ants and compare the results of numerical simula-
tions and analytical calculations to experiment. Random 
velocity changes of model ants are governed by a fixed 
probability distribution augmented by deterministic drag 
and driving forces along the direction of motion. After it 
encounters the arena boundary and is forced to stop, the 
model ant immediately resumes its fixed movement algo-
rithm. The model reproduces qualitative features of the 
observed distribution of ants over position and velocity 
without adjustable parameters.

We use this model to investigate whether an enhanced 
ant density at arena edges is evidence that ants follow 
walls actively, by modifying their movement algorithm 
when they are close to the edge and/or preferentially 

moving towards this edge, or whether it can be explained 
as a result of passive stochastic motion bounded by the 
arena. Our model includes no active wall-following 
behavior: model ants use the same movement algorithm 
near edges as in the open arena and are no more likely to 
turn towards a boundary as away from it. They nonethe-
less exhibit a high probability to be found within a short 
distance from the arena edge, in agreement with experi-
ment. Going beyond this description of the population 
distribution, we consider below the residence times of 
individuals in the near-edge region, for both real and 
model ants, to isolate active wall-following behavior and 
evaluate its significance.

The paper is organized in the following way. In section 
“Experimental Results” we summarize the results of our 
previous experiment and discuss a new analysis of the 
ant distribution data. In section “Model of ant motion” 
we develop a model based on the distribution of ants in 
the arena interior, away from the boundaries. In section 
“Analytic approximation” we study the model analytically 
in order to better understand its key properties. In sec-
tion “Results and discussion” we present the results of 
numerical simulations of the model and compare them 
to the experimental data in detail. We discuss the impli-
cations of the work in section “Results and discussion” 
before concluding in section “Conclusions”.

Experimental results
Previously we described an experiment (see Ref. [57] for 
details) in which individual weaver ants, from Oecophylla 
smaragdina, were captured from one of many nests 
located on campus at Suranaree University of Technol-
ogy, Thailand. All ants were the aggressive [58] female 
worker ants that comprise the majority of the colony. 
Ants were transported to the laboratory and one was 
released into an arena, a dry ceramic tile surrounded 
by water, where its motion was tracked via a station-
ary camera for five minutes. The time between an indi-
vidual being captured and its observation completed 
was between ten and forty minutes, after which it was 
returned to its nest. The ant is unlikely to be motivated 
by hunger during the trial, but we do not speculate about 
its purpose for moving about the arena. Its motion was 
nearly continuous, without apparent change in its nature, 
throughout the trial.

A single ant was tracked as it moved on a square tile 
of length L = 30 cm centered on the origin and sur-
rounded by a channel of water that it never attempted 
to cross. The tile and camera were located at a fixed 
position within a small room. The arena is defined by 
|x| < L/2 and |y| < L/2 where the orientation of the x 
and y axes was parallel to the edges of the tile. The ant 
position x(t) = (x[t], y[t]) was measured at time intervals 
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�t = 1/15 s over a duration T = 4500�t = 300 s, and 
the velocity v(t) = (x[t +�t] − x[t])/�t and change 
in velocity �v(t) = v(t +�t)− v(t) were determined. 
The experiment was repeated on N = 60 individual ants, 
using many similar tiles, each washed and re-used multi-
ple times.

Sample data, showing the trajectory of x(t) for one ant 
over the full duration T, is shown in the top left panel of 
Fig.  1. The ant was released into the arena by inverting 
a plastic container near the middle of the arena, waiting 
for the ant to crawl out, then removing the container and 
starting the camera. For the trial shown, the first position 
measurement was x(0) ≈ (8, 8) cm and the ant mainly 
stays close to the arena boundary, which was typical.

All data were combined into a single set, treated 
as a statistical distribution. By studying single ant 
motion using this distribution, we are averaging over 

the peculiarities of individuals. The jth ant has a posi-
tion xj(t) and corresponding velocity vj(t) , where 
t = 0,�t, 2�t, ..T  . We have an experimental probability 
distribution defined by

The time dependence of �(x, v, t) was weak 
for all t >> �t , so the time-averaged quantity 
�(x, v) = T−1 dt�(x, v, t) can be interpreted as an 
equilibrium value. Equation  1 is equivalent to a Boltz-
mann distribution function [59] in many-particle phys-
ics, but is here used to describe the motion of many 
individual ants moving in the  arena  at different times 
(i.e. different trials). The model below cannot be applied 

(1)�(x, v, t) = 1

N

N
∑

j=1

δ(xj − x)δ(vj − v).

Fig. 1 In the top left panel we show the trajectory of a single ant during a typical trial, with all points x(t) = (x[t], y[t]) measured during a trial 
of duration T = 300 s connected with the blue curve. The other panels display ‘heat’ maps of the normalized distribution over position n(x, y) 
and velocity P(vx , vy) . The color scales indicate the value of n(x, y) in units of cm−2 and P(vx , vy) in units (cm/s)−2 . Upper right: n(x, y) is largest 
near boundaries, decreases rapidly and then remains constant in the interior. Lower left: P(vx , vy) for ants in the arena interior (further than 3 cm 
from a boundary) is isotropic with a non-monotonic speed dependence. Lower right: P(vx , vy) for ants within 3 cm of the boundary looks like a ‘plus’ 
sign because ants move along arena edges
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to a population of ants in the arena together because it 
includes no ant-ant interactions.

The density n(x) and velocity distribution P(v) are 
defined by

The limits of the velocity integrals are ±∞ , those of the 
position integrals are ±L/2 , and �(x, v) , n(x) , and P(v) 
are all normalized probability distributions.

A two-dimensional map of n(x) is shown at the top 
right of Fig.  1. The density decreases rapidly with dis-
tance from the boundary, approaching a value n(x) ≈ nint 
that is constant throughout the interior. Ants spent only 
20 percent of their time at positions further than 3  cm 
from the boundary, with nint ≈ 4 · 10−4cm−2 . They spent 
most of their time near the boundaries: within 3  cm of 
x = ±L/2 and y = −L/2 the average density was 5.3nint 
while within 3 cm of y = L/2 it was 8.2nint . The preferred 
y = L/2 boundary was positioned closest to the window 
in the laboratory room.

The map of the velocity distribution P(v) is shown at 
the bottom of Fig.  1. The data has been broken up into 
two subsets: (i) ants in the interior and (ii) within 3 cm 
from a boundary. The former distribution is isotropic and 
depends only on speed v = |v| . P(v) initially decreases 
to a local minimum then increases, exhibiting a circular 
shoulder, before falling off at high speed. For ants near 
the boundary, P(v) has four arms that correspond to 
members moving parallel to the square edges.

The plots in Fig.  1 provide an overview of ant behav-
ior during the experiment. We develop a model of this 
behavior using the measured distribution of velocity 
changes within the arena interior. Data for the interior is 
the minority, but is simplest to analyze because motion is 

(2)n(x) =
∫

dv�(x, v), P(v) =
∫

dx�(x, v).

not affected by boundaries. So, we consider �v measured 
when ants were more than 3 cm from the boundary. In 
coordinates relative to velocity v̂ , it is given by

where �vT affects direction, with a positive value corre-
sponding to a left turn, and �vL changes speed (the vec-
tor ẑ points up from the arena).

We use the same function p(q) to fit the distribution 
over �vT = q or �vL = q , it is

where the mean q̄ and standard deviation σ are the fitting 
parameters. The distribution over �v depends weakly on 
position within the arena interior. It does vary according 
to how fast the ant was moving when the velocity change 
occurred, so we sub-divided data for the interior accord-
ing to speed v. The results are shown Fig. 2.

For velocity changes normal to motion �vT , shown on 
the left side of Fig. 2, Eq. 4 appears to provide a good fit 
to the distribution. In the insets we plot the best-fit val-
ues for σ and q̄ versus speed. The standard deviation has 
an average value of 0.996± 0.007 cm/s, where the uncer-
tainty is statistical. It can be approximated by a constant 
σ = σT ≈ 1.00 cm/s for, while it deviates from this value 
at low speeds, the dominant fraction of the data falls 
within the region where σ is speed-independent. The 
best-fit value for the mean q̄ is always zero within error.

We checked whether �vT (t) values for different 
times are independent by calculating the Pearson cor-
relation coefficient [60] of �vT (t) with �vT (t + 3�t) 
and found a value of 0.01, indicating weak correlations. 

(3)�v = �vT ẑ× v̂ +�vLv̂

(4)p(q) = 1√
2σ 2

exp



−

�

2(q −Nq)2

σ 2



,

Fig. 2 Fits of Eq. 4 to the experimental distribution of velocity changes �v for ants in the arena interior. Left: the distribution p(�vT ) for the component 
�vT of �v that is perpendicular to velocity. The insets show the standard deviation σT and mean  �vT as a function of speed: the latter always zero. 
Right: p(�vL) for the component �vL of velocity change parallel to velocity. The insets show the standard deviation σL and mean of �vL versus speed 
and their linear fits. Most data falls within the range of speed where this linear approximation is roughly valid
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(We could not consider �v(t) values more closely-
spaced in time because, according to their definition, 
�t�v(t) ≡ x(t + 2�t)− 2x(t +�t)+ x(t) , they share 
x(t) data points.) So �vT (t) for each time t can be regarded 
as an independent variable with a distribution p(q), a mean 
q̄ = 0 and root-mean-square σT.

The distribution of changes parallel to velocity �vL 
is shown on the right in Fig. 2. The fit with Eq. 4 appears 
reasonable, and the standard deviation σ = σL ≈ 1.25

cm/s can again be treated as a constant (its average value 
was 1.251± 0.008 cm/s). But the mean q̄ �= 0 has a char-
acteristic v dependence, plotted in the upper-right inset. 
It increases with v to a small positive maximum before 
decreasing linearly into negative values. The majority of 
the data set falls within the range of speed where q̄ is lin-
early decreasing and the linear fit shown is relevant. Below, 
we will assume that �vL is composed of two terms, one 
random and the other deterministic. The latter results in 
the non-zero mean of �vL and some positive correlation 
between velocity changes at nearby times.

Model of ant motion
The distribution of velocity changes in the arena interior 
suggests that a simple model, based on Brownian motion, 
may be applicable. We assume that the observed motion 
of the ant in the interior is characteristic of its movement 
algorithm. The arena boundaries will be treated as con-
straints that do not otherwise modify movement. A model 
ant has a position and velocity that can be updated in simu-
lations according to

where the second equation corresponds to Newton’s 
law for a particle of unit mass. The term Fj(t) = F(vj[t]) 
is a deterministic force while qj(t) is a random impulse 
occurring each time step. Equation  5 is the basic rate 
equation of the Langevin theory of Brownian motion.

The force is written as

where the first term is a linear drag force, with a time con-
stant τD , and the second is a constant driving force in the 
forward direction, with a speed constant v0 . The impulse 
qj(t) = q = qT ẑ × v̂ + qLv̂ where qL is a random num-
ber governed by Eq.  4 with σ = σL and q̄ = 0 while qT 
is a random number governed by Eq. 4 with σ = σT and 
q̄ = 0 . Since the mean impulse q is zero, an average over 
all model ants with a given velocity vj(t) = v results in

(5)xj(t +�t) = xj(t)+ vj(t)�t, vj(t +�t) = vj(t)+ Fj(t)�t + qj(t),

(6)F(v) = − 1

τD
v + v0

τD
v̂

(7)��v� = �tF(v),

where angular brackets denote this average. We can use 
the linear fit to the mean �v , shown in the insets of Fig. 2, 
to obtain τD = 0.55 s and v0 = 6.3 cm/s. The effects of the 
deterministic force are small during a single time step, 
since |F|�t << σL, σT , but are important on long time 
scales since they add constructively.

While we have based the movement algorithm on ant 
motion in the interior, we have to model the response 
of an ant to the boundary in order to compare simula-
tions with data. We used the following protocol for the 
ant-boundary interaction. In simulations, if x(t +�t) is 
found outside the arena then we replace it with the near-
est position on the boundary and set the velocity compo-
nent normal to the boundary equal to zero. The position 
and velocity parallel to the boundary are not modified. 
With the subsequent time step, position and velocity are 
updated via Eq. 5 with the only difference being that the 
random velocity change cannot take the ant immedi-
ately back out of the arena: if the boundary is on the ant’s 
right side then qT (t +�t) must be positive. This latter 
constraint, a detail that does not change any qualitative 
results, was used to prevent model ants from briefly slid-
ing along the boundary, which seemed artificial.

The response of the model ant to the boundary is a 
key feature of our study, so we briefly consider a few 
alternative approaches. We could have analysed in 
detail the observed motion of the ant near the boundary 
and attempted to model it. This would require numer-
ous empirical parameters and reduce the entire exer-
cise to a fit of measured motion within our particular 

experimental configuration. We sought instead a minimal 
model that might have some predictive value. That said, 
while we updated the model ant velocity at the x = L/2 
boundary according to (vx, vy) → (0, vy) , there are other 
simple procedures that could have been used. One would 
have model ants reflecting elastically off boundaries like 
billiard balls, (vx, vy) → (−vx, vy) . This was dismissed 
because it cannot give rise to the measured distribution 
and seems to take the analogy with Newtonian particles 
to an absurd extreme. Another, to have ant speed vanish 
at the boundary (vx, vy) → (0, 0) , was rejected because it 
does not allow rapid motion along the boundary, which is 
seen at a first glance of the experiment. Any more sophis-
ticated response of the ant to a boundary encounter, such 
as pausing for some time or changing direction in a par-
ticular way, would employ more fitting parameters.

Finally, one could introduce wall-following to the 
model by hand using a position-dependent deterministic 
force F(x, v) that attracts ants to the boundary at short 
distances. We avoided this for two reasons. First, such a 
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force would introduce new fitting parameters that char-
acterize its strength and range. Second, we wanted to 
investigate the possibility that the observed distribution 
of ants could be realized by a model that did not include 
any active wall-following behavior. Here we define active 
wall-following as a position-dependent algorithm that 
favors motion towards or along the boundary. In con-
trast, a model like ours that predicts an increased ant 
density at boundaries without employing a position-
dependent movement algorithm could be said to exhibit 
passive wall-following behavior. Overall, we view the pro-
tocol we adopted as the simplest one that had any chance 
of reproducing the observed distributions. The model 
ant is forced to stop at the boundary but then resumes its 
motion, using the same algorithm it employs in the open 
arena, as if nothing happened.

The simulation was carried out many times and the 
distribution extracted from the numerical data and time-
averaged. We usually started each simulated trial with 
the initial conditions xj(0) = vj(0) = 0 and the ant’s body 
orientation equally likely to be in any direction, but the 
equilibrium distribution was independent of initial con-
ditions. The values of the model parameters: σT , σL , τD , 
v0 were all obtained experimentally from the distribution 
of �v in the arena interior. The model has no free param-
eters and the fixed parameters can only be properties 
of the movement algorithm for an ant in an unbounded 
arena. A comparison between the simulated and meas-
ured distributions in the bounded arena is thus meaning-
ful, i.e. the model is falsifiable.

Analytic approximation
The rate equation
An approximate rate equation for the model detailed 
above is presented in this section. The goal is to obtain 
some analytic understanding of its properties. Particularly, 
we explain the length and speed scales of the model, which 
can be associated with those observed in the data. Using 
Eqs. 1, 5 and 6, we write the distribution at time t +�t as

The probability that a given member receives an impulse 
q within a time step is dqp(q) . We have

where qL and qT are the components of q that are parallel 
and perpendicular to v , respectively. The limits of the qL 
and qT integrals in Eq. 9 are ±∞.

(8)�(x, v, t +�t) =
∫

dqp(q)

(

1

N

∑

j

δ(xj + vj�t − x)δ(vj + Fj�t + q − v)

)

.

(9)
∫

dqp(q) = 1,

∫

dqp(q)q = 0,

∫

dqp(q)q2L = σ 2
L ,

∫

dqp(q)q2T = σ 2
T

If we drop terms of order �t2 and �t|q| then the 
first Dirac delta function in Eq.  8 can be replaced by 
δ(xj + v�t − x) . The second can be rewritten as

where we used the property δ(f [x]) = δ(x − x0)

/|df /dx|x=x0 with f (x0) = 0 . Substituting these expres-
sions and rearranging, we have

Now carrying out an expansion to first order in �t and 
second order in q we get

The last term, the average over squared random impulses, 
is ��R/�t = �xx +�yy +�xy with

where v = (vx, vy) = v(cos θ , sin θ).

(10)

δ(vj + Fj(vj)�t + q − v) = δ(vj +�tF(v)+ q − v)

|1+�t ∂
∂v

· F(v)|
,

(11)

�(x, v, t +�t)

=
(

1−�t
∂

∂v
· F(v)

)

∫

dqp(q)�(x − v�t, v − q −�tF(v), t).

(12)
∂�

∂t
= ∂

∂v
·
(

− F�

)

− v · ∂

∂x
�+��R/�t.

(13)

�xx =
(

σ 2
L

2�t
cos2 θ + σ 2

T

2�t
sin2 θ

)

∂2

∂v2x
�(x, v, t)

(14)

�yy =
(

σ 2
L

2�t
sin2 θ + σ 2

T

2�t
cos2 θ

)

∂2

∂v2y
�(x, v, t)

(15)�xy =
(

σ 2
L

2�t
− σ 2

T

2�t

)

sin 2θ
∂2

∂vx∂vy
�(x, v, t)

It is convenient to express this equation in dimensionless 
coordinates. We have parameters with the units of speed 

v∞ and distance ℓ , and a dimensionless measure of anisot-
ropy α that are
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Dimensionless coordinates for velocity u = v/v∞ , 
position r = x/ℓ , time τ = t/τD , and force 
f = FτD/v∞ = −u + u0û , with u0 = v0/v∞ , are intro-
duced. The size of the arena is R = L/ℓ . The dimensions 
of �(x, v, t) can be removed by multiplying it by v2∞ℓ2 . 
The dimensionless rate equation for the distribution 
�(r,u, τ ) is given by

The equilibrium distribution �(r,u) solves Eq.  17 with 
the left side equal to zero.

The model equilibrium distribution has two speed 
scales, v0 and v∞ ≈ 2.5cm/s and one length scale ℓ ≈ 1.4

cm. The value v0 , at which the driving and drag forces 
balance, is a mean speed for members moving in a 
given direction. The effect of random impulses are con-
tained within v∞ , the mean-square deviation of velocity 
from this mean. An ant remains approximately localized 
within a region of width equal ℓ because it is unlikely to 
travel this far without turning around. The anisotropy 
factor is α ≈ 0.36.

Equilibrium distribution for a homogeneous, unbounded 
arena
We can study the model in the simple case of an 
unbounded arena with area R2 . (The actual, more diffi-
cult, case of a bounded arena is treated approximately in 
Appendix B). This is done by imposing periodic bound-
ary conditions and can be imagined as the 2D arena 
stretched over a closed 3D shape. The equilibrium dis-
tribution �(r,u) is proportional to that for an arena of 
infinite size: every position and direction is symmetry-
equivalent so the distribution, independent of r and θ , 
depends only on speed u.

For isotropic impulses, α = 0 , the distribution satisfies

which is solved to give �(r,u) = �(u) ∝ e−u2/2+u0u . 
(The second order differential equation has two inde-
pendent solutions but we must choose the one that 
vanishes at large speed.) As a function of speed, in vari-
ables with units, this distribution has shoulder peaks at 
v = ±v0 , each with a half-width v∞.

For anisotropic impulses, the equilibrium distribution 
is still independent of θ . This is ensured by symmetry if 
the initial state of the ensemble is uniformly distributed 

(16)v2∞ = σ 2
L τD

2�t
, ℓ = v∞τD, α = σ 2

L − σ 2
T

σ 2
L

.

(17)

∂�

∂τ
= ∂

∂u
·
(

−f�+ ∂

∂u
�

)

− u · ∂

∂r
�− α

(

1

u2
∂2�

∂θ2
+ 1

u

∂�

∂u

)

.

(18)0 = ∂

∂u
·
(

−f�+ ∂

∂u
�

)

,

over all ant-body orientations. A normalized solution to 
the rate equation for α  = 0 is

with the normalization constant

The anisotropy α of the random impulses, while not hav-
ing a huge effect on the distribution, shifts the position of 
the shoulders to slightly higher speed. They are centered 
on u = ±vs/v∞ where

So the shoulder peak position vs ≈ 6.7cm/s

Results and discussion
We compare the equilibrium distributions obtained from 
model simulations and experiment. First, consider the 
one-dimensional density and velocity distributions:

and their counterparts n(y) and P(vy).
In the upper left main panel of Fig.  3 we show the 

model densities n(x) versus x and n(y) versus y. The inset 
shows the experimental results for the same quantities. 
Note the enhanced value for the measured density n(y) 
near y = L/2 , the deviation from square symmetry that 
we ascribed to the presence of the laboratory window. 
The model density respects square symmetry exactly.

The model density has the same qualitative behavior 
as the observed value: it is large at the boundary, then 
decreases over a length scale ℓ to a value that is constant 
throughout the arena interior. The analytic calculation 
(see Appendix B) of the 1D version of the model suggests 
that n(x) has an integrable divergence at the boundary 
and decreases exponentially. That is, at a small distance 
d = L/2− x from the right boundary(or d = −L/2+ x 
from the left) we have n(x) ∼ d−2/3 for d << ℓ while 
n(x)− n(0) ≈ e−d/ℓ for d >> ℓ.

This behavior of n(x) is simply understood. Any ant that 
arrives at a boundary tends to remain nearby because, 
after it stops, it is improbable that a sequence of impulses 
in the same direction (away from the boundary) will 
carry it deep into the interior. More probably, it wanders 
a short distance from the boundary before returning and 
stopping again. This gives an enhancement of n(x) within 

(19)

�(r,u) = �(u) = 1

2πN0R2
exp

(−u2 + 2u0u+ 2α ln u

2

)

(20)N0 =
∫ ∞

0
duu exp

(

−u2/2+ u0u+ α ln u
)

.

(21)vs =
v0 + v∞

√

(v0/v∞)2 + 4α

2
.

(22)

n(x) =
∫ L/2

−L/2
dyn(x, y) , P(vx) =

∫ ∞

−∞
dvyP(vx, vy).
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distance ℓ of boundary. Members that are much further 
than ℓ have little chance of wandering far enough in one 
direction to encounter the boundary, so they behave as if 
it did not exist.

The velocity distributions P(vx) and P(vy) are plot-
ted in the upper right of Fig.  3, with the model result 
in the main panel and experimental values in the inset. 
The overall distribution P(v) exhibits square symme-
try, so P(vx) = P(vy) = P(−vx) . The function P(vx) is 
sharply peaked at vx = 0 and initially decreases with |vx| . 
This peak is dominated by ants moving along y = ±L/2 
boundaries that frequently have the normal component 
of their velocity reset to zero. After reaching a local mini-
mum, P(vx) recovers to exhibit shoulder peaks that are 
characteristic of the interior population. They are cen-
tered near |vx| ≈ vs with a half-width v∞ . The shape of the 
simulated distribution resembles that of the experiment, 
at least all features are represented. From Appendix A, 
in which we allow model parameters to vary, we get an 
indication that the observed P(vx) function might be fully 
reproduced within this model framework.

A 2D representation of P(v) is illustrated in the lower 
panels of Fig. 3 using contour plots for the model (main 

panels) and experiment (insets). On the left we show 
P(v) for ants in the arena interior (more than 3 cm from 
the boundary). The distribution is isotropic, with a val-
ley and ring-shaped plateau seen at finite speed (this is 
the 2D realization of the shoulders). The experimental 
result, while more ragged, has the same qualitative char-
acter. On the right we plot P(v) for ants in the 3 cm wide 
boundary strip. Since they remain close to the boundary, 
they move rapidly along it, giving the characteristic four-
lobed shape.

It should be emphasized that model parameters were 
obtained from the homogeneous, isotropic distribution 
of �v within the arena interior. The variation of n(x) near 
the boundary, and features of P(v) , including any direc-
tion-dependence, were not assumed within the model 
but emerged as calculated properties of it. The basis for 
our claim that the model is in semi-quantitative agree-
ment with the data is that the model length scale ℓ and 
speed scales v∞ , v0 are consistent with observed values.

The density n(x) , being strongly peaked at the arena 
boundaries, exhibits the signature of wall-following, a 
well-known property of ant motion [51]. An animal that 
exhibits active wall-following behavior should show a 

Fig. 3 Comparing the simulated and measured distributions. The model parameters are τD = 0.55 s, v0 = 6.3 cm/s, σL = 1.25 cm/s and σT = 1.00 
cm/s (the distance ℓ , and speeds vs and width v∞ are given in Eqs. 16, 21). Top left: the density n(x) versus position x (black symbols) and n(y) 
versus position y (red) of ants in the simulation (main panel) and experiment (inset). Top right: the distribution over velocity P(vx) versus vx (black) 
and P(vy) versus vy (red) in the simulation (main panel) and experiment (inset). Bottom: contour maps of P(vx , vy) , with simulation in main panel 
and measurement in inset, for ants that are further than 3 cm from a boundary (left plot) or within 3 cm of a boundary (right plot)
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marked preference to remain near the wall and move dif-
ferently when close to a wall than it does in open space. 
In Ref. [54] the motion of a cockroach was parameterized 
separately for phases when the animal was in the arena 
interior and when it was within antenna-length of the 
boundary. The harvester ants studied in Ref. [55] were 
observed to spend most of their time in the boundary 
region when confined to an arena similar to ours. Their 
corresponding model included parameters characteris-
ing diffusive motion in the arena interior and independ-
ent parameters associated with the probability of an ant 
leaving the boundary region. Note that the open-arena 
motion of Ref. [55] differs somewhat from our picture 
since it took velocity direction to change randomly while 
speed remained constant whereas, based on the meas-
ured distribution p(�v) for weaver ants, we varied both 
direction and speed.

Our model ants cannot walk beyond an arena bound-
ary so they stop when they reach the edge. But when they 
resume moving they are just as likely to turn away from 
the boundary as towards it. In fact, we slightly biased 
the model by forcing the ant at the boundary to take its 
first step into the arena interior. The model ants have no 
preference to remain close to the boundary, it is simply 
that the diffusive motion they undergo in the open arena 
does not effectively lead them away from its edge. As 
such, the fact that the simulated density n(r) is peaked at 
the boundary results from passive wall-following behav-
ior exhibited by model ants. But we can look further for 
evidence of active wall-following behavior in real weaver 
ants, i.e for a position-sensitive movement algorithm, by 
examining the distribution of resident times for individu-
als in the boundary strip.

We extracted the distribution P(tb) for the time tb an 
ant remains continuously in the 3  cm boundary strip 
after visiting the arena edge. Specifically, we logged all 

times t = t1 when the ant displacement achieved a local 
maximum |x(t)| within 0.5 cm of the |x| = L/2 bound-
ary and the time t = t2 = t1 + tb when it subsequently 
moved beyond the 3  cm boundary strip. Accordingly, 
t = t2 is the earliest time t > t1 for which |x(t) <12  cm. 
Note that an ant whose center of mass comes within 
0.5 cm of the arena edge, half the length of its body, can 
reasonably be said to have contacted the boundary [61]. 
We consider only the x coordinate for this distribution 
in order to avoid having to make special provisions for 
arena-corner effects.

The normalized distribution P(tb) is shown in the left 
panel of Fig.  4 along with corresponding model predic-
tion. The latter was obtained from simulation data using 
the same procedure followed for the experimental data. 
The complementary distributions P(vx, t1) of velocity 
perpendicular to the boundary at t = t1 are included in 
the right panel. Note that, since x(t1) is a maximum, all 
ants have a velocity vx(t1) that is negative, i.e. towards 
the interior, or zero. The model distribution P(tb) decays 
with time tb on the scale of approximately τD . The experi-
mental distribution also drops significantly over this time 
scale, confirming that the high density n(r) at the bound-
ary can largely be explained by the passive wall-following 
behavior present in the model. But there is a long tail in 
the measured distribution, giving a significantly higher 
probability P(tb) for large tb values in the experiment 
than in the model simulation.

The tail of the P(tb) distribution can be attributed to 
an additional tendency for active wall-following present 
among real weaver ants. As noted above, such an effect 
could be incorporated into the model using a position-
dependent force term in Eq. 6. While our current inter-
est is the population distribution shown in Fig. 3, we note 
that in performing fits of a parameterized force F(r, v) to 
data like that of Fig. 4, our model ants provide a control 

Fig. 4 The normalized distribution P(tb) for the time tb needed for an ant to move from the boundary to the arena interior. That is tb = t2 − t1 
where the ant contacted the arena boundary at t = t1 and exited the 3 cm wide boundary strip at t = t2 (further details are described in the text). 
In the left panel the experimental P(tb) is compared to the model result. In the right panel we show the distributions P(vx , t1) of the x component 
of velocity vx(t1) at time t = t1 where positive values correspond to motion towards the boundary
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group that establishes the baseline distribution P(tb) in 
the absence of active wall-following. The force parame-
ters obtained for different experimental groups, perhaps 
those with ants following a tactile wall instead of the 
arena boundary used here, could thus be more meaning-
fully compared.

The movement algorithm that the ants employ during 
the conditions of the experiment appears to be simplistic. 
The ants can be, at most, weakly influenced by long-range 
sensory input, such as their view of the panorama, meas-
urement of light polarization or other sources. We saw 
that P(v) and, to a lesser extent, n(x) exhibited square 
symmetry. (The enhanced n(x) for the arena edge nearest 
the window was a quantitative, not qualitative, symmetry 
violation.) This symmetry is an indication that ants were 
using local information to navigate, rather than looking 
beyond the arena for guidance. For, while the arena itself 
(an average over square tiles) was square-symmetric, the 
panorama of the laboratory was not.

There is also no indication that our ants were searching 
the arena in a systematic way, such as turning in widen-
ing circles. First, they do not favor one turning direction 
over another, as you would expect for those turning cir-
cles with a certain sense of rotation. More importantly, 
the correlation between consecutive impulses normal to 
velocity is negligible. If an ant was following a smooth 
trajectory then its velocity change during a given time 
step would be strongly correlated with that of the previ-
ous step. Instead, it appears that the ant is changing its 
velocity haphazardly.

The experiment subjected the weaver ant to unnatural 
conditions, and it is possible that the ant was unable to 
utilize its usual navigational tools within the confined 
arena. This might explain its apparently confused motion. 
The results above would then have little to say about the 
dispersion of weaver ants in nature. We are currently [62] 
using the same experimental configuration with a pair 
of ants, and studying whether the frequent interactions 
between the partners influence their individual motion. 
So, in this worst case, the model could still prove useful 
for studying communication among weaver ants.

On the other hand, if the observed motion is repre-
sentative of weaver ant movement in natural situations 
then it raises questions about how motion described by 
the model above could be of any tactical advantage. In a 
homogeneous environment where it is difficult to keep 
track of one’s position, a systematic search pattern might 
be difficult to follow. An individual searching for a faint 
chemical trail on a barren landscape might behave like a 
Brownian particle, which tends to remain localized near 
a starting point but does not repeatedly follow the same 
path [63–65]. Such randomized motion would, eventu-
ally, leave no stone unturned.

Conclusions
We considered the motion of an individual weaver ant 
moving in a square arena. Experimental data on the ant 
distribution over position and velocity were presented. 
We developed a model to explain the observed results. 
The distributions were non-trivial: the ant showed a 
strong tendency to remain near the arena boundaries and 
its distribution over speed was non-monotonic with sev-
eral characteristic features.

The model assumed that the ant undergoes random 
velocity change according to a fixed probability distribu-
tion and that it has no preference whatsoever for position 
within the arena or direction of motion. With these mini-
mal assumptions and without adjustable parameters, the 
model captures the data semi-quantitatively. The work 
provides insight into the movement algorithm used by 
ants when confined in an unfamiliar region.

Appendix A: variation of distribution with model 
parameters

To better understand the range of behavior possible for 
the model, we relax the requirement that parameters 
must be fixed to measured values. As described above, 
the density in the interior is constant by symmetry. It for-
mally diverges at the boundary since the current of ants 
incident on the x = L/2 boundary during a given time 
step will all be placed at x = L/2 for the next time step: a 
finite number of members occupying a single point. The 
value of the basic distance scale ℓ , over which n(x) varies, 
changes as we modify parameters: larger mean-square 
impulses σ 2

L and a smaller drag force coefficient 1/τD 
increase the region that a given ant explores, extending 
the range over which boundaries influence the distribu-
tion. But the qualitative behavior of the n(x) does not 
change dramatically.

The distinctive shape of P(vx) with round shoulder 
peaks coming from the interior and a sharp central peak 
from the boundaries, is sensitive to parameter values. 
In Fig. 5 we show the distribution for various parameter 
choices. In the upper panels we vary τD and v0 , which 
control the deterministic force, and in the lower panels 
vary σL and σT , the size of the random impulses.

The shoulder peaks are centered on ±v0 and have a 
width v∞ . Increasing the driving force v0 pushes them 
outward without changing their height. Upon decreas-
ing v0 , the shoulders can merge with the central peak, so 
the width of the latter increases significantly. If the drag 
coefficient 1/τD increases then accumulated random 
impulses cannot achieve large speeds so v∞ is decreased. 
The result is the shoulder peaks become narrow, tall and 
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more pronounced. On the other hand, members become 
more narrowly localized in space so ℓ decreases and the 
boundaries affect a smaller region. The height of the cen-
tral peak slightly decreases as a result. If 1/τD decreases 
and v∞ gets large then the shoulders become wider and 
shorter, merging into a smooth distribution.

With the deterministic force fixed we can vary the 
size of the root-mean-square random impulses σL and 
σT . Variation of σL has a similar effect to changing τD , 
as is clear from the two plots on the left of Fig.  5. This 
is because the distribution results from a competition 
between the deterministic force, which scales as 1/τD , 
and the random impulses that scale as σ 2

L . So, increas-
ing one of these is similar to decreasing the other. Recall, 
in Eq. 19, the anisotropy of the impulses produced only 
logarithmic corrections to the distribution in the inte-
rior. As a result, when we change σT the shoulder features 
look the same, as seen in the lower right of Fig.  5. But 
the central peak is more sensitive to σT . After a model 
ant hits the boundary its body is aligned parallel with it 
(because the normal component of its velocity is reset to 
zero). If σT is small, it cannot change direction effectively 
so it moves along the edge and remains in contact with 

the boundary. The height of the central peak, which indi-
cates the weight of the boundary population, increases as 
a result.

Appendix B: Equilibrium distribution for a 1D 
arena
Since the rate equation for the bounded 2D model is 
more difficult to solve, we consider a simpler 1D model in 
this section. The solution for the 1D equilibrium distribu-
tion reproduces the key properties of the density n(x) and 
velocity distribution P(vx) found above in the 2D simu-
lations and experiment. The 1D model can be viewed as 
the limiting case of extremely anisotropic impulses for 
the 2D model. We set σT = 0 so an ant initially oriented 
along the x axis remains so.

The arena is one-dimensional with length R = L/ℓ cen-
tered on the origin x = 0 , with parameters for speed v∞ 
and distance ℓ defined in Eq. 16. The position and veloc-
ity are x and v have dimensionless counterparts r = x/ℓ 
and u = v/v∞ . The force F and its dimensionless version 
f are

Fig. 5 Comparing the simulated velocity distribution P(vx) by varying parameter values. In each panel only one parameter will be changed 
and the otherwise parameters are remain as in Fig. 4. Top left: the shoulder features are altered by varying τD = 0.25 s (red), 0.5 s (black), 1.00 s (blue). 
Top right: the shoulders are displaced according to the driving force v0 = 4.5 cm/s (red), 6.5 cm/s (black) and 8.5 cm/s (blue). Bottom left: changing 
σL = 1 cm/s (red), σL = 1.5 cm/s (black) and σL = 2 cm/s (blue) has a similar effect to varying τD . Bottom right: Changing σT = 0.5 cm/s (red), 1.0 
cm/s (black) and 1.5 cm/s (blue) has little effect on the shoulders but affects the central peak
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and the rate equation that determines the equilibrium 
distribution �(r,u) is

Following the protocol for the simulations described 
above, we know that the boundary distribution 
�(R/2,u) = �(−R/2,−u) should be similar to δ(u) 
because all members that reach a boundary are restarted 
with zero velocity. However, at a boundary, the distribu-
tion is not an even function of u.

To solve Eq.  24 it is helpful first to find eigenfunc-
tions g�(u) of the velocity operator appearing in it, in 
the sense that

for a given eigenvalue � . (The primes denote derivatives 
with respect to u.) Having found such functions, we can 
write the general solution for the equilibrium distribu-
tion as a sum over g�(u) functions weighted by coeffi-
cients c�(r) that vary exponentially with position,

Also, Eq.  25 implies g−�(u) = g�(−u) and the equilib-
rium distribution must satisfy reflection symmetry so 
�(r,u) = �(−r,−u) . This means we can restrict the sum 
to non-negative eigenvalues and write

The � = 0 term is position-independent: it gives the equi-
librium distribution for an unbounded arena. The � > 0 
terms vary with position: the first term on the right of 
Eq. 27 dominates near the right boundary but is negligi-
ble at the left boundary. The second term has the oppo-
site property.

The eigenvalue equation, Eq.  25, for � = 0 requires 
that

where the last equality is required for a (normalizable) 
physical distribution. It is solved by

(23)F = − v

τD
+ v0sign(v)

τD
, f = −u+ u0sign(u)

(24)0 = ∂

∂u

(

− f�+ ∂

∂u
�

)

− u
∂

∂r
�.

(25)

(

− fg�(u)+ g ′
�
(u)

)′
= �ug�(u), with g�(0) = 1

(26)

�(r,u) =
∑

�

c�(r)g�(u) where c�(r) = c�(R/2)e
�[r−R/2].

(27)

�(r,u) =
∑

�≥0

c�(R/2)

(

g�(u)e
�[r−R/2] + g�(−u)e−�[r+R/2]

)

.

(28)
−f (u)g0(u)+ g ′0(u) = −f (∞)g0(∞)+ g ′0(∞) = 0,

Clearly, g0(u) is the 1D analogue of the equilibrium dis-
tribution found above, in Eq. 19, for the 2D unbounded 
arena. According to Eq.  27, the distribution approaches 
g0(u) as one moves further from a boundary.

The eigenfunction g�(u) for �  = 0 can be expressed 
exactly as a Hermite function, with an order that 
increases with � , multiplied by a Gaussian factor. It oscil-
lates increasingly rapidly as � increases, so a g�(u) func-
tion is analogous to a Fourier component. Near the 
boundary, many g�(u) contribute and their sum gives a 
velocity distribution that is sharply peaked near u = 0.

To make it easier to sum over g�(u) with � > 0 we 
approximate these functions. Consider Eq.  25 when 
� >> 1 and the terms expected to dominate it satisfy 
g ′′
�
(u)− �ug�(u) = 0 . This is solved by an Airy function 

of the first kind: g�(u) ∝ Ai(�1/3u) . (An Airy function 
of the second kind also solves this equation but would 
give a physically incorrect distribution.) We substitute 
a trial form g�(u) = Ai(�1/3u) exp(χ1[u]) , with χ1(u) an 
unknown function, into Eq. 25 and obtain

For sufficiently large � the first expression in parenthe-
ses, which is multiplied by �1/3 , must vanish. It does if 
χ1(u) = χ0(u)/2 . The result

agrees reasonably well with the true eigenfunction 
for � ≈ 1 and becomes exact in the limit of large � . It 
is convenient because it is well behaved for any eigen-
value so we can treat � > 0 as a continuous parameter. 
Note that Ai(0) = (32/3Ŵ[2/3])−1 ≈ 0.36 and the Airy 
function is positive and exponentially decaying when 
its argument is positive but oscillates in sign for nega-
tive argument.

We replace the sum over non-zero � with an inte-
gral using an interpolating function c(�) ≡ c�(R/2) . A 
minimum value of � = 1 will be imposed on the con-
tinuous spectrum–the precise minimum value will 
not affect important results below. The distribution 
becomes:

(29)

g0(u) = exp(χ0[u]) with χ0(u) =
∫ u

0
du′f(u′) = −u2

2
+ |u|u0.

(30)

0 =�
1/3

Ai
′(�1/3u)

(

− f(u)+ 2χ ′
1(u)

)

+ Ai(�1/3u)

(

− f ′(u)− f (u)χ ′
1(u)+ χ ′′

1 (u)+ [χ ′
1(u)]2

)

.

(31)g�(u) = exp(χ0[u]/2)
Ai(�1/3u)

Ai(0)
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The cutoff of the � integral can be chosen according to 
the desired position resolution �r and velocity resolu-
tion �u of the distribution. The terms with � ≫ 1/�r 
are zero at any measurable distance from the boundary, 
so they can be ignored. Also, since Ai(±∞) = 0 , terms 
with � >> 1/�u contribute nothing to the distribution. 
For our, qualitative, purpose we set � = ∞ whenever 
the integral converges. Also, if the � = 0 term does not 
dominate the sum then we can extend the lower integra-
tion limit to � = 0 (it does not matter if we use Eq. 31 to 
poorly approximate g0(u) in this case).

The c(�) coefficients should be determined by matching 
the r = R/2 distribution

to a known boundary value. Current conservation at the 
boundary determines the rate that members are replaced 
at r = R/2 with zero velocity. But as a rough approxima-
tion to this procedure, and in analogy with the corre-
sponding situation for a Fourier transform, we assume 
that u = 0 members at r = R/2 are uniformly distributed 
among all � components. This means c(�) = c1 ≈ c0 with 
c1 a constant.

The border distribution is now

where we used the fact that the integral is strongly 
peaked about u = 0 to set χ0(u) ≈ χ0(0) = 0 and then 
used the defining differential equation of the Airy func-
tion to do the � integral. At u = 0 the function has 
a value �(R/2, 0) ≈ � and is peaked at the slightly 
negative velocity of u = umax ≈ −1.47�−1/3 with 
�(R/2,umax) ≈ 1.46� . For positive velocities it drops 
to zero on a scale of umax while for negative velocities it 
oscillates on this same scale, rapidly averaging to zero. In 
Fig.  6 we plot it using a modest value �1/3 = 20 so the 
qualitative behavior can be clearly seen.

The overall velocity distribution is similarly obtained

(32)�(r,u) = c0e
χ0(u) + eχ0[u]/2

Ai(0)

∫ �

1
d�c(�)

(

Ai(u�1/3)e�[r−R/2] + Ai(−u�1/3)e−�[r+R/2]
)

.

(33)

�(R/2,u) =
e
χ0(u)/2

Ai(0)

∫ �

0

d�c(�)Ai(u�1/3),

�(R/2, 0) =

∫ �

0

d�c(�)

(34)

�(R/2,u) ≈ 3c1

Ai(0)u3

(

Ai(0)− Ai(�1/3u)+ u�1/3Ai′(u�1/3)

)

(35)

P(u) =
∫ R/2

−R/2
dr�(r,u) = c0Re

χ0(u) + c1e
χ0(u)/2B(u)

where

The function B(u) comes from the population near the 
boundaries and determines the velocity distribution at 
small u. It has a u = 0 peak of height B(0) = 2 ln� and 
width (FWHM) of approximately 4/ ln� . While B(u) 
depends on � , this dependence is weak. In Fig. 6 we plot 
B(u) and P(u) with � = 106 and u0 = 1.5 , R = 4 and 
c0 = c1 . (The vertical axis for plots of P(u) and n(r) is 
arbitrary in this figure: the amplitude of these distribu-
tions should be fixed by normalization.) The cusp in P(u) 
at u = 0 comes from that of the B(u) function while the 
shoulders, coming from g0(u) , correspond to u = ±u0.

To obtain the density

(36)B(u) = 3

Ai(0)

∫ �1/3

1

dz

z

(

Ai(zu)+ Ai(−zu)

)

.

(37)

n(r) =
∫ ∞

−∞
du�(r,u) with n(0) = c0

∫ ∞

−∞
dueχo(u)

Fig. 6 Upper left: the equilibrium distribution �(r , u) at the right 
boundary R/2. Its peak height scales with the cutoff � and its width 
scales with �−1/3 . Here we used � = 203 for illustration. Upper right: 
the function B(u) that controls the contribution of arena boundaries 
to the velocity distribution. Its peak height and width scale as 2 ln� 
and 1/ ln� , respectively. We used � = 106 in this plot. Bottom left: 
the velocity distribution P(u), with the parameter α = 1.5 . Bottom 
right: the density n(r)− n(0) is plotted versus the distance d 
from the right boundary d = R/2− r (or left boundary d = r + R/2 ) 
using u0 = 1.5 . The dashed line is the analytic approximation, 
for d << 1 , in Eq. 39
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we integrate Eq. 32 numerically. The � integral converges 
so we can take � → ∞ . The result for n(r)− n(0) is plot-
ted in Fig. 6 versus the distance from either boundary.

Insight can be gained by considering the case of no 
driving force, i.e. setting u0 = 0 , so that analytic results 
for n(r) are possible. Integrating Eq. 32 over u, using the 
large � approximation of 2

√
πe2�

2/3Ai(�4/3) ≈ �
−1/3 , and 

taking � → ∞ we find

Writing the positive distance from the left boundary as 
d = R/2+ r or from the right boundary as d = R/2− r , 
we have

If we had extended the lower limit of the integral to � = 0 
then the density, for all distances d, would be given by 
the d << 1 expression above (so the lower cutoff in the 
� integral affects the long-distance decay of the boundary 
population). In Fig.  6 we compare the d−2/3 divergence 
with the numerical calculation of n(r). To within a con-
stant multiplicative factor, the u0 = 0 approximation of 
the density is similar as the result for finite u0.

The results above are consistent with what we saw in 
the experiment and the model simulations. The density 
n(x) is large at the boundary because so many slow-
moving ants remain near it. The density decreases with 
distance d and ants further than ℓ from the boundary 
act as though they are in an infinite arena. The sharp 
v = 0 peak in the velocity distribution P(v) is due to 
ants at the boundary that are often abruptly stopped. 
The shoulder features in P(v) are properties of the dis-
tribution in the arena interior: they are local maxima in 
the distribution centered on v = v0 with a width of v∞.
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