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Abstract 

Animal behavior can be difficult, time-consuming, and costly to observe in the field directly. Innovative modeling 
methods, such as hidden Markov models (HMMs), allow researchers to infer unobserved animal behaviors from move-
ment data, and implementations often assume that transitions between states occur multiple times. However, some 
behavioral shifts of interest, such as parturition, migration initiation, and juvenile dispersal, may only occur once dur-
ing an observation period, and HMMs may not be the best approach to identify these changes. We present two 
change-point models for identifying single transitions in movement behavior: a location-based change-point model 
and a movement metric-based change-point model. We first conducted a simulation study to determine the ability 
of these models to detect a behavioral transition given different amounts of data and the degree of behavioral shifts. 
We then applied our models to two ungulate species in central Pennsylvania that were fitted with global position-
ing system collars and vaginal implant transmitters to test hypotheses related to parturition behavior. We fit these 
models in a Bayesian framework and directly compared the ability of each model to describe the parturition behav-
ior across species. Our simulation study demonstrated that successful change point estimation using either model 
was possible given at least 12 h of post-change observations and 15 min fix interval. However, our models received 
mixed support among deer and elk in Pennsylvania due to behavioral variation between species and among individu-
als. Our results demonstrate that when the behavior follows the dynamics proposed by the two models, researchers 
can identify the timing of a behavioral change. Although we refer to detecting parturition events, our results can be 
applied to any behavior that results in a single change in time.
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Introduction
Knowing the vital rates for wildlife populations of man-
agement or conservation concern is critical for deter-
mining the best management actions and assessing their 
outcomes. For example, vital rates can inform quotas and 
license sales [3, 40] and identify resources associated with 
survival and reproduction, which can guide habitat man-
agement [24, 56]. Birth and death rates impact population 
dynamics, such as recruitment, age structure, and popu-
lation growth [14, 52]. The contribution of the birth rate 
to population dynamics is even greater for species with 
relatively constant adult survival [28]. One of the most 
direct ways to estimate birth rates and fecundity is to 
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identify parturition events [17, 28, 52]. The most accurate 
methods for determining parturition rates include serum 
progesterone level tests [59], the use of ultrasonography 
[1], and vaginal implant transmitters (VITs) [6], however, 
these methods are expensive and invasive.

Parturition is accompanied not only by morphologi-
cal [15], physiological [58], and hormonal changes [13] 
but also by behavioral shifts [60]. Females across taxa 
exhibit complex behavioral shifts during the last days of 
pregnancy and immediately following the parturition 
event [7, 48, 57]. These changes in behavior may manifest 
as changes in space use and movement-related quanti-
ties. For example, a change in space use may be identi-
fied as a species moving their geographic core use area 
prior to parturition, such as parturient brown hyenas 
(Parahyaena brunnea) isolating themselves from the 
group to give birth in natal dens [38, 49] and humpback 
whales (Megaptera novaeangliae) moving away from 
the pod during the birthing process [53]. Other species 
may alter their movement in terms of total area used or 
traversed and can be identified as quantifiable changes 
in movement metrics. For example, movement rates of 
female migratory caribou (Rangifer tarandus) are lower 
in females that gave birth compared to those that did not 
[26, 43].

Given the large number of wildlife studies using satel-
lite telemetry devices to monitor individual movement 
[34, 42], these behavioral changes may provide research-
ers with an opportunity to indirectly detect parturition. 
The use of location monitoring technology such as global 
positioning system (GPS) technology, very high fre-
quency (VHF) telemetry, and satellite tracking through 
the Argos system [41, 42, 61] can yield data that could 
help answer a wide breadth of questions regarding unob-
served behavioral activity [4, 21], resource selection [5, 
8], and other spatial and temporal patterns [2, 25]. As the 
accuracy and longevity of monitoring devices improves 
[61], researchers have been able to expand inference on 
wild species and systems to include detecting unobserved 
behaviors based on changes in fine-scale location data. 
Numerous studies have documented these parturition-
related changes in movement by telemetering individuals 
and monitoring their locations [26, 38, 48, 62].

Previous work has demonstrated that fine-scale loca-
tion data can identify behavioral shifts related to partu-
rition in a single individual [62]. However, if parturition 
results in predictable changes in either space use or 
movement metrics across individuals in a population, 
the timing of parturition could be detected solely using 
location data obtained via telemetry collars for a major-
ity of individuals. Utilizing location data directly could 
decrease the resources needed to monitor parturition 
rates and allow managers to identify pregnant individuals 

and the areas used by these individuals without relying 
on costly, invasive procedures or time-consuming field 
monitoring. Additionally, detection of parturition events 
using location data could assist researchers in determin-
ing real-time birthing locations for studies in which the 
neonate must be located immediately after birth [44].

Many studies in the last decade have developed various 
methods to identify parturient individuals and parturi-
tion events using movement metrics derived from loca-
tion data [7, 20, 24, 44, 48, 62]. Other methods have been 
developed to identify when a behavioral change mani-
fests in physical locations [31, 37], but few of these tech-
niques have applied to identifying parturition timing or 
status [62]. Many of these methods include change-point 
models. Change-point models are ideal for identifying 
a known or fixed number of transitions in a sequence 
of time steps where a sudden and distinct change in the 
response variable occurs [31, 33, 62]. Hidden Markov 
models with an absorbing state could also be used to 
handle scenarios in which one-transition (such as par-
turition) occurs, however they can be difficult to imple-
ment using standard statistical software. Overall, few of 
these studies had validation data on the exact timing of 
the event of interest or pre-defined what would consti-
tute a successful identification of an event. Without vali-
dation data, the success of models in determining when 
parturition occurred cannot be confirmed or quantified. 
Even when validation data are available, it is important to 
define a successful model outcome that is relevant to the 
objective (e.g., post hoc identifying parturient individu-
als vs locating a birthing site in real time). A pre-deter-
mined definition of success relevant to the ecological or 
logistical issue at hand allows researchers to objectively 
judge the performance of the proposed approach. Valida-
tion and model success are important to incorporate as 
movement metric and location-based change represent 
hypotheses about how individuals behave at parturition, 
and a direct comparison between the two behaviors has 
not been made.

To address these hypotheses, we developed two 
change-point models that capture different parturition-
related changes in movement behavior: a location-based 
model and a movement metric-based model to identify 
the timing of these events. Comparing the two manifes-
tations of behavioral shifts is important as a change in 
physical locations does not necessarily result in a change 
in movement metrics, and vice versa. For example, relo-
cating a core area can be achieved without a detectable 
change in movement metrics, such as step lengths (the 
straight-line distance between two points) and turning 
angles (the change of direction between three successive 
steps). Meanwhile, the geographic location of the core-
use area may not change, but if the core area becomes 
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smaller post-parturition, then quantities such as step 
length and turning angle must necessarily change.

To test the ability of our change-point models to detect 
single behavioral shifts, such as parturition, we con-
ducted a simulation study in which we varied the sam-
pling effort (duration and frequency of observations). We 
used the simulation study to determine the optimal sam-
pling efforts for detecting behavioral events that mani-
fest as either a change in home-range location or derived 
movement metrics. We then applied our models to a case 
study of two ungulate species, white-tailed deer (Odo-
coileus virginianus) and Rocky Mountain elk (Cervus 
canadensis nelsoni), to test proposed hypotheses about 
parturition-related behavior in individual ungulates with 
known timing of parturition events. Species-specific 
behavior may result in different models being better at 
detecting parturition-related changes in movement [44] 
and there may be large amounts of individual variation in 
movement behavior [54]. Our research contributes not 
only to our understanding of among-species variation in 
parturition-related movement behavior but also provides 
guidance for researchers interested in determining the 
timing of single behavioral change events.

Methods
Modeling framework
The location-based and movement metric-based change-
point models used the same structure, in which the 
observation at time t ( t = 1, . . . ,T  ) arose from a mixture 
of two distributions, detailed further in Additional file 1: 
Appendix A. By using a spike and slab prior [36], the 
model could fail to detect a change, which would mean 
the change point (τ) was set to zero and the observations 
would only arise from one of the two distributions. When 
a change was detected, the change point ( τ ) was modeled 
as a uniformly distributed categorical random variable 
with a span from 1 to T, where T is the total number of 
observations for an individual.

All models were fit to the simulation and case study 
data using program R [51] and the NIMBLE package 
[23]. We made inference on 200,000 Markov chain Monte 
Carlo (MCMC) iterations following a burn-in period of 
100,000 iterations and thinned to every four iterations. 
We determined convergence through a visual check of 
posterior distributions and the Geweke diagnostic ( >|2| 
was not converged,  [30]). For individuals that did not 
converge under these conditions, we refit the models 
using 500,000 MCMC iterations following a 250,000-iter-
ation burn-in period and thinned every four iterations. 
We used a single chain due to the possibility of label-
switching, which does not change the estimated param-
eters but complicates combining inference across chains 

[39].  If multiple chains are desired, one could prevent 
label switching by restricting mean parameters across the 
two states relative to each other through a set prior.

Location‑based change‑point model
The Location-based Change-Point Model (LCPM) is 
based on the 2-dimensional spatial location of the indi-
vidual at time step t ( yt ). To facilitate setting priors, we 
centered the easting and northing for each individual 
according to their respective means. This allowed us to 
use a single value, 0, as the mean location for all indi-
viduals spread across Pennsylvania. The locations were 
distributed as a mixture of two multivariate normal 
distributions

The multivariate normal distributions were param-
eterized by their time-varying expected location in space 
( ηti, for i = 1, 2 ), which varied depending on the rela-
tive value of the time step to the change point (pre- or 
post-change state) and a covariance matrix ( � ). We mod-
eled � = σ 2I where the prior for σ was modeled as Uni-
form(0,  107), which did not vary depending on the state. 
To model the expected location at each time step, we 
used an autoregressive model of order one (AR(1)) where 
the location at time t, ηt. , depended on the location at 
time t − 1, yt−1 , but also included an attractor around a 
central location µi, for i = 1, 2  to account for stationar-
ity around a geographic centroid:

Each geographic centroid, which is the component 
that varied between the two states, was modeled as 
µi ∼ N

(

0,�µI
)

 for i = 1, 2, where �µ = 5000*I. The 
degree of autocorrelation was estimated via the propa-
gator matrix, M = ρI , where ρ is the autocorrelation 
parameter and has support of -1 to 1. While M acts 
directly on the previous location, it also indirectly affects 
the impact of the geographic centroid. As ρ approaches 
one, the model simplifies to an "intrinsic" conditional 
autoregressive model (ICAR; [35]), because (I− ρI) 
goes toward zero and nullifies the attractor (Fig.  1a). In 
contrast, when ρ approaches zero, the location at time t 
becomes less dependent on the location at time t − 1 and 
more dependent on the location of the attractor (Fig. 1b).

Preliminary results indicated that the autocorrelation 
parameter did not vary between states; therefore, we 

(1)
yt ∼

{

N
(

ηt1,�
)

if t < τ

N
(

ηt2,�
)

if t ≥ τ

τ ∼ Categorical(ψ).

(2)
ηt1 = M∗y′t−1 + (I−M)∗µ′

1

ηt2 = M∗y′t−1 + (I−M)∗µ′

2.
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used a single autocorrelation parameter, ρ, arising from 
a Uniform(0, 0.8) prior, which allowed for positive auto-
correlation while enforcing some dependence on a geo-
graphic centroid.

Movement metric‑based change‑point model
In the Movement Metric-based Change-Point Model 
(MMCPM), the observations of interest were turning 
angles and step lengths. Turning angles and step lengths 
are metrics widely used to characterize behavioral states 
in animal movement modeling [45, 47]. Turning angles 
capture tortuosity, and step lengths capture movement 
speed (given consistent time between observations). As 
above, we used τ to represent the change point across the 
models for turning angles and step lengths. We specified 
the turning angle at time t as

The wrapped Cauchy distribution was parameterized 
using location ( γi for i = 1, 2 ), and scale ( κi for i = 1, 2 ), 
which varied depending on the current state (pre- or 
post-change) at time t . We used the wrapped Cauchy 

(3)at ∼

{

wrapped Cauchy(γ1, κ1) for t < τ

wrapped Cauchy(γ2, κ2) for t ≥ τ
.

distribution to describe turning angles because it is a 
circular distribution, similar to a wrapped normal or 
von Mises distribution, but allows for the distribution 
to become uniform on a circle [35], as the scale param-
eter approaches zero, which would mean an individual is 
equally likely to move in any direction. To match the sup-
port for turning angles, which is in radians, the prior for 
the location parameter was modeled as Uniform(−π,π ), 
and the prior for the scale parameter was modeled as 
Uniform(0, 1).

The model for step length followed the same mixture-
model structure; however, we found that different distri-
butions were needed to describe the movements of deer 
and elk. We modeled elk step lengths as

The Weibull distribution was parameterized using 
shape ( αi for i = 1, 2 ), and scale ( βi for i = 1, 2 ) param-
eters, which varied depending on the current state at 
time t . The prior for the shape parameter was modeled as 
Gamma(0.001, 0.001), and the prior for the scale param-
eter was modeled as Uniform(0, 50). However, we found 

(4)selk,t ∼

{

Weibull(α1,β1) for t < τ

Weibull(α2,β2) for t ≥ τ
.

Fig. 1 An illustration of two possible movement trajectories. We simulated a two-dimensional AR(1) process, described in Eq. (2), 
with the geographic centroids arising from a mean of c(0,0). In panel a we fixed the autocorrelation parameter, ρ, to 0. Under these circumstances, 
the locations are heavily influenced by the geographic centroid. In panel b we fixed ρ to 1, and the expected value of a location is based 
on the location at the previous time step with no attraction to the geographic centroid



Page 5 of 15Gundermann et al. Movement Ecology           (2023) 11:65  

that the Weibull distribution did not adequately capture 
deer step lengths. The Weibull distribution tended to 
attribute the true parturition event to single observations 
of large step lengths that were interspersed throughout 
the observation period. These observations occurred 
more frequently in the deer dataset, which necessitated 
a less flexible model for step lengths. We instead used an 
exponential distribution such that

where the exponential distribution was parameterized 
by rate ( �i for i = 1, 2 ), which varied depending on the 
current state at time t and arose from a Gamma(0.001, 
0.001).

Simulation study
We first  conducted a simulation study to determine if 
our proposed change-point models were able to detect 
behavioral shifts. We addressed three study design ques-
tions focused on a model’s ability to detect the timing of 
the change correctly: the duration of observation follow-
ing the event occurring, the fix interval, and the magni-
tude of change or consistency of change in geographic 
location or movement metrics, respectively (Additional 
file 2: Appendix B Tables S1, S2).

We were interested in these varying data scenarios 
given the range of objectives related to identifying a 
behavioral change. One objective may be to use incoming 
location data to decide when to initiate neonate search 
efforts because chances of capture decline with increased 
time after parturition [12]. Another objective may only 
be to determine parturition dates and locations post hoc. 
Each objective may require different monitoring strate-
gies that vary in the frequency of locations and dura-
tion of monitoring. Therefore, if our models could detect 
behavioral shifts successfully, we wanted to provide guid-
ance on estimating parturition solely from location data.

Simulating data
To simulate location data and movement metrics, we 
chose reasonable values given our observed data (Addi-
tional file 2: Appendix B Tables S3, S4). For example, we 
simulated data with ρ fixed at 0.8, similar to preliminary 
estimates of the autocorrelation parameter among elk 
and deer in our case study.

To assess the effect of the duration of data obtained 
after the behavioral change, we simulated fifty complete 
datasets that contained locations 48 h prior to and after 
the change with a 15 min fix interval. We created addi-
tional truncated datasets from the complete dataset with 
post-change monitoring durations of 24, 12, 6, and 3  h 

(5)sdeer,t ∼

{

Exp(�1) for t < τ

Exp(�2) for t ≥ τ

(50 datasets each). To assess the effect of fix interval, we 
again simulated fifty complete datasets that contained 
locations 48  h prior and 24  h post-parturition with a 
15 min fix interval. We thinned each complete dataset to 
both 30  and 60 min fix intervals.

A larger variation in observations and a smaller differ-
ence between the two states may make it more challeng-
ing to determine when the event of interest occurred. For 
the MMCPM, we determined four ways in which a dif-
ference in behavior might manifest: one with no change 
in step lengths or turning angles between pre-and post-
parturition, one with a change in turning angles but 
not step lengths, one with a change in step lengths but 
not turning angles, and one with a change in both step 
lengths and turning angles. We simulated fifty datasets 
for each of these movement scenarios. For the LCPM , we 
used the largest difference between the estimated geo-
graphic centroids among individuals, as described above, 
and systematically decreased the difference to 75, 50, and 
25% of the original distance (784.5, 523.0, and 261.5  m, 
respectively). We simulated fifty datasets for each of the   
aforementioned differences with a fix interval of 15 min 
and 48 h of data pre-and post-parturition.

Model assessment
We first assessed if either LCPM or MMCPM detected 
a change point by calculating the mode of the posterior 
distribution of τ . The spike and slab prior for  τ allowed 
the model to be described by a single value if τ was esti-
mated to be the spike (set to zero). Therefore, a poste-
rior mode of zero for τ indicated that the models failed 
to detect a behavioral change. Given the mode was not 
zero, we then assessed the ability of each model to esti-
mate the timing of parturition events for each simulated 
data set. For both models, we subtracted the true timing 
of the behavioral change from the posterior distribu-
tion of τ . If the new posterior distribution was positive, 
our models overestimated the change point, and the 
true event occurred prior to the estimated change point. 
If this difference was negative, the true event occurred 
after the estimated change point. To quantify model 
accuracy, we a priori defined three levels of success for 
the models to accurately estimate the parturition event. 
A Level 1 success occurred when the upper and lower 
bounds of the 95% credible interval (hereafter CI) of the 
estimated change point both fell within ± 6 h of the true 
event. A Level 2 success occurred when the 50% CI fell 
within ± 6 h of the true event. A Level 3 success occurred 
when the posterior median fell within ± 6  h of the true 
event. If the upper and lower bounds of the 95% CI did 
not fall into one of the three levels of success, we consid-
ered this as an unsuccessful estimation of a change point. 
We chose 6  h as the window of interest to ensure the 



Page 6 of 15Gundermann et al. Movement Ecology           (2023) 11:65 

models could accurately capture the behavioral change 
at a fine scale. In the case study, we calculated the width 
of the 95% credible interval quantiles (hereafter quan-
tile width) from the posterior distribution of the change 
point as a measure of estimate precision.

Case study
Data collection and processing
The Pennsylvania Game Commission and the Pennsyl-
vania State University captured 17 deer from January to 
April 2015–2017 and 37 elk from January to April 2020 
in north-central Pennsylvania. Study area details can be 
found in Additional file  1: Appendix A. Adult females 
were fit with a vaginal implant transmitter (VIT; Vec-
tronic Aerospace, Berlin, Germany) and a GPS satellite 
radio collar (GPS Plus, Vectronic Aerospace, Berlin, Ger-
many). Deer and elk were handled according to protocols 
approved by The Pennsylvania State University Institu-
tional Animal Care and Use Committee (Protocol No. 
47054 and Protocol No. 01185). Further information on 
animal capture and data collection can be found in Addi-
tional file 1: Appendix A.

Our focus was on parturition events; therefore, we 
extracted individual location data from 3  days prior to 
and 4 days following the known parturition event (8 days 
total). We explored other pre- and post-parturition dura-
tions and found comparable results across durations [20, 
48]. Because locations were not obtained at the same 

fix interval across study areas and years, we used the 
continuous-time functional movement model of Buder-
man et  al. [11], fit using the ctmcmove R package [32], 
to interpolate locations to hourly intervals. All locations 
were in Universal Transverse Mercator (zone 17) easting 
and northing coordinates, and for the LCPM, we cen-
tered each individual’s locations to their mean to more 
easily facilitate determining priors. We calculated step 
lengths and turning angles using the amt R package [55].

Results
Simulation study
Location‑based change‑point model
The LCPM estimated a change point according to a Level 
1 success for all datasets for each variation of post-partu-
rition observation duration (Fig. 2, Table 1).

When we compared fix intervals, the LCPM estimated 
the change point according to Level 1 success for all the 
datasets when the fix interval was 15  min. However, 
when the datasets were thinned to 30  min and 60  min 
intervals, the LCPM did not estimate the change point as 
accurately (Fig. 3, Table 1).

Finally, for comparing the magnitude of change 
between pre- and post-parturition, the LCPM estimated 
the change point according to a Level 1 success for over 
90% of the simulated datasets when the geographic 
centroids were 100%, 75%, and 50% of the maximum 
observed distance. Once the distance was reduced to 25% 

Fig. 2 Fifty complete datasets of 48 h pre-and post-parturition at 15 min fix intervals were trimmed to 24, 12, 6, and 3 h of post-parturition 
data and fit to the Location-based Change-Point Model (LCPM; red) and Movement Metric-based Change-Point Model (MMCPM; blue). Gray, 
dashed lines represent ± 6 h of the true parturtition event. Gray rectangles represent simulations that did not detect a change, and red rectangles 
represent simulations that did not converge
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of the maximum observed distance, LCPM estimated the 
change point according to a Level 1, Level 2, and Level 
3 14%, 24%, and 4% of the time respectively and did not 
successfully detect a change point in 56% of the datasets 
(Fig. 4, Table 1).

Movement metric‑based change‑point model
For differing post-parturition observation durations, the 
MMCPM estimated the change point according to Level 
1 success for at least 90% of the datasets when there was 
at least 12 h of post-parturition data. However, once the 
observations were truncated to 6 and 3  h of data post-
change, the ability of the MMCPM to estimate these 
changes decreased (Fig. 2, Table 2).

Table 1 Summary of our simulation study results (in percentages) for three design questions focusing on ability of the Location-based 
Change Point Model (LCPM) to correctly detect the timing of the change for and the magnitude of change in geographic locations 
(magnitude), duration of observation following the event occurring (duration), and fix interval (frequency)

We simulated 50 datasets for each of these and summarized results based on a priori levels of success, whether no change point was detected, or lack of convergence

Category Magnitude Duration Frequency

100% 
Difference

75% 
Difference

50% 
Difference

25% 
Difference

48 H 24 h 12 h 06 h 03 h 15 min 30 min 60 min

Level 1 100 98 94 14 100 100 100 100 100 100 8 –

Level 2 – 2 – 24 – – – – – – 92 –

Level 3 – – 6 4 – – – – – – – –

Not successful – – – 56 – – – – – – – –

No change detected – – – 2 – – – – – – – 100

Did not converge – – – – – – – – – – – –

Fig. 3 Fifty datasets of 48 h pre- parturition and 24 h post-parturition at a 15 min fix rate were thinned to 30 min and 60 min fix interval and fit 
each to the Location-based Change-Point Model (LCPM; red) and Movement Metric-based Change-Point Model (MMCPM; blue). Gray, dashed line 
represents ± 6 h of the true parturtition event. Gray rectangles represent simulations that did not detect a change. When thinned to a 60 min fix 
interval, LCPM did not detect a change point in any of the simulations. Note different scales for the y-axis



Page 8 of 15Gundermann et al. Movement Ecology           (2023) 11:65 

When comparing the fix interval, the MMCPM esti-
mated the change point according to a Level 1 success 
in 98% of datasets when the fix interval was 15 and 
30 min. Once the fix interval was thinned to 60 min, the 
MMCPM slightly decreased in accuracy and estimated 
the change point according to Level 1 success in 90% of 
datasets (Fig. 3, Table 2).

Finally, when comparing the magnitude of change 
between pre- and post-event, the MMCPM performed 
best when a change in both step lengths and turning 
angles or just turning angles was present. In these scenar-
ios the MMCPM estimated the change point according 
to Level 1 success for at least 98% of the datasets. When 
there was only a change in step lengths, the MMCPM did 
not detect a change occurred in 92% of datasets. When 
there was no change in either movement metric, the 

Fig. 4 We simulated 50 datasets for varying distances between geographic centers (1026.0, 784.5, 523.0, and 261.5 m, respectively) and fit each 
to the Location-based Change-Point Model (LCPM; red). Gray, dashed lines represent ± 6 h of the true parturtition event. Gray rectangles represent 
simulations that did not detect a change, and red rectangles represent simulations that did not converge. Note different scales for the y-axis

Table 2 Summary of our simulation study results (in percentages) for three design questions focusing on ability of Movement Metric-
based Change-Point Model (MMCPM) to correctly detect the timing of the change for and the magnitude of consistency of change in 
movement metrics (step lengths and turning angles, SL and TA, respectively; magnitude), duration of observation following the event 
occurring (duration), and fix interval (frequency)

We simulated 50 datasets for each of these and summarized results based on a priori levels of success, whether no change point was detected, or lack of convergence

Category Magnitude Duration Frequency

Difference 
in SL and TA

Difference 
in TA

Difference 
in SL

No difference 48 h 24 h 12 h 06 h 03 h 15 min 30 min 60 min

Level 1 100 98 – – 100 100 88 64 44 98 98 92

Level 2 – – 8 – – – – – 2 – – 4

Level 3 – – – – – – – – – – – –

Not successful – – 10 2 – – – – – – – 4

No change detected – 2 82 96 – – 12 36 54 2 2 –

Did not converge – – – 2 – – – – – – – –
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MMCPM did not detect a change in 92% of the datasets 
(Fig. 5, Table 2).

Case study
Location‑based change‑point model
For deer, the LCPM did not consistently estimate 
when a change in geographic locations occurred. For 
eight of 17 individuals, the LCPM failed to detect a 
change in geographic locations. Of nine individuals 

Fig. 5 We simulated 50 datasets for four movement-metric situations, a difference in both turning angle and step lengths, a difference in just step 
lengths, a difference in just turning angles, and no difference in either before or after the change point and fit each to the Movement Metric-based 
Change-Point Model (MMCPM; blue). Gray, dashed lines represent ± 6 h of the true parturtition event. Gray rectangles represent simulations that did 
not detect a change, and red rectangles represent simulations that did not converge. Note different scales for the y-axis

Table 3 Summary of the number of individuals of white-tailed deer (Odocoileus virginianus) and Rocky Mountain elk (Cervus 
canadensis nelsoni; n = 17 and 37, respectively) for which the Location-based Change-Point Model (LCPM) detected a change or not

If a change was detected, we calculated the 95% credible interval quantile width of the change point and averaged it within each species and level of success

Species Change point detected Level of success Number of individuals Average 95% 
CI quantile 
width

Deer Yes Level 1 0 –

Level 2 1 29

Level 3 1 79

Not successful 7 76.714

No – 8 –

Did not converge – 0 –

Elk Yes Level 1 0 –

Level 2 0 –

Level 3 0 –

Not successful 37 16.875

No – 0 –

Did not converge – 0 –
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for which the model detected a change, the LCPM 
estimated the change point according to a Level 2 suc-
cess for one individual (average quantile width 29) and 
a Level 3 success for one (average quantile width 79; 
Table  3, Additional file  2: Appendix B Table  S3 and 
Fig. S1).

For elk, the LCPM detected a change in all 37 indi-
viduals (Table 3, Additional file 2: Appendix B Table S3, 
Fig. S2). Although no individuals met the criteria for our 
pre-defined levels of success, the model consistently esti-
mated the change point between 36 and 12 h prior to the 
true parturition event (Additional file 2: Appendix B Fig. 
S2). In 25 individuals the 95% CI of the posterior distri-
bution occurred within 36 to 12 h prior to true parturi-
tion (quantile width 4.64) and in four individuals, the 50% 
CI occurred within this range (quantile width 9.5; Fig. 6, 
Additional file 2: Appendix B, Fig. S3).

Movement metric‑based change‑point model
The MMCPM failed to converge for two deer, which 
were removed from the analysis. For 15 deer on which 
we made inference, the MMCPM did not detect a change 
point in nine individuals. In six individuals the MMCPM 

estimated that a change occurred, but none met the a pri-
ori categories of success (average quantile width 47.167; 
Table 4, Additional file 2: Appendix B Fig. S4).

We also observed large credible intervals, many span-
ning the support of the change point, and multi-modal 
posterior distributions (Additional file  2: Appendix B, 
Table S4, Fig. S4).

The MMCPM detected a change point in all 37 elk. 
Although 27 individuals did not meet one of the three 
a priori levels of success, many observed credible inter-
vals were small (average quantile width 8.615) and in 24 
individuals the 95% credible intervals of the estimated 
change point fell within the 24 h prior to the known par-
turition event (average quantile width 4.83; Fig. 7, Addi-
tional file 2: Appendix B, Table S4, Fig. S5). Six elk were 
classified as a Level 1 success, (average quantile width 
5.2), three individuals were classified as a Level 2 success 
(average quantile width 11) and the remaining individu-
als was classified as a Level 3 success (average quantile 
width 18; Table 4, Additional file 2: Appendix B Table S4, 
Fig. S5). We observed multi-modal posterior distribu-
tions in some elk. However, the spans of the posterior 

Fig. 6  Results of the Location-based Change-Point Model (LCPM) fit to Rocky Mountain elk (Cervus canadensis nelsoni). For the 37 for which 
the LCPM detected a change we present the posterior distribution of the estimated change point centered on the known parturition event. The 
vertical, red dashed line represents 36 and 12 h prior to the known parturition event. Blue histograms represent individuals in which the 95% 
credible interval fell within this time frame
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Table 4 Summary of the number of individuals of white-tailed deer (Odocoileus virginianus) and Rocky Mountain elk (Cervus 
canadensis nelsoni; n = 17 and 37, respectively) for which the Movement metric-based Change-Point Model (MMCPM) detected a 
change or not

If a change was detected, we categorized the ability of the model into three a priori levels of success based on the posterior distribution of the difference of the 
estimated change point and known parturition. Additionally, we calculated the 95% credible interval (CI) quantile width of the change point and averaged it across 
each species and level of success

Species Change point detected Level of success Number of individuals Average 95% 
CI quantile 
width

Deer Yes Level 1 0 –

Level 2 0 –

Level 3 0 –

Not successful 6 47.167

No – 9 –

Did not converge – 02 –

Elk Yes Level 1 6 5.2

Level 2 3 11

Level 3 1 18

Not successful 27 8.615

No – 0 –

Did not converge – 0 –

Fig. 7 Results of the Movement Metric-based Change-Point Model (MMCPM) fit to Rocky Mountain elk (Cervus canadensis nelsoni). For the 37 
for which the MMCPM detected a change, we present the posterior distribution of the estimated change point centered on the known parturition 
event. The vertical, red dashed lines represents 24 h prior to the known parturition event. Blue histograms represent individuals in which the 95% 
credible interval fell within this time frame
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distributions were small and six individuals were classi-
fied as a success (Additional file 2: Appendix B Figs. S5, 
S6.)

Discussion
We developed a general Bayesian framework for fitting 
change-point models that can describe two likely mani-
festations of movement-related changes in behavior: 
changes in physical locations [49, 53] and movement 
metrics [26, 43]. Results from our simulation study indi-
cated that changes related to parturition in ungulates 
could be detected in the absence of auxiliary validation 
data (e.g., VITs) given that individuals actually exhibit 
a change in location or movement behavior, therefore, 
depending on parturition detection objectives and indi-
vidual behavior, our models can be used to reduce costs 
associated with current partition-detection methods.

Through our simulation study, we demonstrated that 
successful detection of a change point was possible, and 
we determined optimal data collection for when an indi-
vidual exhibits the behavioral change described in the 
models. Due to constraints imposed by the battery power 
of telemetry devices, researchers must make a trade-
off between observation frequency (fix interval) and the 
duration of observation. The balance between fix interval 
and the duration of observation is essential when con-
sidering movement behavior because quantities, such as 
mean, maximum, and total distance moved, will vary as 
a function of fix interval [50]. Although temporally fine-
scale data may identify behavioral changes soon after 
they occur, the increased frequency will lead to decreased 
battery life [46].

Given these potential sources of variation in the detec-
tion of a change point, our simulation study evaluated the 
ability of our two models to detect a given change under 
varying post-event sampling durations, fix intervals, and 
magnitude of behavioral changes. We determined suc-
cessful detection of a change point was possible given 
a 15 min fix interval, at least 3 h of observation follow-
ing a change for LCPM and at least 12  h for MMCPM. 
Moreover, for the MMCPM, successful detection of a 
behavioral change can occur  with a 60  min fix rate and 
at least 24 h of observation following a change. The suc-
cess of our simulation study  demonstrates that when 
behavior follows the dynamics proposed by the two mod-
els, researchers can detect the timing of true behavioral 
change with current technology.

When we applied our change-point models to two 
ungulate species, not all individuals within a species 
exhibited movement behaviors captured by the models. 
This could be due to large behavioral variation across spe-
cies and individuals. For deer, the LCPM failed to detect 
a change in a majority of the individuals and the ability to 

estimate a change was not consistent among individuals. 
These results indicate deer are not consistently changing 
their locations prior to or during parturition. In over 50% 
of the elk, however, the LCPM consistently identified and 
estimated a change within 12–36 h of parturition (Fig. 6, 
Additional file 2: Appendix B Fig. S3). Previous research 
has shown that elk may alter the locations they use prior 
to parturition as a potential predator avoidance strategy 
[29], and our models support this behavior by consist-
ently estimating the parturition event 36–12  h prior to 
the true event.

Much like the LCPM, the MMCPM could not con-
sistently or accurately estimate parturition events in 
deer. The failure of the MMCPM to capture parturi-
tion behavior of deer could be due to brief behavio-
ral changes that are not able to be detected by the 
MMCPM. For example, females have been observed 
moving their fawns to a second location within 3 to 24 h 
after parturition and will only re-visit these secondary 
locations briefly at dawn and dusk to nurse [22]. While 
elk may exhibit a more detectable change in movement 
behaviors in the 24 h leading up to the birthing event. 
Thus, movement metrics, like step lengths and turn-
ing angles, may be more readily differentiated between 
pre-and post-parturition movements in elk than deer. 
Lack of success across deer in our case study indicates 
that, despite prior support in the literature, deer do not 
consistently follow the dynamics described by the two 
models, while elk do [18, 60]. Therefore, validation data 
on the event of interest should be used to determine if 
these models are a viable tool to identify the timing of 
an event of interest [10].

Based on change point analysis of telemetry data from 
the mother, locating neonates in real-time is unlikely to be 
successful given individual variation [54] and the poten-
tial absence of detectable behavioral changes. Addition-
ally, our simulation study indicated the MMCPM would 
not be ideal for identifying parturition events in real time 
given that this model needs at least 12  h of post-partu-
rition data to identify the change and additional time to 
mobilize and find the neonate. In combination with our 
results from the case study, the change in movement 
metrics was exhibited in the 24 h preceding the parturi-
tion event. The time needed for the MMCPM to detect 
behavioral changes would lead to decreased success of 
locating the neonate as time from parturition increases 
[12]. The LCPM, however, needs only 3 h of post-partu-
rition data to identify behavioral change. If the change 
occurs prior to parturition, managers and researchers 
could be alerted ahead of time to a possible parturition 
event. After the behavioral change is detected, personnel 
could identify clusters of data points that might indicate a 
parturition event has occurred in real-time. For example, 
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in our case study of elk, LCPM consistently underesti-
mated the timing of parturition, which means that female 
elk initiated a move to the calving site 12–36  h before 
parturition (Fig. 6, Additional file 2: Appendix B Figs. S3, 
S4). The identified change point could be an indicator to 
initiate monitoring of the spatial distribution of the loca-
tions and begin preparing for a neonate search. Some col-
lar manufacturers currently offer features such as virtual 
fencing, where researchers are notified when a collared 
individual exits or enters a preset polygon. Used in com-
plement with LCPM this feature could aid in monitor-
ing a collared individual following the change point. If 
managers and researchers are not interested in locating 
the neonate, but rather identifying the timing and loca-
tion of parturition events (and the associated resources), 
MMCPM or LCPM could be used. The MMCPM can 
identify behavioral changes with less frequent data than 
the LCPM, which could extend the transmitter’s battery 
life [9].

It is important to be cautious when assigning behav-
iors or events of interest from the change point estimated 
by a model [10]. The change-point framework simply 
detects when the most probable generating distribution 
transitions from one state to another. Researchers must 
use their ecological knowledge and expertise to apply 
biological significance to the estimated change. Wild ani-
mals are navigating a complex environment, and many 
unobserved variables, such as human activity [16], inter-
actions with predators [27], or injury [19], can result in 
changes to movement behavior. For example, we detected 
several individuals for which the posterior distribution of 
the change point was bimodal (Additional file 2: Appen-
dix B Fig. S7). Ecologically, this may indicate that multi-
ple behavioral changes, potentially including parturition, 
occurred within the timeframe of interest. Incorrectly 
assigning a transition between statistical distributions 
to an event could lead to incorrect inference about the 
ecological process of interest [10]. Validation data can 
reduce erroneous behavioral assignments, but it is time-
consuming and requires extensive resources.

However, when a behavioral change event is known to 
occur, our two change-point models successfully identi-
fied it under different monitoring and ecological sce-
narios. Therefore, these models could be used to identify 
the timing of parturition events, but only if the methods 
have been validated a priori. These methods and guid-
ance can be applied in the future to other systems where 
single behavioral change occurs, such as migration, natal 
dispersal, or survival of offspring. Our change-point 
models provide a valuable tool for wildlife managers and 
researchers to monitor vital rates for populations of man-
agement and conservation interest.
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