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Abstract 

Background Animals of many different species, trophic levels, and life history strategies migrate, and the improve-
ment of animal tracking technology allows ecologists to collect increasing amounts of detailed data on these 
movements. Understanding when animals migrate is important for managing their populations, but is still difficult 
despite modelling advancements.

Methods We designed a model that parametrically estimates the timing of migration from animal tracking data. 
Our model identifies the beginning and end of migratory movements as signaled by change-points in step length 
and turning angle distributions. To this end, we can also use the model to estimate how an animal’s movement 
changes when it begins migrating. In addition to a thorough simulation analysis, we tested our model on three data-
sets: migratory ferruginous hawks (Buteo regalis) in the Great Plains, barren-ground caribou (Rangifer tarandus groen-
landicus) in northern Canada, and non-migratory brown bears (Ursus arctos) from the Canadian Arctic.

Results Our simulation analysis suggests that our model is most useful for datasets where an increase in movement 
speed or directional autocorrelation is clearly detectable. We estimated the beginning and end of migration in cari-
bou and hawks to the nearest day, while confirming a lack of migratory behaviour in the brown bears. In addition 
to estimating when caribou and ferruginous hawks migrated, our model also identified differences in how they 
migrated; ferruginous hawks achieved efficient migrations by drastically increasing their movement rates while cari-
bou migration was achieved through significant increases in directional persistence.

Conclusions Our approach is applicable to many animal movement studies and includes parameters that can facili-
tate comparison between different species or datasets. We hope that rigorous assessment of migration metrics will 
aid understanding of both how and why animals move.
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Introduction
Migration is one of the most widespread and important 
ecological processes within the animal kingdom [6, 19]. 
The process occurs in countless animal taxa and has 
evolved convergently many times [34, 75, 80]. Owing in 
part to this convergent evolution, migration is a diverse 
process, occurring across a wide variety of temporal and 
spatial scales [1, 9, 26, 47]. Understanding how and why 
animals migrate is important for advancing ecological 
theory but understanding where these animals are going, 
and when they get there, facilitates effective management 
of their populations [52, 66]. As the environment changes 
rapidly and unprecedentedly, the migratory patterns of 
many animals have changed in response, particularly 
with respect to their spatial and temporal extent [46, 91]. 
Modern tracking technology allows ecologists to collect 
animal location data at fine spatial and temporal resolu-
tions, creating opportunities to answer more complex 
questions pertaining to migration [53]. This influx of data 
describes the spatial extents of many animal migrations 
in detail. The temporal extent of migration is needed for 
phenological studies but is more difficult to quantify.

Ecologists have designed many approaches to iden-
tify the beginning and end of an animal’s migration [12, 
41, 87]. In some cases, the presence of ecological barri-
ers along an animal’s migratory route make the onset of 
migration easy to classify without explicit modelling [81]. 
For example, López-López et al. [62] analyzed the migra-
tory behavior of Eleonora’s falcons (Falco eleonorae) 
breeding on islands in the Mediterranean Sea, assuming 
their migrations began as soon as they left these islands. 
Statistical methods can estimate migration timings when 
simple heuristics cannot be defined as easily. There are 
many such methods but most of them fall within one of 
the following four categories [41]. Metric-based methods 
involve calculating secondary metrics from movement 
data (e.g., net squared displacement or NSD, the animal’s 
distance from its first recorded location). Classification 
methods typically involve manipulating or deriving the 
output of clustering algorithms, often with the assistance 
of machine learning, to assess significant changes in 
movement behaviour. Phenomenological methods treat 
location data as time series with some implicit periodic-
ity or variability and attempt to identify the timescale 
of this pattern. Mechanistic methods attempt to model 
the underlying process that cases the migration (e.g., as 
a biased random walk or range shift). Some models may 
have qualities that match more than one of these catego-
ries, and all of them can produce the same output: esti-
mated “change-points” that divide a path into migratory 
and non-migratory segments. These “path segmentation” 
analyses [21] can be applied at different time scales, from 
identifying area-restricted searching bouts in foraging 

animals [40, 97] to annual migration patterns [61, 63, 
67, 99]. Many path segmentation approaches couple a 
movement metric (e.g., NSD) with a change-point algo-
rithm that identifies changes in the distribution of this 
metric [21]. Change-point algorithms often use dynamic 
programming to efficiently and optimally segment time-
series data, which relies on assumptions that each seg-
ment displays behaviour unrelated to the others [54, 57, 
90]. This assumption may not hold for migrants, where 
we may expect separate migratory and/or non-migratory 
periods to exhibit similar patterns. Most (albeit, not all) 
path segmentation analyses also only use one metric to 
identify migration [21], potentially omitting information 
that could be useful in estimating the phenology of this 
complex process.

Identifying when animals migrate is difficult, and solv-
ing this problem has taken attention away from charac-
terizing how animals migrate in the process. Dingle and 
Drake [19] provide two separate definitions for migration 
in individual animals: a persistent period of direction-
ally autocorrelated (or straight) movement, and a period 
of movement ranging over an exceptionally large spatial 
extent. While these definitions are a broad generalization 
of the many diverse ways animals migrate, they suggest 
that characterizing the behavioral changes observed dur-
ing migration can elucidate important qualities about an 
animal’s ecology. Step lengths, the Euclidean distance 
between two consecutive tracked locations, and turning 
angles, the angle made by the animal’s turn during three 
consecutive tracked locations, describe distance and 
direction, respectively. By accounting for the temporal 
difference between tracked locations they can be used to 
evaluate an animal’s speed and tortuosity. Both of these 
metrics are widely used in movement ecology [4, 32, 68, 
92]. Both of the aforementioned definitions of migra-
tion imply movement between spatially disjoint regions 
[19], but we suggest that each definition is linked to step 
lengths and turning angles separately. The first definition 
of migration suggested by Dingle and Drake [19] relates 
to directional persistence, and could be quantified by a 
change in an animal’s turning angles, while the second 
definition relates to distance covered and could be quan-
tified by a change in an animal’s step lengths. A path seg-
mentation model that identifies simultaneous changes in 
two metrics (step lengths and turning angles) will allow 
ecologists to draw more biological context from migra-
tion data.

We designed a simple path segmentation model that 
identifies temporal changes in step lengths and turn-
ing angles calculated from discrete-time animal location 
data. We wanted to assess whether such a model could 
achieve this goal with as much accuracy, precision, and 
certainty as existing approaches. In situations when this 



Page 3 of 18Thompson et al. Movement Ecology            (2024) 12:1  

is true, we believe that our approach is advantageous 
due to its biologically relevant, easy-to-interpret model 
parameters. Our multi-metric change-point (MMCP) 
model quantifies the hypothesis that migration can be 
quantified by an abrupt change in an animal’s observed 
movement rates for a sustained temporal interval. Unlike 
most path segmentation approaches, which focus on one 
all-encompassing movement metric, our model estimates 
distributions for step lengths and turning angles con-
currently. We designed a likelihood-based method for 
identifying the optimal sequence of change-points (e.g., 
start and end of migration) and used a parametric boot-
strapping algorithm to generate confidence intervals for 
the parameter estimates. We compared our model to a 
variety of other approaches (metric-based, classification, 
phenomenological, and mechanistic) using a thorough 
simulation analysis inspired by Gurarie et  al. [41]. We 
also tested our model on three case studies: ferruginous 
hawks (Buteo regalis) in the Great Plains of central North 
America, and barren-ground caribou (Rangifer tarandus 
groenlandicus) and brown bears (Ursus arctos) in north-
ern Canada.

Methods
The model
Our modelling approach is designed for discrete-time, 
continuous-space tracking data that samples an animal’s 
movement path throughout the landscape. The model 
identifies a given number of migratory periods from the 
data by analyzing the step lengths and turning angles 
generated by the discrete-time data. Many models that 
attempt to identify change-points (including hidden 
Markov models, which are widely applied across ecology) 
do not estimate a fixed number of change-points. Typi-
cally, when working with migratory animals, the num-
ber of desired change-points is known a priori and as a 
result, change-point algorithms without a fixed number 
of change-points need to be adjusted using post-hoc 
tools. The number of migrations included in our model, 
c can be any positive integer, but for many single-year 
tracking datasets, identifying c = 2 unique migratory 
periods will be most biologically useful. We define the 
model first for c = 1 for simplicity. The model relies on 
step lengths and turning angles, which can be calculated 
from consecutive tracked animal locations or steps. The 
animal’s step length at time t, which we denote rt , is sim-
ply the Euclidean distance between its last two locations. 
Step lengths are an indicator of the distance an animal 
travels per time step, and turning angles indicate the 
directional persistence (or straightness) of movement 
[68]. The turning angle is the angle made between an ani-
mal’s current directional heading and its previous head-
ing. Smaller turning angles (closer to 0 or 2 π ) indicate 

straighter movement paths. The interpretation of these 
metrics depends heavily on the temporal resolution at 
which they are calculated, so it is necessary that move-
ment data be regularized to constant temporal intervals 
(i.e., every step lasts the same amount of time) before fit-
ting the model. Our model assumes that step lengths and 
turning angles are independent, which may not always 
be true in animal movement data [49]. We also do not 
explicitly account for temporal autocorrelation between 
step lengths and turning angles.

Step lengths and turning angles are well-studied and 
can typically be explained effectively using known distri-
butions, which we leverage for our model [3, 4]. We mod-
elled animal step lengths with an exponential distribution 
at all stages of movement, but during the animal’s migra-
tory stage, the parameter dictating the mean step length 
increases. We modelled turning angles with a von Mises 
distribution, where the angular concentration parameter 
increases during migration. Both of these distributions 
are not necessary for our model to work, and distribu-
tions with more parameters (e.g., gamma or Weibull for 
step lengths; [56]) or with a different shape (e.g., wrapped 
Cauchy for turning angles; [5]) could be substituted. 
When c = 1 , we assume there exist two temporal param-
eters t1 and t2 ( 0 < t1 < t2 ) that signal the start and end 
of migration, respectively. The likelihood function for 
any given point zt incorporates these conditions explic-
itly with model parameters t1 , t2 , ρ0 , ρ1 , κ0 , and κ1 . During 
the non-migratory period ( t < t1 or t > t2 ) the animal’s 
step length distribution is parameterized by ρ0 and the 
animal’s turning angle distribution by κ0 . The parameters 
ρ1 and κ1 represent the additional mean movement dis-
tance and angular concentration incurred during migra-
tion, respectively. We define the likelihood function for a 
single location zt as follows:

Here, I0(κ) is the modified Bessel function of order 0. The 
likelihood for a dataset consisting of T steps is calculated 
as the product of Eq.  2 for all zt ∈ {z1, ..., zT } . The ratio 
between the animal’s mean step length during and out-
side of migration approximates how much more quickly 
the animal moves when migrating. We denote this quan-
tity R = ρ1+ρ0

ρ0
.

If necessary, we can also expand the model to account 
for multiple migratory periods within one dataset. This 

(1)Imig (t) =
1 t1 < t ≤ t2
0 otherwise,

(2)

L(ρ0, ρ1, κ0, κ1, t1, t2|zt)

=
exp

[

(

−ρ0 − Imig (t)ρ1
)−1

rt +
(

κ0 + Imig (t)κ1
)

cosφt

]

(

ρ0 + Imig (t)ρ1
)(

2πI0(κ0 + Imig (t)κ1)
) .
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would necessitate the introduction of additional param-
eters t3, t4, ..., t2c−1, t2c for a model with c distinct periods 
of migratory movement. If c > 1 , Imig (t) would be 1 when 
t2n−1 < t ≤ t2n for any integer n ∈ {1, 2, ..., c} . Unique 
step length and turning angle parameters ( ρ2, ..., ρc and/
or κ2, ..., κc ) for each migratory period could be biologi-
cally realistic for some species. For any positive integers 
m and n, where m < n , the m-migration model is nested 
within the n-migration model; this can be verified by set-
ting all ρ and κ equal to each other and fixing all ti equal 
to each other for i > 2m.

Parameter estimation
Optimizing the likelihood function (Eq.  2) is difficult 
because the function is not continuous or differentiable 
with respect to temporal parameters t1 and t2 . However, 
when all ti parameters are fixed at a certain value, the 
function can be optimized easily. Since the step-length 
and turning-angle components of the likelihood func-
tion are independent the maximum likelihood estimates 
(MLE’s) for all ρi and κi values can be derived or approxi-
mated without the need for numerical optimization. The 
MLE for ρ0 is simply the mean of all step lengths from any 
timesteps t satisfying Imig (t) = 0 . The MLE for κ0 does 
not have a simple analytical expression, so we approxi-
mated it using the mle.vonmises function from the 
circular package of the R software [76], once again 
only considering turning angles calculated at timesteps 
where Imig (t) = 0 [2]. To estimate ρi and κi parameters 
corresponding to migratory periods, we calculated the 
same MLEs for these periods and subtracted ρ0 and κ0 , 
respectively. If either of these calculations produced 
negative numbers we replaced these estimates with 0, in 
line with the hypothesis that migration will be typified by 
faster and more directed movements. From these param-
eter estimates we calculated the optimal negative log-
likelihood (NLL) value for any set of change-points (i.e., 
ti values) using Eq. 2.

We designed a change-point algorithm that, given 
the NLL for any combination of ti values, searches effi-
ciently for the optimal change-points. Evaluating the 
NLL for every possible set of change-points, known as 
an “exhaustive search”, is an exact (i.e., guaranteed to find 
the optimal change-points) method but is extremely slow, 
especially as c increases. The algorithm employed by 
Lavielle [57], sometimes labeled as “optimal partitioning” 
[90], is exact and much more efficient, but only works for 
cost functions that can be calculated as a sum of inde-
pendent components for each segment of the time-series. 
When we calculate the NLL, we assume that many seg-
ments have the same parameter values so these param-
eters (e.g., ρ0 and κ0 ) have clear biological interpretations. 
Since these existing approaches do not work for our 

problem, we designed a change-point algorithm that does 
not require this independence and also searches much 
more efficiently than an exhaustive search. The algorithm 
relies on similar ti values producing similar NLL values; 
in other words, the NLL for (t1, t2) will not be very dif-
ferent from (t1 ± g , t2 ± g) , for some number g. If this is 
true, then identifying the lowest NLL along a (2c)-dimen-
sional grid of resolution g should determine the general 
region where the optimal ti values lie. This optimal region 
can then be searched more thoroughly (i.e., over a smaller 
grid) to find the optimal value. We suggest that iteratively 
cutting the grid size in half (i.e., grids of size g , g2 ,

g
4 , ... ) 

until reaching the desirable minimum grid size gm is the 
most efficient way to search the parameter space. When 
g is not a power of 2, truncating decimal places such that 
all grid sizes remain integers may be desirable. Our algo-
rithm is not exact but when the likelihood function is suf-
ficiently smooth across ti values it will identify the global 
optimum.

We set the initial grid size g to 14 days and tried sub-
sequently smaller grid sizes of 7 days, 3 days, and gm = 1 
day. The number of grids used and their respective reso-
lution depends on the temporal extent of the data as well 
as the desired precision with which one hopes to esti-
mate the ti parameters. For example, some animals may 
migrate in hours, which would necessitate using a mini-
mum grid size reflecting that scale. Our choice of gm = 1 
day provides valuable inference for large-scale migra-
tions and saves computational time that would be spent 
optimizing over finer grids. In other ecological systems, 
smaller minimum grid sizes may be necessary. For each 
grid, we identified the ti combinations that produced 
the five lowest NLL values and searched those optimal 
regions with the subsequent smaller grid; this accounts 
for parameter spaces with multiple local minima. We 
wrote the grid-search algorithm, which can loop over 
thousands of different ti values depending on the data, 
using the Rcpp R package, which seamlessly integrates R 
and C++ to increase computational efficiency [20].

We designed a parametric bootstrapping algorithm 
that estimates 95% confidence intervals (CI’s) for our 
model’s parameters. We cannot obtain CI’s using more 
standard methods (e.g., Wald-type estimations or likeli-
hood profiles) because the likelihood function includes 
Imig (t) , which is discontinuous and depends on the ti 
parameters. To generate CI’s for an individual migration, 
we simulated random paths with the same size and tem-
poral extent as the true migratory path. The number of 
random paths necessary to generate consistent CI’s may 
vary depending on the dataset. These simulated paths 
were generated using the likelihood function and param-
eterized based on the MLE for each of the model param-
eters from the true path. We then fit the model to each 
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of these paths independently and used the distribution 
of the parameter estimates from each random path to 
obtain CI’s (taking the 2.5% and 97.5% quantiles as lower 
and upper confidence bounds, respectively). The process 
of re-simulating data according to the estimated param-
eter values has been used to analyze time-series data for 
many purposes, including calculating CI’s [18, 55].

Simulation analysis
We assessed our model’s ability to identify the temporal 
extent of migration from three separate simulated move-
ment processes. We also used this simulation analy-
sis to compare our model to other approaches used for 
the same task. The analysis here is heavily inspired by 
Gurarie et  al. [41], as the paths we simulated for this 
analysis were generated from a nearly identical process 
to what was used there. Our simulation analysis included 
movement paths generated from three different models, 
each representing a potential mechanism for migration. 
All simulated paths lasted for 300 timesteps and con-
tained a migration starting at timestep 100 and ending 
at timestep 200. Paths generated from the “speed switch” 
model were simulated from a continuous-time corre-
lated velocity movement (CVM) model where the mean 
step length increased during migration. We also simu-
lated paths from a CVM where speed remained constant 
but the timescale of autocorrelation, which influences 
movement directionality, increased during migration. 
This “timescale switch” model produced migratory 
paths while retaining a constant step length distribution 
throughout the process. The final set of paths were gen-
erated from a discrete biased correlated random walk, 
where the average speed and directionality of move-
ment remained constant but the spatial location of bias 
changed at the beginning of migration. This “bias switch” 
model produced migratory paths without any explicit 
changes in the step length or turning angle distributions 

of the paths. We generated 50 random realizations of 
each process using the waddle R library designed by 
Gurarie et  al. [41]. For the speed and timescale switch 
models, we simulated paths using the multiCVM func-
tion, and for the bias switch, we used the multiBCRW  
function. See Table 1 for the exact parameter values used 
for each set of paths.

The functions provided by the waddle library pro-
duce complete paths with locations at evenly spaced 
timesteps, but real-life animal location data often come 
with timesteps in which locations are missing [33, 78]. 
We manually removed locations from each path with a 
probability of 112 for each location. Location error is also 
a part of most animal tracking datasets, and even small 
errors can be magnified when calculating step lengths 
and turning angles [50, 51]. We jittered the x and y coor-
dinates of every location in each path by a random num-
ber drawn from a Gaussian distribution with mean 0 and 
variance σe . We ran the full suite of simulation analyses 
for σe = 0, 1, and 25.

We fit seven different models, including ours, to each of 
the 150 simulated paths and compared each model’s esti-
mates for the beginning and end of migration (referred 
to as t̂1 and t̂2 ). While not exhaustive, owing to the large 
number of approaches used for this goal, our set of mod-
els includes a wide variety of mathematical approaches 
that leverage different metrics and quantities derived 
from animal movement data [21, 41]. We compared our 
model to the following six approaches: the non-linear 
regression model from Bunnefeld et al. [10] that assesses 
patterns in net squared displacement (NSD) over time; 
the first passage time (FPT) approach used by Le Corre 
et al. [58]; a Bayesian piecewise regression approach with 
NSD as the response variable [99]; the behavioral change 
point analysis designed by Gurarie et al. [40]; the mecha-
nistic range shift analysis technique designed by Gurarie 
et al. [42]; and a Bayesian partitioning of Markov models 

Table 1 Parameter values used for each set of simulated paths

Parameter Before migration ( t < 100) During migration ( 100 ≤ t < 200) After migration ( t ≥ 200)

Speed switch model

Mean speed, ν 1 5 1

Autocorrelation timescale, τ 2 2 2

Timescale switch model

Mean speed, ν 1 1 1

Autocorrelation timescale, τ 2 20 2

Bias switch model

Weibull step length parameters, α,β 1, 1 1, 1 1, 1

Angular concentration parameter, κ 0.5 0.5 0.5

Attraction point, ( z1 , z2) (0, 0) (50, 0) (50, 0)

Attraction strength, A 0.5 0.9 0.5
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(BPMM) approach applied to the time-series of log step 
lengths derived from the data [13, 37]. We also tracked 
how long each algorithm took to evaluate using the Sys.
time R function. Absolute time values will not be gen-
eralizable across other machines, but since all our analy-
ses were run on the same machine, these measurements 
allowed us to determine which algorithms were faster 
than others. All analyses were conducted using R 4.3.1 
[76]. More details are provided in the Additional file 1.

Case studies
Ferruginous hawks in the Great Plains
Ferruginous hawks are large, migratory raptors found in 
central Canada and the United States [84, 85]. The short-
grass prairies of southern Alberta, Canada represent the 
northern edge of this species’s breeding range, and birds 
breeding this far north make relatively long migrations to 
the southern Great Plains in the United States [96]. Adult 
ferruginous hawks were captured at nest sites during the 
breeding season, using either a dho-gazza net or a bal-
chatri trap [94]. Captures were limited to nests in which 
the young had survived at least 10 days. Once captured, 
the birds were fitted with solar ARGOS/global position-
ing system (GPS) platform transmitter terminals and 
solar Groupe Special Mobile (GSM) tags. ARGOS tags 
recorded a location every 1 h and GSM tags recorded a 
location as frequently as every 1  min [94]. We rarefied 
each movement track to one location per day for consist-
ency with our other case studies. Our dataset includes 50 
individual hawks tagged on their breeding territories in 
southeastern Alberta and spans 10 years (2012–2021). 
The tags also provided estimates of dilution of precision 
(DOP) in the horizontal and vertical directions for every 
location. We removed any locations with a DOP over 5 in 
either the horizontal or vertical directions in preparation 
for our analysis [22].

We isolated each individual migration (fall or spring) 
temporally so we could fit our model with c = 1 to them 
separately. Each hawk was originally tagged on its breed-
ing territory so we used the date at which the first loca-
tion was received for each individual as the cut-off point 
between spring and fall. To define a cut-off between the 
end of fall migration and the beginning of spring migra-
tion (i.e., the birds’ arrival at the wintering grounds), we 
used the date at which the southernmost location was 
recorded in each year. This separation tactic may not 
apply well to other datasets (e.g., where migration is not 
clearly north-to-south). We removed any migrations that 
were missing a significant section of data, either spatially 
(any path containing a location that was further than 
400  km away from the previous recorded location) or 
temporally (any path containing a 14-day period with-
out any recorded locations). We bounded t1 and t2 such 

that t2 − t1 needed to be greater than 7 days, as anything 
shorter would represent a biologically unrealistic migra-
tion [96]. We estimated 95% confidence intervals for each 
individual migration using parametric bootstrapping. 
We simulated 100 random paths for each true migra-
tory path. We ran the bootstrapping algorithm multiple 
times for the same migration and compared the intervals 
to ensure that this number of paths produced consistent 
CI’s.

Like many animal species, ferruginous hawks display 
complex migratory patterns including stopovers and 
pre-migratory dispersal [95, 96]. Stopover behaviour is 
defined as the interruption of migration over some tem-
poral period [77] and is very diverse, just like migration 
itself [27, 82, 83]. Stopovers have many functions and dif-
ferentiating long-term, foraging stopovers from shorter 
stopovers may be important in identifying critical habitat 
for migratory species [36]. During fall migration, many 
ferruginous hawks display long-term stopovers. Watson 
and Keren [96] consider these fall movements to be two 
separate migrations partitioned by the stopover. Fer-
ruginous hawks also frequently embark on pre-migratory 
movements, where they disperse from their breeding 
or winter territory before returning to the same general 
area [95]. To evaluate whether our model could statisti-
cally identify stopovers and other complexities from the 
ferruginous hawk data, we compared our model fits with 
c = 1 (one migration) to those with c = 2 (two migra-
tions) using Akaike Information Criterion (AIC) [11]. 
The model with the lowest AIC value is assumed to be the 
most parsimonious, and the difference in AIC between 
the best model and other models ( �AIC) quantifies how 
much more parsimonious the best model is.

Barren‑ground caribou in northern Canada
Caribou are one of the most well-studied species in the 
animal kingdom [28, 86, 93]. The many subspecies and 
ecotypes of caribou exhibit different life history and for-
aging strategies [69], and barren-ground caribou herds in 
the North American Arctic are notable for their migra-
tory behaviour [30, 38, 60, 89]. Our caribou data were 
collected for the Qamanirjuaq herd, which ranges across 
Nunavut’s Kivalliq region for much of the spring and 
summer. This herd moves annually between their more 
southern winter grounds and their calving and summer 
ranges further north. Caribou do not always display high 
inter-annual fidelity to their wintering grounds [35] but, 
in part due to the gathering of large herds which facili-
tates social learning, the herd has displayed high fidelity 
to their calving grounds for at least 40 years [39]. Preg-
nant females that arrive on the calving grounds give birth 
to their calves shortly after, and dramatically reduce their 
movement for up to two weeks [17, 64]. Identifying the 
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temporal extent of barren-ground caribou migration has 
management implications, especially as climate change 
and anthropogenic modifications to the landscape alter 
the phenology and availability of their food resources [14, 
64]. Many efforts have been made to identify these tim-
ings in other herds [15, 17, 43, 58, 89].

We fit the MMCP model with c = 1 to data describ-
ing the spring migrations of barren-ground caribou. 
Caribou were pursued via helicopter and immobilized 
via net-gunning, before being fitted with a GPS collar 
[64]. Following approved protocols, caribou were col-
lared between 2006 and 2016 and in total, we included 35 
adult females in the dataset, of which 22 were tracked for 
more than 1 year. We isolated each individual year and 
subsetted the data such that any locations after July 1 of 
that year were omitted. We chose this date because it is 
after the calving period [64] but earlier than the onset 
of fall migration [59]. The fix rates of each individual in 
the dataset varied from 1 h to 1 day, so we rarefied all the 
data to a 1-day fix rate for consistency. We required esti-
mated migrations ( t2 − t1 ) to be longer than 14 days for 
all individuals. Similarly to the ferruginous hawk dataset, 
we removed any paths with significant spatial (150  km 
between two consecutive recorded locations) or tempo-
ral (any 14-day period without recorded locations) gaps 
from our dataset. Since parturition typically takes place 
shortly after the end of spring migration for Qamanirjuaq 
caribou, we compared our estimates for t2 to model-esti-
mated calving dates for each caribou using the method 
of DeMars et  al. [17]. This simple approach uses a bro-
ken-stick linear regression to identify multi-day periods 
when adult caribou stop moving, suggesting they are 
tending to their offspring. While similarity between our 
model’s estimates for t2 and calving-based estimates for 
t2 do not guarantee that our model is accurate, dissimi-
larity between these two estimates certainly suggest that 
our model may not always be able to identify migration 
events from caribou data.

Brown bears in northern Canada
Brown bears are opportunistic omnivores with a wide 
distribution across North America, Europe, and Asia 
[72]. Brown bears in the Canadian Arctic are unique in 
comparison to their conspecifics worldwide, exhibiting 
many adaptations to harsh environmental conditions 
[23]. Brown bears are not considered migratory, but 
bears living in the Mackenzie River Delta region of north-
ern Canada display annual home range shifts [25], and 
some perform temporally oriented navigations to food 
resources visited a year prior [88]. We used brown bear 
movement data from the Mackenzie Delta to evaluate if 
our model would identify any migratory patterns in what 
biologists view as a non-migratory species. Brown bears 

were captured, immobilized, and equipped with GPS col-
lars between 2003 and 2006 [25]. These collars were set to 
record GPS locations at a 4-hour fix rate, and once again, 
we rarefied all our data to 1-day fix rates for consistency 
with other case studies. Brown bears in the Canadian 
Arctic spend up to 6–7 months of the year in a den where 
they hibernate [45, 65, 70]. In total, we included 25 bears 
(20 females and 5 males) in our analysis.

Given the broad definitions of migration [19] and the 
simplicity of our model, we saw value in searching for 
population-level trends in periods of high-intensity 
movement within the brown bear dataset. We fit the 
model with two migratory periods ( c = 2 ) to every indi-
vidual year in the dataset (many individuals had more 
than one complete year of data), under the assumption 
that bears would need to exhibit at least two periods of 
high-intensity movement to complete their theoretical 
migratory cycle. We evaluated whether the three regions 
identified as “non-migratory ranges” by the model (i.e., 
all locations before time t1 , all locations between times t2 
and t3 , and all locations after time t4 ) were indeed spa-
tially disjoint, as one would expect from “true” migra-
tion [6, 19]. We determined the degree of spatial overlap 
between these ranges by calculating Bhattacharyya’s 
affinity for each pair of ranges [29]. We calculated Bhat-
tacharyya’s affinity using the overlap function from the 
ctmm R package [31].

Results
Results from each migratory path, simulated or real, can 
be found in Additional file 1, which is available at github. 
com/ pthom pson2 34/ migra tionm odell ing.

Simulation analysis
All of our models produced parameter estimates for each 
of the 150 simulated paths without any unsolvable con-
vergence issues. On average, our model (0.150 s) was the 
second-fastest approach, only trailing the first passage 
time model (FPT; 0.134 s). The other five models, listed in 
order of average computational speed, were the nonlinear 
least squares model for NSD (NLS; 0.344 s), the mecha-
nistic range shift analysis (MRSA; 1.208 s), the behavioral 
change point analysis (BCPA; 2.216 s), the Bayesian par-
titioning of Markov models approach (BPMM; 2.368  s), 
and the Bayesian piecewise NSD regression model 
(BPWR; 14.86 s).

Our model estimated t1 and t2 very accurately for 
some of the simulated migrations but not for others. 
Specifically, our model was very precise and accurate 
for simulations generated by the “speed switch” model, 
where almost every path was perfectly partitioned into 
migratory and non-migratory bouts (Fig.  1). The BCPA 
and BPMM approaches were also very effective in this 

https://github.com/pthompson234/migrationmodelling
https://github.com/pthompson234/migrationmodelling
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context. Our model was less consistent for the “time-
scale switch” paths, but was still more accurate than 
many competing approaches. The BCPA performed very 
well in this scenario. Our model performed very poorly, 

appearing almost random, when fit to the “bias switch” 
paths. The MRSA appeared to be most effective here, 
although it occasionally overestimated the duration of 
migration. The NLS and BPWR approaches, which both 

Fig. 1 Estimated beginning and end of migration ( ̂t1 and t̂2 for 150 simulated migratory movements generated according to three different 
mechanistic models (speed switch, timescale switch, and bias switch), all with “true” migrations lasting from t = 100 to t = 200 . Each panel 
represents one of the competing migration modelling techniques, organized by rows: MMCP (our multi-metric change-point approach) NLS [10], 
FPT [58], BPWR [99], MRSA [42], BCPA [40], and BPMM [37]. The y-axis of each panel represents the proportion of paths that were estimated as being 
migratory along each point of the x-axis (time). Models that effectively identify migration should display three vertical stripes of teal, yellow, 
and purple, from left to right
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rely on net squared displacement as a metric, also per-
formed fairly well in this case.

Our model was robust to small amounts of error 
but failed when spatial error was larger than the aver-
age step length (Additional file 1: Figure S1). When we 
fixed σe = 1 , which produced random Gaussian error 
with variance 1 in the x and y axis, our results were very 
similar to the case displayed in Fig.  1, where no error 
was present. When we increased σe to 25, producing 
an average error greater than 5 spatial units, model 
performance was noticeably worse in all conditions 
(Additional file 1: Figure S2). The MRSA (mechanistic) 
and BPWR (phenomenological) models were relatively 
resistant to error within the range we tested, produc-
ing similar results for all values of σe (Additional file 1: 
Figs. S1,  S2).

Case study: ferruginous hawks
We identified 99 unique ferruginous hawk migrations (35 
fall, 64 spring). Our model precisely identified the begin-
ning and end of these migratory movements (Additional 
file  1). Ferruginous hawks rapidly increased their step 
lengths during migration but did not display as much 
change in their directionality (Fig. 2). The average value 
of R, which approximates the proportional increase in 
mean displacement during migration, was approximately 
60.14 for ferruginous hawks. Outside of migration, fer-
ruginous hawk step lengths averaged 4.562 km (the mean 
of all ρ0 estimates for each migration), and this increased 
by 140.2 km (the mean ρ1 estimate) during migration. 
The median 95% confidence interval widths for all six of 
our model parameters (1.525 days, 1.485 days, 1.008 km, 
129.2 km, 0.242, and 1.458 for t1, t2, ρ0, ρ1, κ0 , and κ1 , 

Fig. 2 Raincloud plots describing the variation in migratory behavior between and within two of our case studies (caribou, in red, and ferruginous 
hawks or FEHA in blue). The left panel displays values of R =

ρ1+ρ0
ρ0

 , which measures how much more quickly animals move during migration, 
and the right panel displays κ1 , which represents the increase in directional persistence observed during migration. The values for ferruginous hawks 
were obtained by fitting our model with c = 1
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respectively) suggests that all model parameters are usu-
ally estimable (Additional file 1). Independent runs of the 
parametric bootstrapping algorithm produced similar 
results for the same data. 

The c = 2 model identified the timing and location of 
stopovers and pre-migratory movements in ferruginous 

hawks (Fig. 3). Fall migrants frequently exhibited stopo-
ver behaviour, sometimes migrating for > 1000 km before 
drastically and temporarily reducing their movement 
rates (Fig.  4). The c = 1 model occasionally identified 
only one portion of the fall migration in these cases, but 
sometimes ignored the stopover altogether. The c = 2 

Fig. 3 Distribution of migration timings for individual ferruginous hawks in the Great Plains. The panel on the left includes all individual migrations 
for which Akaike Information Criterion (AIC) favoured the c = 1 model (i.e., one uninterrupted migration), whereas the right panel includes all c = 2 
individuals (i.e., migrations interrupted by stopovers or preceded by pre-migratory dispersal). Black outlines represent the temporal extent of each 
track. The red and blue (only seen on the right panel) regions of each bar represent the times identified as migration by the c = 1 and c = 2 models, 
respectively. Purple regions indicate concordance between the two models
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model was often identified as more parsimonious than 
the c = 1 model (based on AIC) when stopover or pre-
migratory behaviours were present (Additional file  1). 
For example, the migration depicted in Fig. 4 had much 
lower AIC values with the c = 2 model ( �AIC = 319.9). 

Case study: barren‑ground caribou
After filtering the caribou data, we retained 57 individ-
ual spring migrations to which we fit the c = 1 migra-
tion model. Caribou did not increase their daily mean 
displacement rate as much as ferruginous hawks dur-
ing migration, as the mean value of R was 3.66 (Fig.  2). 
However, 54 of the 57 migrations displayed significantly 
higher directional persistence on migration, with 95% CIs 
for κ1 excluding 0. The median confidence interval width 
for t1, t2, ρ0, ρ1, κ0, and κ1 were 10.05 days, 8.525 days, 
1.787 km, 9.555 km, 0.557, and 4.329, respectively.

Our model typically identified biologically reasonable 
migratory periods from the herd, but for some indi-
viduals, our model misidentified a period of sustained 
movement on the wintering grounds as migration, 
rather than identifying the spring movement to the 
calving grounds. In these cases, the estimated parturi-
tion date was very different from our model’s estimate 
of t2 (Fig. 5). 

Case study: brown bears
We fit the c = 2 model to 36 different bear-years and 
could not identify any trends from the sampled ani-
mals. The model identified periods in which brown bears 
moved more quickly and/or less tortuously for a number 
of days or weeks but there was no consistency within 
the population as to when these periods took place or 
how long they lasted. According to our model, 12 bears 
“migrated” for over 75% of the active season (Additional 
file  1). For eight bear-years, the duration of one of the 
“migratory” periods was 7 days or shorter. Spatial over-
lap metrics calculated between the three periods of “non-
migratory” movement for each bear indicate that many 
bears did not move between spatially disjoint areas dur-
ing their “migrations” (Fig.  6). While the pre-migratory 
and post-migratory ranges, which are expected to be sim-
ilar in true migrants, displayed higher overlap on aver-
age than the other two pairs of ranges, these metrics all 
varied significantly between individuals. Some bears had 
three non-migratory ranges that did not overlap at all, 
while others displayed > 90% overlap between all three 
non-migratory ranges (Additional file 1).

Discussion
Animal migration is a complex behavioral process that 
we can often only observe through the lens of discrete-
time location data [53]. Human-induced rapid environ-
mental change may have particularly adverse effects on 
migratory animals, as migration appears to be on the 
decline globally [46], highlighting the importance of 
understanding and characterizing this phenomenon. 

Fig. 4 Movement path of a ferruginous hawk (hawk ID 196a; 
fall 2013) performing a fall migration from its breeding territory 
in Alberta, Canada, to its wintering grounds in northern Mexico, 
including a stopover. Locations are plotted on three separate axes 
(from top to bottom: x–y, t–x, and t–y) and are coloured based 
on behavioural state as classified by the c = 2 model (black = 
nonmigratory; red = migration, pre-stopover; purple = stopover; blue 
= migration, post-stopover). Vertical dashed lines on the bottom two 
panels represent the migration timings estimated by the c = 1 model, 
where the second part of the migration is omitted entirely
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Ecologists have designed a variety of approaches that 
can segment animal location data into migratory and 
non-migratory periods. Here we introduce the multi-
metric change-point model and demonstrate situations 
in which is it useful for achieving this goal. The MMCP 
model is a simple approach that identifies changes in the 
observed time series of step lengths and turning angles, 
two fundamental and well-known movement metrics 

[68]. The approach is computationally fast and in addi-
tion to behaviourally segmenting the animal’s movement 
path, it estimates parameters that quantify how the ani-
mal changes its movements during migration. We also 
introduced a method for obtaining confidence intervals 
for these timings, which can be difficult or impossible 
with other techniques. Our simulation analysis sug-
gests that there are situations where the MMCP model 

Fig. 5 Distribution of migration timings for individual caribou in the Canadian Arctic. Black outlines represent the temporal extent of each track. 
Red bars represent the migratory period estimated by our model. The blue vertical line in each bar represents the calving date as estimated 
by the method of DeMars et al. [17]
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estimates migration timings more accurately than other 
existing approaches, but there are also situations where it 
performs very poorly (Fig. 1). While we acknowledge that 
the model may not be universally applicable to all migra-
tory animals, our results suggest that fitting this model to 
animal tracking data can generate rigorous and insightful 
results in some cases.

Unsurprisingly, it appears that the MMCP model is 
most effective when an animal’s migration involves a 
marked change in speed or directionality. In particular, 
the model seems to work very well for migrations that 
are defined by an increase in movement speed. These two 
types of migration (increase in speed or increase in direc-
tionality) connect to the two definitions of individual 
migration provided by Dingle and Drake [19], but they 

are undoubtedly not the only kinds of migration. The 
“bias switch” model discussed in Gurarie et al. [41] may 
only be a theoretical simulation, but is proof that migra-
tion (as most ecologists would define it) can occur with-
out changes in step lengths or turning angles. Indeed, 
our model was extremely ineffective at estimating when 
migration began and ended for “bias switch” simula-
tions (Fig. 1). From a data analysis perspective, data like 
what was generated by the “bias switch” process could 
be made more suitable to the MMCP model through 
subsampling and re-calculating step lengths and turning 
angles, as they may have different properties at lower fix 
rates [51, 71, 74], but we acknowledge that throwing out 
data to make these a priori corrections is inconvenient. In 
these cases, models that analyze more phenomenological 

Fig. 6 Raincloud plots describing the distribution of spatial overlap (calculated using Bhattacharyya’s affinity) between segments of brown 
bear movement paths identified by our model as “non-migratory”. For animals that migrate back and forth between two disjoint spatial areas 
over the course of a year, we would expect almost no overlap between consecutive non-migratory ranges (the red and green plots), and very high 
overlap between the first and third non-migratory ranges (the blue plot)
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metrics like net squared displacement may be more 
appropriate. Phenomenological and mechanistic models 
also appeared to perform better when spatial error was 
high (Additional file  1: Figure S2). For datasets where 
spatial location error is considerable, the MMCP model 
may not be the preferred approach for identifying the 
temporal extent of migration.

A notable conclusion from our simulation analysis 
is that none of the models were effective at identify-
ing migration from all three simulation processes. The 
MMCP model was extremely accurate for the “speed 
switch” process but not for the “bias switch” process. The 
same can be said for the BCPA, which was the most effec-
tive model for the “timescale switch” process. The MRSA, 
BPWR, and NLS models were all more effective than 
the rest at identifying migrations from the “bias switch” 
process, but were less effective for the other simulations. 
In practice, we often do not know the underlying behav-
ioural and cognitive mechanisms driving animal migra-
tions. While assessing the width of confidence intervals 
(or credible intervals, if one takes a Bayesian approach) 
can be informative about the accuracy of parameter esti-
mates, it can still be difficult to truly know whether a 
model is right or wrong. To address this difficult problem, 
we advocate for the use of multiple techniques at once, 
with agreement between models suggesting an accurate 
identification of the migratory process. Our model can 
theoretically be adapted to a Bayesian framework, and we 
encourage practitioners to incorporate a priori informa-
tion about their study systems if appropriate, whether it 
be through frequentist (e.g., bounding parameters during 
optimization) or Bayesian (e.g., using prior distributions) 
means. In our caribou case study, we compared esti-
mated t2 values to calving dates estimated by a different 
technique, which allowed us to identify movement paths 
that the MMCP model may have failed to estimate.

Our model yielded valuable information about migra-
tory behaviour in ferruginous hawks. The tendency for 
ferruginous hawks to exhibit long-term stopover behav-
iour during their fall migrations has been documented in 
the literature [95, 96]. We expanded on existing knowl-
edge using the MMCP model, which quickly and effi-
ciently divided hawk movement paths into migratory 
and non-migratory segments. Our results suggest that 
ferruginous hawks almost always include a long-term 
stopover in their fall migrations, and almost never do so 
in their relatively quick spring migrations (Fig.  3). The 
marked difference between spring and fall migrations 
likely came about due to the difference in reproductive 
motivations during each of these seasons. Optimal flight 
speed theory suggests that birds migrating to their breed-
ing site will move faster than birds migrating away from 
it, owing to the high competition for breeding territories 

with conspecifics in the spring [48]. Ferruginous hawks 
are also known to exhibit pre-migratory behavior where 
they disperse away from their breeding grounds in a dif-
ferent direction before truly beginning their migrations 
south [96]. While our model appeared to identify both 
these movement types with c = 2 , discerning pre-migra-
tory behavior from long-term stopover behavior is diffi-
cult without the additional biological context. Depending 
on how these behaviors are defined in different systems, 
some sort of post-hoc analysis may be required to discern 
them.

The MMCP model quantified exactly how an animals’ 
movement patterns changed during migration. By com-
bining step lengths and turning angles to identify migra-
tion in ferruginous hawks and barren-ground caribou, 
our model facilitated a connection between parameter 
estimates and the biological definitions of migration 
for these species. We used R = ρ1+ρ0

ρ0
 and κ1 to quantify 

proportional increases in daily displacement and direc-
tionality during migration, respectively, as they can be 
easily compared between species. Ferruginous hawks 
moved in a more directed manner during migration, 
but also moved much more quickly (Fig.  2). Migratory 
movements carried out over significantly larger scales 
than observed during range residency correspond to 
the second migration definition provided by Dingle and 
Drake [19]. Migratory barren-ground caribou dramati-
cally increased the directional persistence of their move-
ment during migration but did not increase their daily 
mean displacement as proportionally high as the hawks 
did (Fig. 2). These migrations resembled the first (undis-
tracted and persistent) definition of migration from Din-
gle and Drake [19]. It may not be surprising (or novel) 
that ferruginous hawks, an aerial migrant, move further 
than terrestrial migrants like caribou during their migra-
tions, but using our model’s parameters and their derived 
quantities (e.g., R) could facilitate comparison across dif-
ferent levels (e.g., different populations of ferruginous 
hawks, or different demographic classes within the same 
population, when these data are available) that expand 
our understanding of how these animals move.

Our model identified periods of increased daily dis-
placement and/or directional autocorrelation from the 
brown bear data, but it is unclear whether these move-
ments represent migration. Some of these bears did 
not even leave their original “pre-migratory” ranges 
during their “migrations”, as suggested by the preva-
lence of high spatial overlap values between all three 
non-migratory ranges (Fig.  6). In general, these over-
lap values were highly variable between all pairs of 
non-migratory ranges, and it was difficult to discern 
any pattern at all. This may simply be a consequence of 
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our model’s inability to identify biologically meaningful 
behavioural periods from the data, but the variability in 
overlap values is not surprising for this species. Brown 
bears are highly individualized animals that display 
individual variation in their diets [24, 79], movements 
[16, 73], interactions with humans [7, 8], and more. 
While we believe it is hard to conclude from our analy-
sis that brown bears are migratory, individual variation 
is likely to affect migratory patterns in many ways, and 
although we did not have sufficient demographic data 
to analyze these trends in any of our case studies, we 
hope that these variables are considered whenever ana-
lyzing migration on the individual scale.

An essential part of our model is the change-point 
algorithm used to identify the values of t1 and t2 that 
maximized our likelihood function. Determining 
migration from a time-series of step lengths and/or 
turning angles is certainly not unique but the method 
we used to identify these optimal values is different 
from all existing change-point algorithms. While it is 
not mathematically exact, it is more flexible than many 
similar approaches in its ability to identify path seg-
ments with nonindependent metric distributions. Our 
algorithm is much more efficient than an exhaustive 
search, which would be computationally unfeasible for 
many datasets. Change-point identification has appli-
cations in a wide range of scientific fields [90], and we 
suggest that our algorithm could be applied to a diver-
sity of time-series analysis problems, not just migration.

Our model achieved the sought-after goal of deter-
mining when animals begin and end their migrations. 
By parameterizing time-dependent step length and 
turning angle distributions, we generated results that 
are easy to interpret biologically. Migration incurs an 
elevated risk to the negative effects of anthropogenic 
global change ([98]; but also see [100]). Specifically, 
many animals are arriving at their breeding grounds 
earlier to capitalize on global warming-induced 
advances in green-up and prey availability [44, 64]. 
Many ecologists expect (or are already observing) 
changes in when, where, and how animals migrate [91, 
98]. The MMCP model provides unbiased, quantitative 
information on all three of these characteristics.
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