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Abstract

Animal behavior can be difficult, time-consuming, and costly to observe in the field directly. Innovative modeling
methods, such as hidden Markov models (HMMs), allow researchers to infer unobserved animal behaviors from move-
ment data, and implementations often assume that transitions between states occur multiple times. However, some
behavioral shifts of interest, such as parturition, migration initiation, and juvenile dispersal, may only occur once dur-
ing an observation period, and HMMs may not be the best approach to identify these changes. We present two
change-point models for identifying single transitions in movement behavior: a location-based change-point model
and a movement metric-based change-point model. We first conducted a simulation study to determine the ability
of these models to detect a behavioral transition given different amounts of data and the degree of behavioral shifts.
We then applied our models to two ungulate species in central Pennsylvania that were fitted with global position-

ing system collars and vaginal implant transmitters to test hypotheses related to parturition behavior. We fit these
models in a Bayesian framework and directly compared the ability of each model to describe the parturition behav-
ior across species. Our simulation study demonstrated that successful change point estimation using either model
was possible given at least 12 h of post-change observations and 15 min fix interval. However, our models received
mixed support among deer and elk in Pennsylvania due to behavioral variation between species and among individu-
als. Our results demonstrate that when the behavior follows the dynamics proposed by the two models, researchers
can identify the timing of a behavioral change. Although we refer to detecting parturition events, our results can be
applied to any behavior that results in a single change in time.
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Introduction

Knowing the vital rates for wildlife populations of man-
agement or conservation concern is critical for deter-
mining the best management actions and assessing their
outcomes. For example, vital rates can inform quotas and
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identify parturition events [17, 28, 52]. The most accurate
methods for determining parturition rates include serum
progesterone level tests [59], the use of ultrasonography
[1], and vaginal implant transmitters (VITs) [6], however,
these methods are expensive and invasive.

Parturition is accompanied not only by morphologi-
cal [15], physiological [58], and hormonal changes [13]
but also by behavioral shifts [60]. Females across taxa
exhibit complex behavioral shifts during the last days of
pregnancy and immediately following the parturition
event [7, 48, 57]. These changes in behavior may manifest
as changes in space use and movement-related quanti-
ties. For example, a change in space use may be identi-
fied as a species moving their geographic core use area
prior to parturition, such as parturient brown hyenas
(Parahyaena brunnea) isolating themselves from the
group to give birth in natal dens [38, 49] and humpback
whales (Megaptera novaeangliae) moving away from
the pod during the birthing process [53]. Other species
may alter their movement in terms of total area used or
traversed and can be identified as quantifiable changes
in movement metrics. For example, movement rates of
female migratory caribou (Rangifer tarandus) are lower
in females that gave birth compared to those that did not
[26, 43].

Given the large number of wildlife studies using satel-
lite telemetry devices to monitor individual movement
[34, 42], these behavioral changes may provide research-
ers with an opportunity to indirectly detect parturition.
The use of location monitoring technology such as global
positioning system (GPS) technology, very high fre-
quency (VHF) telemetry, and satellite tracking through
the Argos system [41, 42, 61] can yield data that could
help answer a wide breadth of questions regarding unob-
served behavioral activity [4, 21], resource selection [5,
8], and other spatial and temporal patterns [2, 25]. As the
accuracy and longevity of monitoring devices improves
[61], researchers have been able to expand inference on
wild species and systems to include detecting unobserved
behaviors based on changes in fine-scale location data.
Numerous studies have documented these parturition-
related changes in movement by telemetering individuals
and monitoring their locations [26, 38, 48, 62].

Previous work has demonstrated that fine-scale loca-
tion data can identify behavioral shifts related to partu-
rition in a single individual [62]. However, if parturition
results in predictable changes in either space use or
movement metrics across individuals in a population,
the timing of parturition could be detected solely using
location data obtained via telemetry collars for a major-
ity of individuals. Utilizing location data directly could
decrease the resources needed to monitor parturition
rates and allow managers to identify pregnant individuals
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and the areas used by these individuals without relying
on costly, invasive procedures or time-consuming field
monitoring. Additionally, detection of parturition events
using location data could assist researchers in determin-
ing real-time birthing locations for studies in which the
neonate must be located immediately after birth [44].

Many studies in the last decade have developed various
methods to identify parturient individuals and parturi-
tion events using movement metrics derived from loca-
tion data [7, 20, 24, 44, 48, 62]. Other methods have been
developed to identify when a behavioral change mani-
fests in physical locations [31, 37], but few of these tech-
niques have applied to identifying parturition timing or
status [62]. Many of these methods include change-point
models. Change-point models are ideal for identifying
a known or fixed number of transitions in a sequence
of time steps where a sudden and distinct change in the
response variable occurs [31, 33, 62]. Hidden Markov
models with an absorbing state could also be used to
handle scenarios in which one-transition (such as par-
turition) occurs, however they can be difficult to imple-
ment using standard statistical software. Overall, few of
these studies had validation data on the exact timing of
the event of interest or pre-defined what would consti-
tute a successful identification of an event. Without vali-
dation data, the success of models in determining when
parturition occurred cannot be confirmed or quantified.
Even when validation data are available, it is important to
define a successful model outcome that is relevant to the
objective (e.g., post hoc identifying parturient individu-
als vs locating a birthing site in real time). A pre-deter-
mined definition of success relevant to the ecological or
logistical issue at hand allows researchers to objectively
judge the performance of the proposed approach. Valida-
tion and model success are important to incorporate as
movement metric and location-based change represent
hypotheses about how individuals behave at parturition,
and a direct comparison between the two behaviors has
not been made.

To address these hypotheses, we developed two
change-point models that capture different parturition-
related changes in movement behavior: a location-based
model and a movement metric-based model to identify
the timing of these events. Comparing the two manifes-
tations of behavioral shifts is important as a change in
physical locations does not necessarily result in a change
in movement metrics, and vice versa. For example, relo-
cating a core area can be achieved without a detectable
change in movement metrics, such as step lengths (the
straight-line distance between two points) and turning
angles (the change of direction between three successive
steps). Meanwhile, the geographic location of the core-
use area may not change, but if the core area becomes
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smaller post-parturition, then quantities such as step
length and turning angle must necessarily change.

To test the ability of our change-point models to detect
single behavioral shifts, such as parturition, we con-
ducted a simulation study in which we varied the sam-
pling effort (duration and frequency of observations). We
used the simulation study to determine the optimal sam-
pling efforts for detecting behavioral events that mani-
fest as either a change in home-range location or derived
movement metrics. We then applied our models to a case
study of two ungulate species, white-tailed deer (Odo-
coileus virginianus) and Rocky Mountain elk (Cervus
canadensis nelsoni), to test proposed hypotheses about
parturition-related behavior in individual ungulates with
known timing of parturition events. Species-specific
behavior may result in different models being better at
detecting parturition-related changes in movement [44]
and there may be large amounts of individual variation in
movement behavior [54]. Our research contributes not
only to our understanding of among-species variation in
parturition-related movement behavior but also provides
guidance for researchers interested in determining the
timing of single behavioral change events.

Methods

Modeling framework

The location-based and movement metric-based change-
point models used the same structure, in which the
observation at time ¢ (f = 1,...,T) arose from a mixture
of two distributions, detailed further in Additional file 1:
Appendix A. By using a spike and slab prior [36], the
model could fail to detect a change, which would mean
the change point (1) was set to zero and the observations
would only arise from one of the two distributions. When
a change was detected, the change point (7) was modeled
as a uniformly distributed categorical random variable
with a span from 1 to 7, where T is the total number of
observations for an individual.

All models were fit to the simulation and case study
data using program R [51] and the NIMBLE package
[23]. We made inference on 200,000 Markov chain Monte
Carlo (MCMC) iterations following a burn-in period of
100,000 iterations and thinned to every four iterations.
We determined convergence through a visual check of
posterior distributions and the Geweke diagnostic (>|2|
was not converged, [30]). For individuals that did not
converge under these conditions, we refit the models
using 500,000 MCMC iterations following a 250,000-iter-
ation burn-in period and thinned every four iterations.
We used a single chain due to the possibility of label-
switching, which does not change the estimated param-
eters but complicates combining inference across chains

Page 3 of 15

[39]. If multiple chains are desired, one could prevent
label switching by restricting mean parameters across the
two states relative to each other through a set prior.

Location-based change-point model

The Location-based Change-Point Model (LCPM) is
based on the 2-dimensional spatial location of the indi-
vidual at time step ¢ (y;). To facilitate setting priors, we
centered the easting and northing for each individual
according to their respective means. This allowed us to
use a single value, 0, as the mean location for all indi-
viduals spread across Pennsylvania. The locations were
distributed as a mixture of two multivariate normal
distributions

N, 2E) ift <t
AN (e E) it = (1)
T ~ Categorical({).

The multivariate normal distributions were param-
eterized by their time-varying expected location in space
(my, for i = 1,2), which varied depending on the rela-
tive value of the time step to the change point (pre- or
post-change state) and a covariance matrix (X). We mod-
eled ¥ = o021 where the prior for o was modeled as Uni-
form(0, 107), which did not vary depending on the state.
To model the expected location at each time step, we
used an autoregressive model of order one (AR(1)) where
the location at time t, n,, depended on the location at
time t—1, y,_,;, but also included an attractor around a
central location (p;, for i = 1,2) to account for stationar-
ity around a geographic centroid:

N = Mxy;,_; 4+ (1= M)xp)

(2)
Mo = Miy,_y + (I— M)y

Each geographic centroid, which is the component
that varied between the two states, was modeled as
w; ~N(0,Z,I) for i=1, 2, where X,=5000*L The
degree of autocorrelation was estimated via the propa-
gator matrix, M = pl, where p is the autocorrelation
parameter and has support of -1 to 1. While M acts
directly on the previous location, it also indirectly affects
the impact of the geographic centroid. As p approaches
one, the model simplifies to an "intrinsic" conditional
autoregressive model (ICAR; [35]), because (I — pI)
goes toward zero and nullifies the attractor (Fig. 1a). In
contrast, when p approaches zero, the location at time ¢
becomes less dependent on the location at time £—1 and
more dependent on the location of the attractor (Fig. 1b).

Preliminary results indicated that the autocorrelation
parameter did not vary between states; therefore, we
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Fig. 1 Anillustration of two possible movement trajectories. We simulated a two-dimensional AR(1) process, described in Eq. (2),

with the geographic centroids arising from a mean of c(0,0). In panel a we fixed the autocorrelation parameter, p, to 0. Under these circumstances,
the locations are heavily influenced by the geographic centroid. In panel b we fixed p to 1, and the expected value of a location is based

on the location at the previous time step with no attraction to the geographic centroid

used a single autocorrelation parameter, p, arising from
a Uniform(0, 0.8) prior, which allowed for positive auto-
correlation while enforcing some dependence on a geo-
graphic centroid.

Movement metric-based change-point model

In the Movement Metric-based Change-Point Model
(MMCPM), the observations of interest were turning
angles and step lengths. Turning angles and step lengths
are metrics widely used to characterize behavioral states
in animal movement modeling [45, 47]. Turning angles
capture tortuosity, and step lengths capture movement
speed (given consistent time between observations). As
above, we used 7 to represent the change point across the
models for turning angles and step lengths. We specified
the turning angle at time ¢ as

__J wrapped Cauchy(y1,«1) fort <t
At wrapped Cauchy(ys, kp) fort > 17~ ®3)

The wrapped Cauchy distribution was parameterized
using location (y; for i = 1,2), and scale (x; for i = 1,2),
which varied depending on the current state (pre- or
post-change) at time t. We used the wrapped Cauchy

distribution to describe turning angles because it is a
circular distribution, similar to a wrapped normal or
von Mises distribution, but allows for the distribution
to become uniform on a circle [35], as the scale param-
eter approaches zero, which would mean an individual is
equally likely to move in any direction. To match the sup-
port for turning angles, which is in radians, the prior for
the location parameter was modeled as Uniform(—m, ),
and the prior for the scale parameter was modeled as
Uniform(0, 1).

The model for step length followed the same mixture-
model structure; however, we found that different distri-
butions were needed to describe the movements of deer
and elk. We modeled elk step lengths as

Selk,t ™ {

The Weibull distribution was parameterized using
shape (e; fori = 1,2), and scale (B; fori = 1,2) param-
eters, which varied depending on the current state at
time ¢. The prior for the shape parameter was modeled as
Gamma(0.001, 0.001), and the prior for the scale param-
eter was modeled as Uniform(0, 50). However, we found

Weibull(ap, 81) fort <t
Weibull(cg, B2) fort >t (4)
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that the Weibull distribution did not adequately capture
deer step lengths. The Weibull distribution tended to
attribute the true parturition event to single observations
of large step lengths that were interspersed throughout
the observation period. These observations occurred
more frequently in the deer dataset, which necessitated
a less flexible model for step lengths. We instead used an
exponential distribution such that

[ Exp() fort <7
Sdeer,t { Exp(dp) fort > 1 (5)

where the exponential distribution was parameterized
by rate (4; for i = 1,2), which varied depending on the
current state at time ¢ and arose from a Gamma(0.001,
0.001).

Simulation study

We first conducted a simulation study to determine if
our proposed change-point models were able to detect
behavioral shifts. We addressed three study design ques-
tions focused on a model’s ability to detect the timing of
the change correctly: the duration of observation follow-
ing the event occurring, the fix interval, and the magni-
tude of change or consistency of change in geographic
location or movement metrics, respectively (Additional
file 2: Appendix B Tables S1, S2).

We were interested in these varying data scenarios
given the range of objectives related to identifying a
behavioral change. One objective may be to use incoming
location data to decide when to initiate neonate search
efforts because chances of capture decline with increased
time after parturition [12]. Another objective may only
be to determine parturition dates and locations post hoc.
Each objective may require different monitoring strate-
gies that vary in the frequency of locations and dura-
tion of monitoring. Therefore, if our models could detect
behavioral shifts successfully, we wanted to provide guid-
ance on estimating parturition solely from location data.

Simulating data

To simulate location data and movement metrics, we
chose reasonable values given our observed data (Addi-
tional file 2: Appendix B Tables S3, S4). For example, we
simulated data with p fixed at 0.8, similar to preliminary
estimates of the autocorrelation parameter among elk
and deer in our case study.

To assess the effect of the duration of data obtained
after the behavioral change, we simulated fifty complete
datasets that contained locations 48 h prior to and after
the change with a 15 min fix interval. We created addi-
tional truncated datasets from the complete dataset with
post-change monitoring durations of 24, 12, 6, and 3 h
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(50 datasets each). To assess the effect of fix interval, we
again simulated fifty complete datasets that contained
locations 48 h prior and 24 h post-parturition with a
15 min fix interval. We thinned each complete dataset to
both 30 and 60 min fix intervals.

A larger variation in observations and a smaller differ-
ence between the two states may make it more challeng-
ing to determine when the event of interest occurred. For
the MMCPM, we determined four ways in which a dif-
ference in behavior might manifest: one with no change
in step lengths or turning angles between pre-and post-
parturition, one with a change in turning angles but
not step lengths, one with a change in step lengths but
not turning angles, and one with a change in both step
lengths and turning angles. We simulated fifty datasets
for each of these movement scenarios. For the LCPM, we
used the largest difference between the estimated geo-
graphic centroids among individuals, as described above,
and systematically decreased the difference to 75, 50, and
25% of the original distance (784.5, 523.0, and 261.5 m,
respectively). We simulated fifty datasets for each of the
aforementioned differences with a fix interval of 15 min
and 48 h of data pre-and post-parturition.

Model assessment

We first assessed if either LCPM or MMCPM detected
a change point by calculating the mode of the posterior
distribution of 7. The spike and slab prior for t allowed
the model to be described by a single value if t was esti-
mated to be the spike (set to zero). Therefore, a poste-
rior mode of zero for t indicated that the models failed
to detect a behavioral change. Given the mode was not
zero, we then assessed the ability of each model to esti-
mate the timing of parturition events for each simulated
data set. For both models, we subtracted the true timing
of the behavioral change from the posterior distribu-
tion of 7. If the new posterior distribution was positive,
our models overestimated the change point, and the
true event occurred prior to the estimated change point.
If this difference was negative, the true event occurred
after the estimated change point. To quantify model
accuracy, we a priori defined three levels of success for
the models to accurately estimate the parturition event.
A Level 1 success occurred when the upper and lower
bounds of the 95% credible interval (hereafter CI) of the
estimated change point both fell within+6 h of the true
event. A Level 2 success occurred when the 50% CI fell
within 6 h of the true event. A Level 3 success occurred
when the posterior median fell within+6 h of the true
event. If the upper and lower bounds of the 95% CI did
not fall into one of the three levels of success, we consid-
ered this as an unsuccessful estimation of a change point.
We chose 6 h as the window of interest to ensure the
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models could accurately capture the behavioral change
at a fine scale. In the case study, we calculated the width
of the 95% credible interval quantiles (hereafter quan-
tile width) from the posterior distribution of the change
point as a measure of estimate precision.

Case study

Data collection and processing

The Pennsylvania Game Commission and the Pennsyl-
vania State University captured 17 deer from January to
April 2015-2017 and 37 elk from January to April 2020
in north-central Pennsylvania. Study area details can be
found in Additional file 1: Appendix A. Adult females
were fit with a vaginal implant transmitter (VIT; Vec-
tronic Aerospace, Berlin, Germany) and a GPS satellite
radio collar (GPS Plus, Vectronic Aerospace, Berlin, Ger-
many). Deer and elk were handled according to protocols
approved by The Pennsylvania State University Institu-
tional Animal Care and Use Committee (Protocol No.
47054 and Protocol No. 01185). Further information on
animal capture and data collection can be found in Addi-
tional file 1: Appendix A.

Our focus was on parturition events; therefore, we
extracted individual location data from 3 days prior to
and 4 days following the known parturition event (8 days
total). We explored other pre- and post-parturition dura-
tions and found comparable results across durations [20,
48]. Because locations were not obtained at the same
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fix interval across study areas and years, we used the
continuous-time functional movement model of Buder-
man et al. [11], fit using the ctmcmove R package [32],
to interpolate locations to hourly intervals. All locations
were in Universal Transverse Mercator (zone 17) easting
and northing coordinates, and for the LCPM, we cen-
tered each individual’s locations to their mean to more
easily facilitate determining priors. We calculated step
lengths and turning angles using the amt R package [55].

Results

Simulation study

Location-based change-point model

The LCPM estimated a change point according to a Level
1 success for all datasets for each variation of post-partu-
rition observation duration (Fig. 2, Table 1).

When we compared fix intervals, the LCPM estimated
the change point according to Level 1 success for all the
datasets when the fix interval was 15 min. However,
when the datasets were thinned to 30 min and 60 min
intervals, the LCPM did not estimate the change point as
accurately (Fig. 3, Table 1).

Finally, for comparing the magnitude of change
between pre- and post-parturition, the LCPM estimated
the change point according to a Level 1 success for over
90% of the simulated datasets when the geographic
centroids were 100%, 75%, and 50% of the maximum
observed distance. Once the distance was reduced to 25%

3 hours
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Simulation
Fig. 2 Fifty complete datasets of 48 h pre-and post-parturition at 15 min fix intervals were trimmed to 24, 12, 6, and 3 h of post-parturition
data and fit to the Location-based Change-Point Model (LCPM; red) and Movement Metric-based Change-Point Model (MMCPM; blue). Gray,
dashed lines represent+6 h of the true parturtition event. Gray rectangles represent simulations that did not detect a change, and red rectangles

represent simulations that did not converge
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Table 1 Summary of our simulation study results (in percentages) for three design questions focusing on ability of the Location-based
Change Point Model (LCPM) to correctly detect the timing of the change for and the magnitude of change in geographic locations
(magnitude), duration of observation following the event occurring (duration), and fix interval (frequency)

Category Magnitude Duration Frequency
100% 75% 50% 25% 48H 24h 12h 06h 03h 15min 30min 60 min
Difference Difference Difference Difference

Level 1 100 98 94 14 100 100 100 100 100 100 8 -

Level 2 - 2 - 24 - - - - - . 92 _

Level 3 - - 6 4 - _ — _ _ _ _ _

Not successful - - - 56 - _ - _ _ - _ _

No change detected - - - 2 _ - _ _ _ _ _ 100

Did not converge - - - - - - - _ _ _ _ _

We simulated 50 datasets for each of these and summarized results based on a priori levels of success, whether no change point was detected, or lack of convergence

15 minute

o

'
w

20

10

o

-10

Deviation from Truth

-20

o

Simulation
Fig. 3 Fifty datasets of 48 h pre- parturition and 24 h post-parturition at a 15 min fix rate were thinned to 30 min and 60 min fix interval and fit
each to the Location-based Change-Point Model (LCPM; red) and Movement Metric-based Change-Point Model (MMCPM,; blue). Gray, dashed line
represents£6 h of the true parturtition event. Gray rectangles represent simulations that did not detect a change. When thinned to a 60 min fix
interval, LCPM did not detect a change point in any of the simulations. Note different scales for the y-axis

of the maximum observed distance, LCPM estimated the
change point according to a Level 1, Level 2, and Level
3 14%, 24%, and 4% of the time respectively and did not
successfully detect a change point in 56% of the datasets
(Fig. 4, Table 1).

Movement metric-based change-point model

For differing post-parturition observation durations, the
MMCPM estimated the change point according to Level
1 success for at least 90% of the datasets when there was
at least 12 h of post-parturition data. However, once the
observations were truncated to 6 and 3 h of data post-
change, the ability of the MMCPM to estimate these
changes decreased (Fig. 2, Table 2).
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Simulation
Fig.4 We simulated 50 datasets for varying distances between geographic centers (1026.0, 784.5, 523.0, and 261.5 m, respectively) and fit each
to the Location-based Change-Point Model (LCPM; red). Gray, dashed lines represent + 6 h of the true parturtition event. Gray rectangles represent
simulations that did not detect a change, and red rectangles represent simulations that did not converge. Note different scales for the y-axis

Table 2 Summary of our simulation study results (in percentages) for three design questions focusing on ability of Movement Metric-
based Change-Point Model (MMCPM) to correctly detect the timing of the change for and the magnitude of consistency of change in
movement metrics (step lengths and turning angles, SL and TA, respectively; magnitude), duration of observation following the event

occurring (duration), and fix interval (frequency)

Category Magnitude Duration Frequency
Difference  Difference Difference No difference 48h 24h 12h 06h 03h 15min 30min 60 min
inSLandTA inTA in SL

Level 1 100 98 - - 100 100 88 64 44 98 98 92

Level 2 - - 8 - - - - - 2 - - 4

Level 3 - - - - - - - - - - - -

Not successful - - 10 2 - - - - - - - 4

No change detected - 2 82 9% - - 12 36 54 2 2 -

Did not converge - - - 2 - - - - - - - -

We simulated 50 datasets for each of these and summarized results based on a priori levels of success, whether no change point was detected, or lack of convergence

When comparing the fix interval, the MMCPM esti-
mated the change point according to a Level 1 success
in 98% of datasets when the fix interval was 15 and
30 min. Once the fix interval was thinned to 60 min, the
MMCPM slightly decreased in accuracy and estimated
the change point according to Level 1 success in 90% of
datasets (Fig. 3, Table 2).

Finally, when comparing the magnitude of change
between pre- and post-event, the MMCPM performed
best when a change in both step lengths and turning
angles or just turning angles was present. In these scenar-
ios the MMCPM estimated the change point according
to Level 1 success for at least 98% of the datasets. When
there was only a change in step lengths, the MMCPM did
not detect a change occurred in 92% of datasets. When
there was no change in either movement metric, the
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No Difference
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40
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Deviation from Truth

3
B o oo
Simulation
Fig. 5 We simulated 50 datasets for four movement-metric situations, a difference in both turning angle and step lengths, a difference in just step
lengths, a difference in just turning angles, and no difference in either before or after the change point and fit each to the Movement Metric-based
Change-Point Model (MMCPM; blue). Gray, dashed lines represent +6 h of the true parturtition event. Gray rectangles represent simulations that did
not detect a change, and red rectangles represent simulations that did not converge. Note different scales for the y-axis

MMCPM did not detect a change in 92% of the datasets = Case study

(Fig. 5, Table 2). Location-based change-point model
For deer, the LCPM did not consistently estimate
when a change in geographic locations occurred. For
eight of 17 individuals, the LCPM failed to detect a
change in geographic locations. Of nine individuals

Table 3 Summary of the number of individuals of white-tailed deer (Odocoileus virginianus) and Rocky Mountain elk (Cervus
canadensis nelsoni; n=17 and 37, respectively) for which the Location-based Change-Point Model (LCPM) detected a change or not

Species Change point detected Level of success Number of individuals Average 95%
Cl quantile
width

Deer Yes Level 1 0 -

Level 2 1 29
Level 3 1 79
Not successful 7 76.714
No - 8 -
Did not converge - 0 -
Elk Yes Level 1 0 -
Level 2 0 -
Level 3 0 -
Not successful 37 16.875
No - 0 -
Did not converge - 0 -

If a change was detected, we calculated the 95% credible interval quantile width of the change point and averaged it within each species and level of success
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Fig. 6 Results of the Location-based Change-Point Model (LCPM) fit to Rocky Mountain elk (Cervus canadensis nelsoni). For the 37 for which
the LCPM detected a change we present the posterior distribution of the estimated change point centered on the known parturition event. The
vertical, red dashed line represents 36 and 12 h prior to the known parturition event. Blue histograms represent individuals in which the 95%

credible interval fell within this time frame

for which the model detected a change, the LCPM
estimated the change point according to a Level 2 suc-
cess for one individual (average quantile width 29) and
a Level 3 success for one (average quantile width 79;
Table 3, Additional file 2: Appendix B Table S3 and
Fig. S1).

For elk, the LCPM detected a change in all 37 indi-
viduals (Table 3, Additional file 2: Appendix B Table S3,
Fig. S2). Although no individuals met the criteria for our
pre-defined levels of success, the model consistently esti-
mated the change point between 36 and 12 h prior to the
true parturition event (Additional file 2: Appendix B Fig.
S2). In 25 individuals the 95% CI of the posterior distri-
bution occurred within 36 to 12 h prior to true parturi-
tion (quantile width 4.64) and in four individuals, the 50%
CI occurred within this range (quantile width 9.5; Fig. 6,
Additional file 2: Appendix B, Fig. S3).

Movement metric-based change-point model

The MMCPM failed to converge for two deer, which
were removed from the analysis. For 15 deer on which
we made inference, the MMCPM did not detect a change
point in nine individuals. In six individuals the MMCPM

estimated that a change occurred, but none met the a pri-
ori categories of success (average quantile width 47.167;
Table 4, Additional file 2: Appendix B Fig. S4).

We also observed large credible intervals, many span-
ning the support of the change point, and multi-modal
posterior distributions (Additional file 2: Appendix B,
Table S4, Fig. S4).

The MMCPM detected a change point in all 37 elk.
Although 27 individuals did not meet one of the three
a priori levels of success, many observed credible inter-
vals were small (average quantile width 8.615) and in 24
individuals the 95% credible intervals of the estimated
change point fell within the 24 h prior to the known par-
turition event (average quantile width 4.83; Fig. 7, Addi-
tional file 2: Appendix B, Table S4, Fig. S5). Six elk were
classified as a Level 1 success, (average quantile width
5.2), three individuals were classified as a Level 2 success
(average quantile width 11) and the remaining individu-
als was classified as a Level 3 success (average quantile
width 18; Table 4, Additional file 2: Appendix B Table S4,
Fig. S5). We observed multi-modal posterior distribu-
tions in some elk. However, the spans of the posterior
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Table 4 Summary of the number of individuals of white-tailed deer (Odocoileus virginianus) and Rocky Mountain elk (Cervus
canadensis nelsoni; n=17 and 37, respectively) for which the Movement metric-based Change-Point Model (MMCPM) detected a
change or not

Species Change point detected Level of success Number of individuals Average 95%
Cl quantile
width

Deer Yes Level 1 0 -

Level 2 0 -
Level 3 0 -
Not successful 6 47.167

No - 9 -

Did not converge - 02 -

Elk Yes Level 1 6 52

Level 2 3 11
Level 3 1 18
Not successful 27 8.615

No - 0 -

Did not converge - 0 -

If a change was detected, we categorized the ability of the model into three a priori levels of success based on the posterior distribution of the difference of the
estimated change point and known parturition. Additionally, we calculated the 95% credible interval (Cl) quantile width of the change point and averaged it across
each species and level of success

25
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Fig. 7 Results of the Movement Metric-based Change-Point Model (MMCPM) fit to Rocky Mountain elk (Cervus canadensis nelsoni). For the 37
for which the MMCPM detected a change, we present the posterior distribution of the estimated change point centered on the known parturition
event. The vertical, red dashed lines represents 24 h prior to the known parturition event. Blue histograms represent individuals in which the 95%

credible interval fell within this time frame
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distributions were small and six individuals were classi-
fied as a success (Additional file 2: Appendix B Figs. S5,
S6.)

Discussion

We developed a general Bayesian framework for fitting
change-point models that can describe two likely mani-
festations of movement-related changes in behavior:
changes in physical locations [49, 53] and movement
metrics [26, 43]. Results from our simulation study indi-
cated that changes related to parturition in ungulates
could be detected in the absence of auxiliary validation
data (e.g., VITs) given that individuals actually exhibit
a change in location or movement behavior, therefore,
depending on parturition detection objectives and indi-
vidual behavior, our models can be used to reduce costs
associated with current partition-detection methods.

Through our simulation study, we demonstrated that
successful detection of a change point was possible, and
we determined optimal data collection for when an indi-
vidual exhibits the behavioral change described in the
models. Due to constraints imposed by the battery power
of telemetry devices, researchers must make a trade-
off between observation frequency (fix interval) and the
duration of observation. The balance between fix interval
and the duration of observation is essential when con-
sidering movement behavior because quantities, such as
mean, maximum, and total distance moved, will vary as
a function of fix interval [50]. Although temporally fine-
scale data may identify behavioral changes soon after
they occur, the increased frequency will lead to decreased
battery life [46].

Given these potential sources of variation in the detec-
tion of a change point, our simulation study evaluated the
ability of our two models to detect a given change under
varying post-event sampling durations, fix intervals, and
magnitude of behavioral changes. We determined suc-
cessful detection of a change point was possible given
a 15 min fix interval, at least 3 h of observation follow-
ing a change for LCPM and at least 12 h for MMCPM.
Moreover, for the MMCPM, successful detection of a
behavioral change can occur with a 60 min fix rate and
at least 24 h of observation following a change. The suc-
cess of our simulation study demonstrates that when
behavior follows the dynamics proposed by the two mod-
els, researchers can detect the timing of true behavioral
change with current technology.

When we applied our change-point models to two
ungulate species, not all individuals within a species
exhibited movement behaviors captured by the models.
This could be due to large behavioral variation across spe-
cies and individuals. For deer, the LCPM failed to detect
a change in a majority of the individuals and the ability to
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estimate a change was not consistent among individuals.
These results indicate deer are not consistently changing
their locations prior to or during parturition. In over 50%
of the elk, however, the LCPM consistently identified and
estimated a change within 12-36 h of parturition (Fig. 6,
Additional file 2: Appendix B Fig. S3). Previous research
has shown that elk may alter the locations they use prior
to parturition as a potential predator avoidance strategy
[29], and our models support this behavior by consist-
ently estimating the parturition event 36—12 h prior to
the true event.

Much like the LCPM, the MMCPM could not con-
sistently or accurately estimate parturition events in
deer. The failure of the MMCPM to capture parturi-
tion behavior of deer could be due to brief behavio-
ral changes that are not able to be detected by the
MMCPM. For example, females have been observed
moving their fawns to a second location within 3 to 24 h
after parturition and will only re-visit these secondary
locations briefly at dawn and dusk to nurse [22]. While
elk may exhibit a more detectable change in movement
behaviors in the 24 h leading up to the birthing event.
Thus, movement metrics, like step lengths and turn-
ing angles, may be more readily differentiated between
pre-and post-parturition movements in elk than deer.
Lack of success across deer in our case study indicates
that, despite prior support in the literature, deer do not
consistently follow the dynamics described by the two
models, while elk do [18, 60]. Therefore, validation data
on the event of interest should be used to determine if
these models are a viable tool to identify the timing of
an event of interest [10].

Based on change point analysis of telemetry data from
the mother, locating neonates in real-time is unlikely to be
successful given individual variation [54] and the poten-
tial absence of detectable behavioral changes. Addition-
ally, our simulation study indicated the MMCPM would
not be ideal for identifying parturition events in real time
given that this model needs at least 12 h of post-partu-
rition data to identify the change and additional time to
mobilize and find the neonate. In combination with our
results from the case study, the change in movement
metrics was exhibited in the 24 h preceding the parturi-
tion event. The time needed for the MMCPM to detect
behavioral changes would lead to decreased success of
locating the neonate as time from parturition increases
[12]. The LCPM, however, needs only 3 h of post-partu-
rition data to identify behavioral change. If the change
occurs prior to parturition, managers and researchers
could be alerted ahead of time to a possible parturition
event. After the behavioral change is detected, personnel
could identify clusters of data points that might indicate a
parturition event has occurred in real-time. For example,
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in our case study of elk, LCPM consistently underesti-
mated the timing of parturition, which means that female
elk initiated a move to the calving site 12-36 h before
parturition (Fig. 6, Additional file 2: Appendix B Figs. S3,
S4). The identified change point could be an indicator to
initiate monitoring of the spatial distribution of the loca-
tions and begin preparing for a neonate search. Some col-
lar manufacturers currently offer features such as virtual
fencing, where researchers are notified when a collared
individual exits or enters a preset polygon. Used in com-
plement with LCPM this feature could aid in monitor-
ing a collared individual following the change point. If
managers and researchers are not interested in locating
the neonate, but rather identifying the timing and loca-
tion of parturition events (and the associated resources),
MMCPM or LCPM could be used. The MMCPM can
identify behavioral changes with less frequent data than
the LCPM, which could extend the transmitter’s battery
life [9].

It is important to be cautious when assigning behav-
iors or events of interest from the change point estimated
by a model [10]. The change-point framework simply
detects when the most probable generating distribution
transitions from one state to another. Researchers must
use their ecological knowledge and expertise to apply
biological significance to the estimated change. Wild ani-
mals are navigating a complex environment, and many
unobserved variables, such as human activity [16], inter-
actions with predators [27], or injury [19], can result in
changes to movement behavior. For example, we detected
several individuals for which the posterior distribution of
the change point was bimodal (Additional file 2: Appen-
dix B Fig. S7). Ecologically, this may indicate that multi-
ple behavioral changes, potentially including parturition,
occurred within the timeframe of interest. Incorrectly
assigning a transition between statistical distributions
to an event could lead to incorrect inference about the
ecological process of interest [10]. Validation data can
reduce erroneous behavioral assignments, but it is time-
consuming and requires extensive resources.

However, when a behavioral change event is known to
occur, our two change-point models successfully identi-
fied it under different monitoring and ecological sce-
narios. Therefore, these models could be used to identify
the timing of parturition events, but only if the methods
have been validated a priori. These methods and guid-
ance can be applied in the future to other systems where
single behavioral change occurs, such as migration, natal
dispersal, or survival of offspring. Our change-point
models provide a valuable tool for wildlife managers and
researchers to monitor vital rates for populations of man-
agement and conservation interest.
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