
Johnston et al. Movement Ecology           (2023) 11:66  
https://doi.org/10.1186/s40462-023-00431-z

METHODOLOGY

Flight heights obtained from GPS 
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Abstract 

The risk posed by offshore wind farms to seabirds through collisions with turbine blades is greatly influenced 
by species‑specific flight behaviour. Bird‑borne telemetry devices may provide improved measurement of aspects 
of bird behaviour, notably individual and behaviour specific flight heights. However, use of data from devices that use 
the GPS or barometric altimeters in the gathering of flight height data is nevertheless constrained by a current lack 
of understanding of the error and calibration of these methods. Uncertainty remains regarding the degree to which 
errors associated with these methods can affect recorded flight heights, which may in turn have a significant influ‑
ence on estimates of collision risk produced by Collision Risk Models (CRMs), which incorporate flight height distribu‑
tion as an input. Using GPS/barometric altimeter tagged Lesser Black‑backed Gulls Larus fuscus from two breeding 
colonies in the UK, we examine comparative flight heights produced by these devices, and their associated errors. 
We present a novel method of calibrating barometric altimeters using behaviour characterised from GPS data 
and open‑source modelled atmospheric pressure. We examine the magnitude of difference between offshore flight 
heights produced from GPS and altimeters, comparing these measurements across sampling schedules, colonies, 
and years. We found flight heights produced from altimeter data to be significantly, although not consistently, higher 
than those produced from GPS data. This relationship was sustained across differing sampling schedules of five 
minutes and of 10 s, and between study colonies. We found the magnitude of difference between GPS and altimeter 
derived flight heights to also vary between individuals, potentially related to the robustness of calibration factors 
used. Collision estimates for theoretical wind farms were consequently significantly higher when using flight height 
distributions generated from barometric altimeters. Improving confidence in telemetry‑obtained flight height 
distributions, which may then be applied to CRMs, requires sources of errors in these measurements to be identified. 
Our study improves knowledge of the calibration processes for flight height measurements based on telemetry data, 
with the aim of increasing confidence in their use in future assessments of collision risk and reducing the uncertainty 
over predicted mortality associated with wind farms.
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Introduction
European governments have pledged to reduce their 
national carbon emissions in an effort to slow the effects 
of climate change [1]. To achieve targets of net zero 
emissions by 2050, countries including the UK are con-
structing offshore wind turbines for electrical energy 
generation [2]. Turbine blades are a potential collision 
risk to seabirds; estimating the number of collision mor-
talities that might result from the development of a wind 
farm is an important aspect of Environmental Impact 
Assessments (EIAs). The extent of collision risk posed by 
wind farms to seabirds is dependent on several factors 
including: the flight heights exhibited by birds in relation 
to the rotor swept area of a turbine [3]; their flight speeds 
[4]; and avoidance behaviour undertaken in relation to 
individual turbines [5, 6], or entire wind farms [7–9].

A variety of methods have been developed to record 
the flight heights of seabird species including: boat based 
visual survey [10], digital aerial survey [11], radar [6], 
Light Detection and Ranging (LiDAR) [12], laser range 
finder [13, 14], and bird-borne telemetry devices [15, 16]. 
The benefits and disadvantages of each survey technique 
have been thoroughly reviewed (See: Desholm et  al., 
2006; Thaxter et al., 2015; Jongbloed, 2016; Largey et al., 
2021). The advantage of bird-borne telemetry, in com-
parison to static or transect surveys of flight height col-
lected using human or automatic observations at a site 
of interest, is the ability to continuously record the flight 
heights of an individual over an extended period allowing 
the observation of spatial, temporal, or behavioural varia-
tion in movement [5, 15, 16].

Flight height is frequently determined by telemetry 
devices through the Global Positioning System (GPS), 
which calculates three-dimensional position through the 
signal response time between 4 or more satellites. The 
accuracy of individual flight height measurements may 
be increased by scheduling a high sampling frequency 
(E.g. < 16 s in the system used in this study), as a continu-
ously operating GPS unit has access to the most timely 
and accurate information about satellite positions and 
clock accuracy [5, 21]. GPS tag deployments may also 
incorporate or be used in combination with altimeters 
[21], which measure barometric pressure and allow the 
estimation of offshore flight height through a reference 
pressure taken at mean sea level [16]. The accuracy of 
altimeter derived flight heights is therefore dependent on 
the spatial and temporal proximity of reference pressures 
(e.g. when birds were known to be resting on water) to 
the barometric pressure recorded at height. Due to mete-
orologically-driven variation in atmospheric pressure, 
frequent re-calibration of reference pressure is necessary 
as calibration values may become obsolete in unsettled 
weather conditions [16]; therefore reliable calibration 

may be challenging in practice [22]. Calibration of baro-
metric pressure sensors may also be carried out using 
GPS positional data [16]; therefore altimeters are not 
always liberated from GPS related error.

High-resolution tracking data have demonstrated how 
flight heights vary with behaviour [15, 16] and weather 
[23, 24]. Tracking data have also shown how birds adjust 
their flight heights in response to turbine rotor swept 
areas [5, 25]. Therefore, bird-borne telemetry can be rou-
tinely applied to examine: seabird area use in the offshore 
wind farm consenting process; responses to offshore 
wind farms following consent and construction [7, 26]; 
and detect direct interactions with turbines [5, 9]. The 
impacts of collision on seabird populations arising from 
offshore wind farms are usually assessed in EIAs through 
Collision Risk Models (CRMs) such as the Band model, a 
mechanistic model which estimates the number of colli-
sions with a wind farm based on the likelihood of a bird 
colliding with a turbine blade while flying through the 
rotor swept zone (RSZ), and the number of birds poten-
tially occupying the RSZ at any given time within the 
wind farm [27, 28]. Flight height and speed are impor-
tant parameters applied to the CRMs [16, 29], and may 
have significant influence on estimates of collision risk [3, 
30–32].

Bird-borne telemetry devices can provide behavioural-
level flight height data [15, 16] which may be used to 
refine and improve parameter estimates applied to 
CRMs. However, the accuracy of observed flight height 
distributions may have significant influence on estimated 
collisions produced by CRMs [3, 33]. CRMs using flight 
height distributions based on GPS and altimeter altitude 
have been shown to produce higher estimates of collision 
mortality than flight heights obtained through visual sur-
vey methods [16]. Therefore, knowledge of the accuracy 
of measurements of flight heights produced from GPS 
and altimeters, and their comparability, is of high priority.

Flight height data applied to CRMs currently rely on 
visual and automated survey methods, and therefore 
may not take advantage of approaches that provide the 
best estimates of flight height produced through tracking 
studies [18]. However, the value of altitude data may be 
limited if it is recorded within spatially and temporally-
confined tracking studies and is therefore not transfer-
able to other colonies and seasons [34]. An additional 
limitation to the routine use within CRMs of information 
on flight heights produced from telemetry data, such as 
barometric altimeters, is a current lack of knowledge of 
their accuracy. One specific challenge to improving accu-
racy of flight heights based on barometric altimeters is 
the lack of a feasible method for calibrating barometric 
altimeters taking into account in situ barometric pressure 
of the surrounding atmosphere. Here we present a novel 
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method for calibrating barometric pressure using open-
source atmospheric data in combination with GPS-based 
behavioural modelling. We then compare flight heights 
obtained from GPS and altimeters highlighting potential 
factors influencing the magnitude of vertical variation 
between the methods. Additionally, we investigate how 
the magnitude of variation between the methods may 
influence collision risk estimates.

Methods
Study area and tag deployment
We examined GPS and altimeter derived flight heights in 
Lesser Black-backed Gulls Larus fuscus tracked from the 
Isle of May (56°11′11"N 2°33′24"W) within the Firth of 
Forth Islands Special Protection Area (SPA) in Scotland, 
and Havergate Island (52° 05′ 02.3″ N 1° 33′ 12.2″ E) in 
the Alde-Ore Estuary SPA, England. Tracking data were 
available from the breeding season (May–August) for 
2019 (Individuals: n = 15, Havergate; n = 25, Isle of May) 
and 2020 (n = 10, Havergate; n = 17, Isle of May). Indi-
viduals tracked in 2020 were those which retained their 
tags following deployment in 2019. Individuals at each 
site were fitted with UvA-BiTS 5CDLe GPS tags (~ 14 g, 
Weight; 62 × 25 × 10 mm, length  × width ×  height, see 
Bouten et al., 2013) which remotely download data to a 
field-based receiver and laptop via a two-way wireless 
VHF (Very High Frequency) transceiver. Attachment 
was carried out using wing-loop harnesses made from 
Teflon ribbon, to enable long-term deployment, but with 
a weak-link to enable tags to detach after the period of 
study (up to 3–5  years; Clewley et  al., 2021). Tag and 
attachment methods have previously been shown to have 
no measurable impacts on breeding success or over-win-
ter survival for this species [36, 37]. The total weight of 
the tag and harness deployments were below 3% of indi-
vidual body mass. Ethical approval for tag deployment 
was issued by the British Trust for Ornithology’s inde-
pendent Special Methods Technical Panel under the UK 
Ringing Scheme (licence no. 4255).

Data cleaning
All data filtering was carried out using R (Version 4.1.1) 
[38] and using custom R functions. Data was restricted 
to when birds were on foraging trips, defined as periods 
when birds were outside a rectangular area surrounding 
the breeding colony. While birds were undertaking forag-
ing trips, a base sampling rate of five minutes was used; 
however, a faster sampling schedule of 10 s was enacted 
when tags had surplus battery charge (i.e. during periods 
of sunlight), or when within a specified ‘geofence’ around 
proposed or operational offshore wind farms. Higher 
sampling rates (< 16 s) have been suggested for this GPS 
system to provide improved altitude accuracy [5, 21]. 

Periods when birds were either offshore or onshore were 
identified within the GPS tracks. Ross-Smith et  al. [15] 
found flight heights of Lesser Black-backed Gulls to vary 
between marine and terrestrial environments; therefore 
our analysis only considered offshore movement. Further 
cleaning and calibration steps are outlined in Fig. 1 and 
the Additional file  1. 

Expectation–maximisation binary clustering
Behavioural states were inferred within the tracking 
data using Expectation–Maximisation Binary Cluster-
ing (EMbC) using R package EMbC (Version 2.0.1) [39]. 
EMbC is a Gaussian mixture model based on trajectory 
speed and turning angle between successive GPS fixes, 
which classifies four states as: stopped (high turning 
angle, low speed), floating (low speed, low turning angle), 
commuting (high speed, low turn) and foraging/search-
ing (high speed, high turn). EMbC was applied separately 
to each filtered sampling rate of five minutes and 10  s. 
The accuracy of clustering may depend on factors includ-
ing sampling frequency [39].

Individuals which did not exhibit bimodal variation 
in flight speed and turning angle while offshore were 
filtered out of the EMbC modelling (n = 7; Isle of May, 
2019). This was primarily attributed to birds which com-
muted directly between the Isle of May and mainland 
Scotland where they targeted terrestrial food resources, 
and therefore did not exhibit floating behaviour, an 
attribute necessary for the calibration of barometric pres-
sure (see Sect.  "4) Altimeter calibration"). Additionally, 
GPS locations within 10  m (m) of offshore platforms, 
such as turbines or meteorological masts, were removed 
prior to EMbC modelling. This step was to remove peri-
ods when birds may be using offshore platforms to sit or 
roost [7], and may therefore be misidentified as sitting on 
the sea-surface.

Altimeter calibration
Barometric pressure sensors recorded a mean value of 
pressure in millibars (mbar) and temperature in kelvin 
(K) concurrent with each GPS fix. A mean pressure value 
was  produced  from a series of 10 mbar recordings at a 
rate of 10 Hertz (Hz). Altitude above sea level (h) based 
on barometric pressure was calculated using the follow-
ing equation reproduced from Cleasby et  al. [16] and 
Lane et al. [40, 41]:

h = altitude (m); k = universal gas constant for air 
(8.31432 N m  mol−1   K−1); T = temperature (K) recorded 
by the tag; m = molar mass of air (0.0289644  kg   mol−1); 

h =

kT

mg
ln

P

P0
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g = acceleration due to gravity (9.80665  m   s−2); 
P0 = atmospheric pressure (mbar) at sea level; P = atmos-
pheric pressure (mbar) at height h (m).

Hourly values of Mean Sea Level (MSL) pressure (P0) 
and temperature (T) of a 30 km resolution, were obtained 
from the European Centre for Medium Range Weather 
Forecasts (ECMWF) ‘ERA5’ reanalysis model (Fig.  1). 
Calibration of P0 was carried out using values of baro-
metric pressure recorded by the tag deployment dur-
ing periods when birds were presumed to be on the sea 
surface. These ‘floating’ periods were inferred using the 
EMbC behavioural definitions of stopped and floating. 
Values of MSL pressure obtained from ERA5 were then 
corrected to actual sea level pressure using the nearest (in 
space and time) available observed value of sea surface 
pressure (Fig.  2). This was a cautionary step to account 

for potential error in ERA5 pressure values, specifically to 
account for divergent drift over time between the record-
ings made by the pressure sensor and ERA5 P0 values. 
Due to the potential for the accuracy of the tag-recorded 
P0 to decrease with time since the last floating bout, a 
threshold of one day from the last floating bout was set, 
beyond which values were excluded from analysis.

To examine the potential reduction in accuracy of 
altimeter altitudes with increasing time since the previ-
ous floating bout (and therefore calibration), the differ-
ences between GPS and altimeter altitude were examined 
in relation to time from last calibration of  P0 (see Addi-
tional file 2).

Conversion to mean sea level
Flight heights produced using barometric pressure 
are calculated in relation to the actual sea surface, as 

Fig. 1 Work‑flow of analysis steps. Red boxes indicate where environmental covariates are applied to the telemetry data
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opposed to Raw GPS altitudes which are given in relation 
to the reference geoid, equivalent to MSL. Calculation of 
altitude to an idealised sea surface may cause negative 
GPS altitude values, additionally, erroneous values from 
incorrect planar positions may arise from interference 
from weather or satellite positioning. For altimeter flight 
heights to be applicable to CRMs and comparable to 
GPS altitude, they must be converted in relation to MSL. 
Therefore, data on tidal height was used to correct pos-
sible variation in altimeter altitude related to the phase of 
the tide by the following steps (Fig. 1). Tidal height data 
for Harwich and Leith-the nearest available respective 
tidal gauges for Havergate (24 km) and the Isle of May 
(44  km)-were provided by the British Oceanographic 
Data Centre (BODC). Tidal heights above Chart Datum 
were recorded at a 15-min temporal resolution. These 
heights were converted to elevation in relation to MSL by 
calculating daily means, and then averaging to monthly 
MSLs (Danielle Edgar pers. comm.), and applied to recal-
culate raw GPS flight heights accordingly.

Statistical analysis
Generalized Linear Mixed Models (GLMMs) with a 
gamma distribution with a random effect based on indi-
vidual, were used to compare altitudes obtained from 
GPS and altimeters, and test for potential differences 
among sampling schedules, colonies, and years. GLMMs 

were carried out using “glmer” provided by “lme4” R 
package (42) in R (Version 4.1.1) [38]. Pairwise compari-
sons were made using Tukey’s adjusted ‘emmeans’ [43] to 
investigate statistically separable altitude measurements 
in relation to method (GPS and altimeter), and each 
grouping of year (2019 and 2020), colony (Isle of May and 
Havergate), and sampling rate (five minutes and 10 s).

Collision risk models
Using estimated flight height distributions (see  Addi-
tional file 1) we compared the estimated number of col-
lisions attributed to foraging/searching and commuting 
behavioural states generated from GPS and altimeter data 
using Option 3 of the Band CRM [27, 44] facilitated by R 
package StochLAB (Version 0.3.1) [45]. The Band model 
calculates collision risk based on wind farm and turbine 
characteristics, and bird biological parameters and densi-
ties (see Additional file 1). Option 3 utilizes flight height 
distributions, rather than a uniform distribution across 
the rotor swept area. Collisions were calculated sepa-
rately for each month of the 4 study months from May 
to August. Models were run using 12 differing theoretical 
wind farms, each assigned with distinct turbine param-
eters (adjusting hub height and rotor radius) and num-
bers of turbines. Each wind farm configuration equated 
to an electrical output of 430 Megawatts, equivalent to an 

Fig. 2 Example of atmospheric pressure calibration from individual “5970”. Mean sea level pressure obtained from the ERA5 atmospheric reanalysis 
model (black) and barometric pressure sensor (red) and ERA5 measurements calibrated by pressures obtained from floating bouts (blue)
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average wind farm currently operating within the North 
Sea (see Additional file 1).

Tukey’s HSD test, was used to identify statistically sep-
arable collision estimates for each altitude measurement 
method, and each grouping of year, colony, and sampling 
rate.

Results
GPS and altimeter flight heights
Flight heights produced from altimeter data were found 
to be higher than those from GPS data (Table  1). Pri-
marily, this difference was slight between measure-
ments recorded at a rate of five minutes (difference 
range = 2.55–8.69 m, difference mean = 4.40 m, Table 1), 
however a difference was more notable at the 10 s sam-
pling frequency (difference range = 0.6–16.28  m, dif-
ference mean = 11.45  m, Table  1,  Fig.  3). A pairwise 
comparison of methods of data combined from all sites 
and years found that the mean altitude was significantly 
different between altimeters and GPS at a sampling 
schedule of 10  s  (Tukey, Z = −  31.03, p ≤ 0.05, Table  2), 
while showing no difference at the five-minute schedule 
(Tukey, Z = − 1.86, p = 0.25, Table 2). However, this rela-
tionship did not consistently persist when taking into 
account year and colony.

At a sampling resolution of five minutes, GPS flight 
heights were higher in 2020 at both the Isle of May and 
Havergate (Fig. 3). Pairwise comparison indicated that 
the altitudes produced by GPS and altimeters were not 
significantly different based on data at a sampling rate 
of five minutes across both colonies and years (Table 2), 
and additionally at a sampling rate of 10 s for the Isle of 
May in 2020 (Tukey, Z = 0.17, p = 1.00). Some tag spe-
cific variation was present in the magnitude of differ-
ence between GPS and altimeter altitudes as observed 
visually in linear regressions presented in Fig.  4. Tags 
also display some consistent variation across year in the 
intercept and the slope of the relationship between alti-
tude and GPS (Fig. 5).

The time since last calibration of MSL pressure had 
no discernible influence on the magnitude of differ-
ence between GPS and altimeter altitudes (see Addi-
tional file 2). Additionally, the proportion of GPS fixes 
attributed to floating bouts per individual did not vary 
between colonies, however more samples of floating 
per individual were recorded in 2019 (n = 2532, Haver-
gate; n = 1375, Isle of May) than 2020 (n = 965, Haver-
gate; n = 785, Isle of May).

Table 1 Summary statistics for flight heights in relation to mean sea level produced from GPS and altimeters in relation to study 
colony and year for sampling rate resolutions of five minutes and ten seconds

Rate Colony Year Method Altitude (m)

Mean Median Min Max 25% Percentile 75% Percentile

Five Minutes Combined Combined GPS 43.45 13.00 − 975.00 12,328.00 1.00 52.00

Altimeter 45.25 26.40 − 87.99 1069.89 7.49 58.43

Havergate 2019 GPS 31.01 13.00 − 514.00 4812.00 2.00 44.75

Altimeter 36.47 29.30 − 70.49 1011.57 9.45 55.94

2020 GPS 29.21 18.00 − 714.00 1213.00 3.00 45.00

Altimeter 20.52 18.24 − 87.99 147.29 − 1.01 42.25

Isle of May 2019 GPS 49.81 12.00 − 975.00 12,328.00 0.00 57.00

Altimeter 52.36 27.37 − 50.69 1069.89 8.91 64.21

2020 GPS 45.01 26.00 − 432.00 554.00 1.00 58.00

Altimeter 41.49 20.52 − 57.00 564.30 0.94 56.23

Ten Seconds Combined Combined GPS 27.07 22.00 − 1079.00 1218.00 3.00 47.00

Altimeter 40.64 34.01 − 136.49 1787.97 14.65 59.09

Havergate 2019 GPS 25.26 17.00 − 206.00 405.00 3.00 41.00

Altimeter 39.29 32.24 − 136.49 1787.97 14.71 56.40

2020 GPS 26.28 30.00 − 1079.00 1218.00 10.00 51.00

Altimeter 39.07 35.02 − 90.33 999.05 14.02 60.89

Isle of May 2019 GPS 31.68 18.00 − 15.00 636.00 1.00 51.00

Altimeter 47.96 38.54 − 42.23 920.23 14.99 67.27

2020 GPS 34.68 35.00 − 4.00 106.00 14.00 53.00

Altimeter 34.08 36.83 − 65.54 148.90 13.68 55.84
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Collision risk models
Estimated numbers of collisions were found to be 
higher using flight height distributions (See  Addi-
tional file  2) generated from altimeters than using 
those generated from GPS (Fig.  6). In comparison to 

GPS, collision rates were greater when calculated using 
flight height distributions based on altimeters, across 
all groupings (sample rates, years and colonies). Excep-
tions to this trend were identified for Isle of May in 
2020 at sampling schedules of five minutes and 10  s, 
where significant differences were seen, and Havergate 

Fig. 3 Distribution of raw flight heights in relation to mean sea level (from − 20 to 300 m), excluding floating or stationary bouts, obtained 
from GPS data (red) and altimeter data (blue) for sampling rate resolutions of five minutes and ten seconds

Table 2 Results of pairwise comparisons of GPS and altimeter flight heights (m), excluding floating or stationary bouts, from 
Generalised Linear Mixed Model with gamma distribution. Comparisons were examined in relation to sampling rate (five minutes and 
10 s), colony (Isle of May and Havergate), and Year (2019 and 2020)

“ ~ “ denotes the groups being compared. P-values < 0.05 displayed in bold

Method Rate Colony Year Estimate SE z-ratio P-value

Altimeter Five Min ~ Ten Sec Combined Combined − 7.65–06 6.01–07 − 12.71 0.00
GPS Five Min ~ Ten Sec 1.90–06 6.56–07 2.89 0.02
Altimeter ~ GPS Five Minutes − 1.36–06 7.32–07 − 1.86 0.25

Ten Seconds − 1.09–05 3.51–07 − 31.03 0.00
Five Minutes Havergate 2019 − 4.38–06 1.54–06 − 2.84 0.25

2020 7.23–06 2.53–06 2.86 0.24

Isle of May 2019 − 1.86–06 9.22–07 − 2.02 0.82

2020 2.95–06 2.78–06 1.06 1.00

Ten Seconds Havergate 2019 − 1.13–05 4.63–07 − 24.37 0.00
2020 − 1.03–05 6.70–07 − 15.40 0.00

Isle of May 2019 − 1.30–05 7.72–07 − 16.79 0.00
2020 2.87–07 1.73–06 0.17 1.00
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also in 2020 at a sampling rate of five minutes, where no 
difference was found (Table 3, Fig. 7).

Mean collision rates calculated using the two different 
input flight height distributions were found to be signifi-
cantly different (Table  3, Tukey’s HSD Test for multiple 
comparisons p < 0.05, 95% C.I. = [12.47, 21.10]).

The differences in collision rates estimated using 
flight height distributions produced from GPS and 
from altimeters were also compared within categories 

of sampling rate, colony, and year (Table  3). Tukey’s 
HSD Test found that collision estimates generated 
from GPS and altimeter data based on a sampling rate 
of 10 s differed to a greater extent (Table 3, mean dif-
ference = 22.61, p < 0.05, 95% C.I. = [14.66, 30.56]) than 
those based on a sampling rate of five minutes (Table 3, 
mean difference = 10.95, p = 0.00, 95% C.I. = [3.01, 
18.90]). Collision rates were significantly different 
between altimeter and GPS, across all categories of 

Fig. 4 Distribution of raw flight heights in relation to mean sea level (from − 20 to 300 m), excluding floating or stationary bouts, obtained 
from GPS data (red) and altimeter data (blue) in relation to study colony and year for sampling rate resolutions of five minutes and ten seconds
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Fig. 5 Linear regression comparison of raw flight heights produced from GPS and altimeter data in relation to mean sea level, divided by individual 
in relation to study colony and year for sampling rate resolutions of five minutes and 10 s. Raw samples presented as black circles
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Fig. 6 Monthly collision estimates produced from Band Option 3 CRM for 12 hypothetical wind farms with differing turbine parameters, using 
modelled GPS (red) and altimeter (blue) flight heights for sampling rate resolutions of five minutes and 10 s. Hypothetical wind farms increase 
in hub height and rotor radius, and decrease in wind farm density, from 1–12 (specific wind farm parameters outlined in Additional file 1)

Table 3 Results of Tukey’s HSD Test for multiple comparisons of collision estimates produced using flight height distributions 
generated from GPS and from altimeters, excluding floating or stationary bouts. Comparisons of means were examined in relation to 
sampling rate (five minutes and 10 s), colony (Isle of May and Havergate), and year (2019 and 2020)

“ ~ “ denotes the groups being compared

Method Rate Colony Year Mean Difference 95% Confidence Intervals P-value

Lower Upper

Altimeter Five Min ~ Ten Sec Combined Combined 10.84 2.89 18.78 0.00

GPS Five Min ~ Ten Sec 0.82 − 7.13 8.77 0.99

Altimeter ~ GPS Combined 16.78 12.47 21.10 0.00

Five Minutes 10.95 3.01 18.90 0.00

Ten Seconds 22.61 14.66 30.56 0.00

Five Minutes Havergate 2019 45.88 30.79 60.96 0.00

2020 2.29 − 12.80 17.37 1.00

Isle of May 2019 22.33 7.25 37.42 0.00

2020 26.67 11.59 41.76 0.00

Ten Seconds Havergate 2019 66.76 51.67 81.84 0.00

2020 13.08 − 2.00 28.16 0.18

Isle of May 2019 42.05 26.96 57.13 0.00

2020 31.44 16.36 46.53 0.00
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sampling rate, colony, and year, with the exception of 
values from Havergate in 2020 at both sampling rates 
of five minutes (Table 3, p = 1.00, 95% C.I. = [ − 12.80, 
17.37]) and ten seconds (Table 3, p = 0.18, 95% C.I. = [ 
− 2.00, 28.16]) (Fig. 7).

The magnitude of difference in collision rates esti-
mated using flight height distributions based on GPS 
or altimeters was found to narrow with increasing tur-
bine size (Figs. 6, 7). The number of overall collisions 
decreased with fewer but larger turbines.

Discussion
Flight heights produced by GPS and altimeters were 
largely comparable when examined collectively across 
sites, years, and sampling rates. However, we found that 
flight heights produced from altimeter data to be on 
average higher than those from GPS data, with a signifi-
cant difference in flight heights (approx. 11 m) obtained 
at a sampling rate of 10  s. The magnitude of difference 
between the two methods was also found to differ in rela-
tion to study year and colony. Altitudes derived from the 

Fig. 7 Monthly collision estimates produced from Band Option 3 CRM for 12 hypothetical wind farms with differing turbine parameters, using 
modelled GPS (red) and altimeter (blue) flight heights in relation to study colony and year for sampling rate resolutions of five minutes and 10 s. 
Hypothetical wind farms increase in hub height and rotor radius, and decrease in wind farm density, from 1–12 (specific wind farm parameters 
outlined in Additional file 1)
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two methods were more comparable in 2020-a year after 
tag deployments-than 2019; this year-based convergence 
occurred at both study colonies. The underlying cause 
of this temporal difference was unknown but may have 
arisen from different weather conditions experienced 
within each year [46]. Unstable weather conditions, 
for example frequent periods of low pressure related to 
storms causing greater variability in sea level pressure, 
may lead to reduced altimeter accuracy between cali-
bration bouts. While no difference was observed in the 
overall atmospheric pressure experienced at study sites 
between years, local-scale (< 10  km) and short-term 
(< 1 h) variations in pressure are harder to discern. Fre-
quent bouts of floating behaviour by gulls would allow 
for regular calibration of sea level pressure, and therefore 
greater accuracy in altimeter flight height. However, no 
trend was found between the time difference from last 
floating bout and the magnitude of difference between 
GPS and altimeter derived flight heights. This suggests 
that error arising from pressure calibration is not an 
important source of the difference between altitudes pro-
duced from GPS and altimeters. Additionally, the propor-
tion of fixes per individual attributed to floating did not 
differ between years. Previous altimeter deployments on 
gannets similarly found time since calibration to have  a 
non-significant effect on flight height accuracy [16]; this 
was attributed to low variability in environmental pres-
sure ascribed to stable weather over the tracking period. 
As a precaution, we assigned a one-day limit on the via-
bility of the last calibration event, to eliminate potentially 
obsolete calibration factors being used.

Despite flight heights produced by either method being 
largely comparable, rates of estimated collisions com-
monly differed between the two methods, with higher 
collision estimates being most frequently attributed 
to altimeters. This displays that small changes in flight 
heights applied to CRMs may have a disproportion-
ate effect on the resultant collision rates estimated. GPS 
and altimeters therefore may both be biologically repre-
sentative of a bird flight height, however caution must 
be taken when interpreting collision rates attributed to a 
single method.

Flight height and behaviour in Lesser Black-backed 
Gulls may vary with season [47], year [48], diel period 
and environment [15, 49]. Flight behaviour, such as flap-
ping or soaring flight, may also alter in response to mete-
orological conditions such as wind speed and direction 
[49, 50]. Combining flight height estimates across years 
may potentially account for this spatial and tempo-
ral variation. This is exemplified in the levels of colony/
year groupings of flight height distribution estimates we 
applied to the CRMs. Based on both five minute and 
10  s resolution data, collision estimates generated from 

altimeters were found to be significantly higher than 
those produced from GPS. However, when flight height 
estimates were separated by year and colony, collision 
rates produced using flight height distributions gener-
ated from GPS and altimeter were more comparable in 
the 2020 season. The magnitude of difference of colli-
sion estimates based on the two methods varied between 
study years, and collating flight heights may account for 
localised sources of variation (cf Johnston et  al., 2014). 
Furthermore, it is also important to account for individ-
ual variation in differences in collision estimates based 
on the flight height distributions derived from the two 
methods.

Future considerations
Higher resolution sampling schedules may more accu-
rately assign behavioural states using EMbC modelling, 
enhancing the accuracy of the MSL pressure used within 
calibrations. However, we found that flight heights based 
on data collected at five minute and 10 s sampling inter-
vals were largely comparable. This indicates that slower 
sampling rates, which may also be less battery intensive, 
may still produce representative flight heights using 
altimeter data. GPS derived altitudes, however, have 
been shown to improve in accuracy at higher resolutions 
[21], and may therefore by advantageous in considering 
finer scale behaviours, such a “last-second” turbine blade 
avoidance [5]. Increased sampling rate had no discern-
ible influence on altimeter pressure measurements which 
are recorded through a 10  Hz “burst” of readings con-
current with each GPS fix. While GPS may increase in 
accuracy with a greater number of satellites or increased 
resolution, much less is known about inherent accuracy 
in altimeters. Intrinsically within altimeters, pressure 
records are taken from an average of 10  Hz readings, 
accounting to some degree for individual measurement 
error. Therefore, error in altimeter altitudes primarily 
arises through the accuracy of sea level pressure required 
for the conversion of recorded pressure into altitude. 
Here we used ERA5 reanalysis modelled pressure, with 
a calibration step based on field-based pressure meas-
urements when the tag was assumed to be at sea level. 
Therefore, accuracy of  P0 applied to the model was both 
dependent on the accuracy of the modelled MSL, and 
the behavioural model identifying floating bouts through 
GPS data. Frequency of floating bouts, and opportunities 
for calibration, may also be limited by differing behav-
iours exhibited by species. An alternative to this method 
may be the use of infield calibration measurements [14], 
for example from offshore meteorological buoys con-
taining barometers. However, calibration of data from 
altimeters may be limited by distance and availability of 
such buoys. If accurate measurements of altimeter flight 
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heights are required within a specific area, within a wind 
farm for example, barometric pressure sensors may be 
placed within an area of interest in combination with a 
dedicated tracking study. Variation in sampling error may 
additionally vary between devices, therefore individual 
tag effects should be taken into account when examining 
flight height distributions derived from multiple tags. A 
greater understanding of the influence of weather condi-
tions on flight behaviour [23, 49, 51] and also altimeter 
performance may help to improve temporal and spatial 
variation in recorded flight heights.

CRMs currently rely on flight heights measured in rela-
tion to MSL. Tidal height data was used to account for 
the influence of tidal elevation around MSL when adjust-
ing altimeter altitudes-calculated in relation to actual sea 
level-so that these were applicable to CRMs. This addi-
tional calibration step on altimeters potentially reduced 
the accuracy of flight height records. Examining flight 
height in relation to actual sea level would potentially 
increase realism and accuracy of obtained altitudes, but 
would require the incorporation of tidal elevation’s influ-
ence on GPS data which are measured in relation to MSL, 
and would be of less relevance to collision risk modelling, 
as turbine heights are constant in relation to MSL but 
not to actual sea level. It is currently not common prac-
tice to amend offshore GPS altitudes using tidal height 
records, proximity to roosting platforms, or to assess 
inherent altitude bias attributed to study location. Inclu-
sion of these filtering steps may be of particular impor-
tance when examining fine scale flight height in relation 
to turbine rotor swept areas [5]. Data presented here only 
examine flight height during the breeding season; exami-
nation of flight heights throughout the year, and conse-
quently the temporal variation of collision risk associated 
with seasonal behaviour, is important to addressing the 
cumulative risk wind farms may pose throughout a spe-
cies’ life-cycle [47].

Conclusions
With the growing development of offshore wind farms, 
the accurate assessment of collision risk is vital to pro-
ject-specific consenting, and also to understanding the 
potential cumulative effects of collision at population 
levels [52]. However, CRMs retain a degree of uncer-
tainty, potentially arising from error in the measure-
ment methods used to obtain model parameters such as 
flight height. Improving confidence in telemetry obtained 
flight height distributions, and potentially using behav-
ioural-level data to more accurately quantify parameters 
applied to CRMs, requires steps to address these meas-
urement errors. This will enable improved collision risk 
assessment which captures spatial, temporal, and behav-
ioural variation in use of the marine environment and 

better reflect bird behaviour in relation to offshore wind 
turbines.
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