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Abstract 

Background Site fidelity, the tendency to return to a previously visited site, is commonly observed in migratory birds. 
This behaviour would be advantageous if birds returning to the same site, benefit from their previous knowledge 
about local resources. However, when habitat quality declines at a site over time, birds with lower site fidelity might 
benefit from a tendency to move to sites with better habitats. As a first step towards understanding the influence 
of site fidelity on how animals cope with habitat deterioration, here we describe site fidelity variation in two species 
of sympatric migratory shorebirds (Bar‑tailed Godwits Limosa lapponica and Great Knots Calidris tenuirostris). Both 
species are being impacted by the rapid loss and deterioration of intertidal habitats in the Yellow Sea where they fuel 
up during their annual long‑distance migrations.

Methods Using satellite tracking and mark‑resighting data, we measured site fidelity in the non‑breeding (austral 
summer) and migration periods, during which both species live and co‑occur in Northwest Australia and the Yellow 
Sea, respectively.

Results Site fidelity was generally high in both species, with the majority of individuals using only one site dur‑
ing the non‑breeding season and revisiting the same sites during migration. Nevertheless, Great Knots did exhibit 
lower site fidelity than Bar‑tailed Godwits in both Northwest Australia and the Yellow Sea across data types.

Conclusions Great Knots encountered substantial habitat deterioration just before and during our study period 
but show the same rate of decline in population size and individual survival as the less habitat‑impacted Bar‑tailed 
Godwits. This suggests that the lower site fidelity of Great Knots might have helped them to cope with the habitat 
changes. Future studies on movement patterns and their consequences under different environmental conditions 
by individuals with different degrees of site fidelity could help broaden our understanding of how species might react 
to, and recover from, local habitat deterioration.
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Background
The year-to-year return of migratory animals has long 
been a source of wonder for humans [1]. Methods to 
identify individuals, such as marking birds individually 
using metal rings [2], lead to the discovery that not only 
the same species, but often the same individual returned 
to the same place year after year [3–6]. Ecologists have 
used the terms site fidelity, faithfulness, or philopatry 
for this tendency to return to a previously visited site. A 
wide range of taxa show fidelity to their breeding sites 
(philopatry), and for migratory species, site fidelity to 
stopover and non-breeding sites is also common [7–12].

Site fidelity is advantageous in circumstances where 
animals can benefit from their previous knowledge on 
the distribution of food resources, safe resting locations 
and predation danger; over time, site-faithful individuals 
may attain dominance over the best and safest local sites 
and resources [3, 13–15]. Site-faithful behaviour is bene-
ficial when the environment is stable and predictable but 
it can also confer advantages in variable environments 
and lead to a higher lifetime fitness if animals are long-
lived enough to weather years of unfavourable outcomes 
[16, 17].

Habitat loss and deterioration are major threats to 
migratory populations worldwide [18]. Strong site fidel-
ity can be maladaptive [19–21] in cases where animals 
do not move to other habitats even if local habitat qual-
ity decreases. Moreover, if the distribution of high- and 
low-quality habitats shifts between years, it would be 
maladaptive for animals to base their decisions to stay or 
switch habitats on past experience [22]. Low site fidel-
ity strategies that lead to a high propensity to move to 
alternative habitats when the original habitat deteriorates 
can be adaptive. This would involve migratory animals 
making decisions of staying or switching based on cur-
rent environmental conditions, and engaging in behav-
iours that lower the cost of moving, e.g. by collecting 
information on alternative habitats, which would reduce 
the search time for alternatives and the risks involved. 
Therefore, the degree of site fidelity may influence how 
animals are impacted by habitat deterioration. A first 
step to understanding this relationship is to describe site 
fidelity variation in populations that occur in places with 
deteriorating habitat conditions. For migratory animals 
that traverse places of different degrees of habitat dete-
rioration in their annual cycle, currently little is known 
regarding how site fidelity variation persists across places 
and seasons.

Here we explore interspecific variation in site fidelity 
of two migratory shorebird species facing habitat dete-
rioration, Bar-tailed Godwit Limosa lapponica and Great 
Knot Calidris tenuirostris. During their annual migration 
from Northwest Australia to breeding areas in the East 

Russian Arctic, both species rely on major staging sites 
in coastal wetlands of the Yellow Sea [23, 24, 30], a region 
with rapid habitat loss and deterioration [25–27]. Both 
species show declines in survival rates and numbers [28, 
29]. To compare site fidelity between the two species, we 
focus on two key periods of their annual cycle when they 
co-occur at the same coastal wetlands: (1) during the 
non-breeding season (austral summer / boreal winter), 
when these species are at their final non-breeding desti-
nation in Northwest Australia and (2) during migration 
at their main staging area (i.e. used for the longest time), 
along the coast of the Yellow Sea [23, 24, 30].

Site fidelity of birds is usually inferred from recaptur-
ing or resighting marked individuals [31–34], but infer-
ence is often limited by the inability to assign a cause for 
unobserved birds. For example, unsighted birds could 
have moved to unsurveyed sites (true site infidelity), have 
died (mortality) or have gone unobserved due to detec-
tion issues [35]. These limitations can be overcome with 
remote tracking of bird movements with global coverage, 
e.g. an Argos satellite tag or GPS tag. As a step towards a 
multi-species comparison of site fidelity in different envi-
ronments using all available data types, we investigate 
difference in site fidelity between Bar-tailed Godwits and 
Great Knots with two types of data, tracked itineraries 
of satellite-tagged individuals and resightings of marked 
individuals, and examine how data types could affect the 
patterns inferred.

Methods
Bird marking and resighting
Individual marking of the study species was conducted 
at Roebuck Bay (18.1°S, 122.3°E) and Eighty Mile Beach 
(19.4°S, 121.3°E), Northwest Australia, two major non-
breeding sites in the East Asian–Australasian Flyway for 
these species [36], each year in 2006–2019, from Feb-
ruary to March, and from June to December. The birds 
were captured with cannon nets, measured and marked 
with unique combinations of colour-bands and a flag on 
their tibia or tarsi [28]. Birds were aged by the Austral-
ian method into 1st year, 2nd year and 3rd year or older 
(adults) based on plumage characteristics and moult 
scores.

On the northern shores of Roebuck Bay, throughout 
the non-breeding period (August to mid-April), 2007–
2020, observations of banded birds (i.e. resightings) were 
conducted by experienced observers using 20–60 × zoom 
telescopes, several times a week during the 4-h daytime 
high-tide period. Most observations (~ 90%) were con-
ducted at high-tide roost sites at the northern beaches. 
The available shoreline for birds to roost is about 9  km 
long and consists of sandy beaches interspersed with 
small rocky areas and roost choice is affected by tide 
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height, disturbance and microclimate [37]. About 10% 
of the time, observations were done during in-coming 
tides while birds were feeding on the mudflats and being 
pushed towards the shore by the tide bringing them close 
enough for observers on shore to record their colour-
band combinations.

Dedicated resighting work was also conducted every 
April for three days, 2010–2017 on a 65  km section in 
the northern part of the 220 km long Eighty Mile Beach 
(mid-point = 19.4°S, 121.3°E, 190  km southwest of Roe-
buck Bay). In addition, incidental observations were 
obtained each year during population count surveys 
(6  days/yr. November and December 2006–2017 and 
3 days/yr. 2018–2019) and bird catching expeditions (10–
11 days/yr. in November/December 2007–2010 and Feb-
ruary 2011–2020).

Numerous surveys of shorebirds were conducted dur-
ing migration along the coasts of the Yellow Sea, during 
which observers reported sightings of marked Bar-tailed 
Godwits and Great Knots to banding organizations. Here 
we highlight the main surveys that targeted resighting 
banded individuals and from which we gleaned data. 
At Luannan Coast, Bohai Bay (39.1° N, 118.2° E), a key 
staging site of Great Knots [38], we conducted intensive 
resighting work of banded birds during the northward 
migration period (mid-April to early-June), 2010–2020 
[39]. In the Yalu Jiang Estuary National Nature Reserve, 
Liaoning, China (39.8° N, 123.9° E), a key staging site of 
both species [40], Fudan University and Pūkorokoro 
Miranda Naturalists’ Trust conducted surveys during 
northward migration (mid-March to mid-May), 2010–
2020. At 14 shorebird sites along the Chinese coast, sur-
veys were carried out during northward migration (April 
to June), 2015–2017, with observers spending 2–3 field 
days at each site (see Additional file  1 for site coordi-
nates). Additionally, incidental sightings were reported 
by birdwatchers or from shorebird surveys that did not 
focus on observing banded individuals (e.g. [41]). We 
compiled all these observations into our resighting his-
tory for each individually marked Great Knot and Bar-
tailed Godwit for our analysis of site fidelity.

Satellite transmitter deployments
In September and October 2014–2016, we deployed 4.5 g 
and 9.5  g solar Platform Terminal Transmitters (PTTs, 
Microwave Telemetry, USA) onto a subset of the Great 
Knots and Bar-tailed Godwits banded at Roebuck Bay 
to track their movements. PTTs were programmed to 
operate on a duty cycle of 8 h of transmission and 25 h 
off. Tags were attached to Bar-tailed Godwits with a Tef-
lon leg-loop harness [42], and onto Great Knots using a 
body harness [43] made of elastic nylon (Elastan, Vaessen 

Creative, The Netherlands). Birds were released at their 
capture locations.

Measures of site fidelity based on tracking data
For all tracking data collected, we kept all standard Argos 
locations (i.e. location classes 3, 2, and 1, 68th error per-
centiles < 2.5 km, [44]). For auxiliary locations (i.e. classes 
0, A, B and Z, 68th error percentiles between 10 and 
30  km), we removed implausible locations by applying 
the Hybrid Douglas filter [44]. The filtering parameters 
were set at 120 km/h for the maximum sustainable rate of 
movement and 10 km for the maximum redundant dis-
tance. We further accounted for spatial error in the Argos 
telemetry by fitting the tracking data with a continuous-
time random walk state-space model with the ‘fit_ssm’ 
function in the ‘foiegras’ R package [45]. The state-space 
model incorporated the error ellipse information of the 
Kalman filter-based Argos locations, and the fitted loca-
tions from the model were used in the analysis of identi-
fying migration stops and timing.

We measured fidelity to a ‘site’, which was defined as a 
cluster of habitats that an individual bird used daily for 
foraging and roosting [46]. Site fidelity within the non-
breeding period was measured for 41 Great Knots and 24 
Bar-tailed Godwits that were tracked from their release 
date (in September to November) to one week before 
the first departure date of a tracked conspecific (among 
all years, first departure date: 22 March for Great Knots, 
4 April for Bar-tailed Godwits), so as to avoid including 
pre-migratory movements in this analysis. We calculated 
the proportion of birds that remained at a single site dur-
ing this non-breeding period and described movements 
to any other sites. Site fidelity across non-breeding peri-
ods was also estimated for the 10 Great Knots and 9 Bar-
tailed Godwits with complete migration tracks to and 
from the breeding grounds. For these individuals, we cal-
culated the proportion of birds that returned to Roebuck 
Bay and described the movements of those that overwin-
tered at other sites.

Seasonal site fidelity to migratory stopover sites in the 
Yellow Sea was measured from the first recorded migra-
tion of each tracked individual. As per design, the elas-
tic nylon harness material on Great Knots degrades and 
breaks within a year of deployment which did not allow 
for calculation of between-year fidelity of Great Knots to 
migration sites. Therefore, to characterize seasonal site 
fidelity for a comparison between species, we determined 
whether birds re-visited the same northward migra-
tion site during the subsequent southward migration in 
their first tracked migration. We employed the follow-
ing procedures to identify stopover sites per northward/
southward migration per individual: (1) locations within 
the Yellow Sea with ground speed less than 5 km/h were 
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identified as ‘stationary’, (2) the stationary locations were 
clustered into sites using R package ‘NbClust’, using the 
‘Complete’ aggregation method and ‘silhouette’ index 
[47] to determine the optimal number of clusters, and 
(3) distance between the centroid of the cluster and each 
point assigned to the cluster was calculated. If > 5% of 
points are further than 25  km away from the centroid, 
clustering was performed again. The resulting sites con-
tained points of which ≥ 95% were within 25 km of their 
centroid. If centroids of two sites were closer than 50 km, 
they were merged. We discarded sites that contained less 
than 3 stationary locations and those where the first and 
last recorded locations were less than 2 h apart. Depar-
ture times were extrapolated over the intervening travel 
distance between the last location at a stop and the next 
location, and arrival times were calculated in the same 
way. A site was defined as re-visited across seasons when 
a southward site’s centroid was within 50 km of a north-
ward site’s centroid for a particular bird. The threshold 
distance of 50  km was chosen as it is large enough to 
cover the habitats that an individual bird moves through 
daily for foraging and roosting [46, 48] and matches the 
spatial resolution at which the band resightings were 
reported. This ensures that metrics calculated from the 
satellite tracking data are comparable to those from the 
resighting data.

In addition to reporting site fidelity as the propor-
tion of birds that re-visited sites across seasons, we also 
present the degree of site fidelity at the individual level, 
measured as the proportion of time birds spent at re-vis-
ited sites relative to their total length of stay in the Yel-
low Sea during southward migration. We compare these 
proportions between the two species by fractional regres-
sion. To show the frequency of movements within sites 
in the Yellow Sea, we present the number of Yellow Sea 
sites used per individual during northward and south-
ward migration. We compare this metric to the same one 
from the resighting data, to provide an understanding of 
the magnitude of any issues resulting from non-observed 
movements when analyzing resighting data.

Measures of site fidelity based on resighting data
We measured site fidelity during the non-breeding 
period from resighting data of marked adults captured 
in June to December in Roebuck Bay. While individuals 
carrying a satellite transmitter were also marked, they 
were excluded as their movements are already part of 
the analysis described above. For site fidelity within the 
non-breeding period, we analyzed individuals with two 
or more sightings from 1 November until a week before 
the first departure of the tracked birds; this resulted in a 
sample of 641 Bar-tailed Godwits and 775 Great Knots 
from which we then calculated the number of sites where 

each individual was resighted. We grouped individuals 
with ≥ 2 sightings for multiple years into one datapoint 
to avoid pseudo-replication, taking the maximum num-
ber of sites it was observed within a single non-breeding 
period. Individuals observed in ≥ 2 sites reflected a move 
between sites within the non-breeding period. If an indi-
vidual was observed at only a single site, it was consid-
ered to have stayed there for the entire non-breeding 
period, moved to an un-surveyed site, or moved to a sur-
veyed site but not observed there. The nature of the data 
did not allow us to distinguish between these scenarios.

We then compared the proportions of individuals 
observed at one or two sites between the two species 
by a Fisher’s Exact test. The above analysis pertained to 
within-season movement between the resighting sites of 
Roebuck Bay and Eighty Mile Beach. However, a small 
proportion of individuals were also observed by research-
ers/birdwatchers at other sites in the flyway during the 
non-breeding season. We further examined the sighting 
history of these few individuals to understand these rare 
long-distance movements.

To measure site fidelity during the migration period in 
the Yellow Sea, we expanded our dataset to include birds 
marked at other sites in Australia because, to realisti-
cally assess site fidelity, our sample size of birds marked 
with unique colour-bands in Northwest Australia was 
too small (only 34 Bar-tailed Godwits and 135 Great 
Knots seen two or more times in the Yellow Sea within 
2008–2017). Therefore, we included resighting data from 
birds marked (with a flag engraved with a unique letter-
number code) by the Australian Wader Studies Group 
(AWSG) at four other sites throughout Australia, and the 
resighting data was collected by the field efforts described 
above and collated by the AWSG. The final dataset com-
prises resightings in the Yellow Sea from 2008 to 2017 of 
173 Bar-tailed Godwits marked in Northwest Australia 
and Victoria, and 513 Great Knots marked in Northwest 
Australia, Queensland, Northern Territory and Victoria.

Movements between sites within the Yellow Sea within 
a migration season were described by the number of sites 
where an individual was resighted. We calculated this 
metric only for individuals that were resighted ≥ 2 times 
within a migration season and only for northward migra-
tion, because sample sizes were too low during south-
ward migration (only 4 Bar-tailed Godwits and 6 Great 
Knots were resighted ≥ 2 times). We highlight how the 
imperfect nature of resighting data affects the results 
when we compare this metric with the satellite tracking 
data.

We characterize seasonal site fidelity derived from 
resighting data the same way as for the satellite-track-
ing data, i.e. whether birds re-visited the same north-
ward migration sites during the subsequent southward 
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migration. We calculated the proportion of individuals 
seen at the same Yellow Sea stopping site during both 
northward and southward migration. We characterize 
between-year site fidelity during northward migration 
by calculating the proportion of individuals seen at the 
same Yellow Sea site in ≥ 2 northward migrations. We 
compare these proportions between the two species by 
Fisher’s exact tests. All data analyses were performed in R 
version 3.6.2 [49]. We used p < 0.05 to establish statistical 
significance.

Results
Within the annual cycle of the Bar-tailed Godwits and 
Great Knots, both species spent the most time in North-
west Australia, their non-breeding area (Fig. 1A). During 
their migration from Northwest Australia to breeding 
areas in the East Russian Arctic and back (Fig. 1B), they 
spent the longest period along the Yellow Sea coast 
(Fig.  1A). In both Northwest Australia and the Yellow 
Sea, the occurrence of the two species strongly over-
lapped in time (Fig. 1A).

Site fidelity in the non‑breeding period
In the non-breeding period, none of the 24 satellite-
tracked Bar-tailed Godwits moved out of Roebuck Bay, 
while seven out of 41 (17%) Great Knots moved in and 
out of Roebuck Bay (Fig.  2A, Table  1). Within-season 
movement patterns for Great Knots were quite varied. 
Two birds moved to Willie Creek about 20 km north of 
Roebuck Bay and one of the two returned briefly to Roe-
buck Bay. One bird moved south to Bidyadanga (80 km) 
for less than one day and returned to Roebuck Bay. Of 
those that moved to Eighty Mile Beach (ca. 170–320 km 
south), two stayed there and one went back-and-forth 
twice before finally returning to Roebuck Bay in early 
March. One bird moved north to Northern Territory, 
Australia (ca. 920  km north) and stayed there until 23 
May when the tag ceased reporting. Four out of these 
seven Great Knots departed from Roebuck Bay dur-
ing northward migration, but none were tracked for a 
complete return migration. Among the 34 Great Knots 
that we detected only in Roebuck Bay during the non-
breeding period, 10 reached the breeding grounds and 
were tracked until October, in which eight returned to 
Northwest Australia and two overwintered in the North-
ern Territory (Table 1, Fig. 2A). Among the 24 Bar-tailed 
Godwits, nine reached the breeding grounds and all 
returned to Roebuck Bay (Table 1).

The resighting data showed that in both study species, 
most individuals (> 90%) were resighted at only one site 
during the non-breeding period. A small percentage were 
resighted at two sites, namely Roebuck Bay and Eighty 
Mile Beach, implying that individuals moved between 

the two sites during the non-breeding period. A higher 
percentage of Great Knots than Bar-tailed Godwits were 
resighted within a non-breeding period at the two sites 
(6.2% vs 2.7%, Fisher’s exact test, p = 0.001, Table 1). Four 
Great Knots and two Bar-tailed Godwits were resighted 
outside of Roebuck Bay and Eighty Mile Beach during the 
non-breeding period (Fig. 2B).

Seasonal site fidelity during migration
Satellite-tracked Bar-tailed Godwits used fewer Yel-
low Sea sites than Great Knots (median = 2 sites vs. 3 
sites) during both northward and southward migra-
tion (Table 2, Fig. 3A,B). Sixteen of the 20 (80%) tracked 
Bar-tailed Godwits, and 8 of the 12 (67%) tracked Great 
Knots, re-visited the same site(s) during southward 
migration as used during northward migration. Also, 
Bar-tailed Godwits stayed proportionally longer at the 
re-visited sites than Great Knots (92% vs 19%, fractional 
regression, p = 0.01, Table 2, Fig. 4).

From the resighting data, within the northward migra-
tion season most individuals (> = 98% for both spe-
cies) were observed at only one of the Yellow Sea sites 
(Table  2, Fig.  3C,D). The percentage of individuals 
seen at two or more sites was not significantly different 
between Bar-tailed Godwits and Great Knots within a 
season (0.8% vs. 2.4%, Fisher’s exact test, p = 0.45). Pull-
ing data from all the years together, among those indi-
viduals resighted during both northward and southward 
migration, 10 out of 11 Bar-tailed Godwits and 7 out of 
11 Great Knots were seen at the same northward stop-
ping site during southward migration of the same year. 
Across years, more Bar-tailed Godwit individuals were 
seen at the same northward migration Yellow Sea stop-
ping sites (98.0%) than Great Knots (89.5%; Fisher’s exact 
test, p = 0.005).

Discussion
Our findings based on both satellite tracking and resight-
ing data revealed high site fidelity in both study species, 
with the majority of individuals using only one site dur-
ing the non-breeding season and returning to the same 
stopping sites during north- and southward migration. 
However, the pattern of Bar-tailed Godwits being more 
site-faithful than Great Knots holds across places within 
the non-breeding season. In the non-breeding period, 
both data types showed that Bar-tailed Godwits are sig-
nificantly more site faithful than Great Knots and less 
likely to move between sites. During migration, sea-
sonal site fidelity (the proportion of individuals visiting 
the same sites during northward and southward migra-
tion) did not differ significantly between the two species 
based on both data types, although in absolute terms 
the proportion of site-faithful Bar-tailed Godwits was 
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higher than that of Great Knots. However, the degree of 
site fidelity, measured by the proportion of time spent 
at the repeatedly visited sites, was significantly higher 
for Bar-tailed Godwits than Great Knots. This pattern 

also holds for the fidelity across northward migrations 
measured based on resighting data. In two published 
studies comparing site fidelity between shorebird spe-
cies, one conducted across the entire country of New 
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Fig. 1 (A) Occurrence at non‑breeding site (Northwest Australia), staging area (Yellow Sea) and breeding areas for satellite‑tagged Bar‑tailed 
Godwits (Limosa lapponica) and Great Knots (Calidris tenuirostris) in 2015–2017. Height of bars corresponds to the number of individuals. (B) 
Migration tracks of satellite‑tagged Bar‑tailed Godwits (left) and Great Knots (right) in 2015–2017. Black rectangle indicates Northwest Australia 
and yellow rectangle indicates the Yellow Sea study area
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Zealand [50] and one at Moray Basin, Scotland [51], both 
concluded that the Bar-tailed Godwits were more site-
faithful than Red Knots (Calidris canutus, a sister spe-
cies of the Great Knot). These studies and our current 
study together suggest that the difference in the degree 
of site fidelity between Knots and Godwits is consistent 
across places. As these two species co-occur in the same 
habitat, the  difference in site fidelity between the  Knot 

and Godwit might reflect different  spatial and year-to-
year predictability of their preferred prey [52, 53]. While 
the spatial and temporal variation in prey of the Knot is 
better studied (e.g. [54]), little is known about how prey 
of Bar-tailed Godwits varies in space and time. Long-
term measurements of prey distributions (e.g. [55, 56]) 
would allow testing hypotheses regarding the relation-
ship between site fidelity and prey variability.  Our data 

Fig. 2 (A) Movements of satellite‑tracked Great Knots out of Roebuck Bay during the non‑breeding period in Northwest Australia, 2014–2017. The 
triangle denotes Roebuck Bay where individuals were marked. Squares denote non‑breeding sites of two individuals that did not return to Roebuck 
Bay after a complete migration to the breeding grounds. (B) Resighting locations of individually marked Great Knots (green) and Bar‑tailed Godwits 
(orange) banded in Roebuck Bay. Triangle denotes Roebuck Bay and purple polygon denotes Eighty Mile Beach. Dotted line connects sites 
where the same individual was resighted across years. Figure to the right is a zoomed‑in version of the area enclosed in the square
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do not allow an investigation of whether site fidelity 
is an individual-specific trait (i.e. if certain individu-
als are consistently more faithful both in the Yellow Sea 
and at Northwest Australia). This is because there was 
no between-individual variation in site fidelity among 
Bar-tailed Godwits (all birds were faithful to Northwest 
Australia). And, for Great Knots, the individuals that 
were not site faithful in Northwest Australia were not 
tracked past the Yellow Sea during southward migration 

(resulting in no data on seasonal site fidelity in the Yellow 
Sea for those individuals).

While the mark-resighting data and satellite track-
ing data both showed that Bar-tailed Godwits were 
the more site-faithful species, mark-resighting data 
alone underestimated the proportion of individuals 
of both species that moved between sites during the 
non-breeding season (Table 1) and the number of sites 
birds used in the Yellow Sea (Table  2). For example, 

Table 1 Site fidelity during the non‑breeding period for Bar‑tailed Godwits Limosa lapponica and Great Knots Calidris tenuirostris, as 
measured from satellite tracking and resighting data

Differences between the two species were tested by Fisher’s exact tests

*p < 0.05

Bar‑tailed Godwit Great Knot

Satellite-tracking data

Percentage of individuals that remained at one site dur‑
ing entire non‑breeding period

100% (n = 24) 83% (n = 41) p = 0.04*

Percentage of individuals that returned to same non‑breeding 
site after migration

100% (n = 9) 80% (n = 10) p = 0.47

Resighting data

Percentage of individuals resighted at n sites within a non‑breeding period

1 site 97.3% (624 birds) 93.8% (727 birds)

 Only Roebuck Bay 617 birds 690 birds

 Only Eighty Mile Beach 7 birds 36 birds

 Only Darwin 0 1 bird

2 sites (Roebuck Bay and Eighty Mile Beach) 2.7% (17 birds) 6.2% (48 birds) p = 0.001*

Table 2 Site fidelity during the migration period in the Yellow Sea for Bar‑tailed Godwits Limosa lapponica and Great Knots Calidris 
tenuirostris, as measured from satellite tracking data and resighting data

Differences between the two species in proportions of individuals were tested by Fisher’s exact tests. The difference in percentage of time spent in the repeatedly 
visited sites was tested by fractional regression

*p < 0.05

Bar‑tailed Godwit Great Knot

Satellite tracking data

Median number of sites used per individual:

 Northward 2 (range: 1–3) 3 (range: 1–4)

 Southward 2 (range: 1–3) 2.5 (range: 1–4)

Percentage of individuals visiting the same sites during northward and southward migration 80% (n = 20) 67% (n = 12) p = 0.43

Percentage of time spent in the repeatedly visited sites (of total staging duration in southward 
migration)

Median = 92% Median = 19% p = 0.01*

Resighting data

Percentage of individuals resighted at n Yellow Sea site(s) within a northward migration

 1 site 99.2% (132 birds) 97.7% (333 birds) p = 0.45

 2 sites 0.8% (1 bird) 2.1% (7 birds)

 3 sites 0 0.3% (1 bird)

Percentage of individuals resighted at the same Yellow Sea site during both northward and south‑
ward migration

90.9% (n = 11) 63.6% (n = 11) p = 0.31

Percentage of individuals resighted at the same Yellow Sea site in >  = 2 northward migrations 98.0% (n = 102) 89.5% (n = 267) p = 0.005*
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during the northward migration, satellite tracking data 
showed individual Great Knots used three sites in the 
Yellow Sea, and Bar-tailed Godwit used two, while the 
mark-resighting data indicated that most individuals 
only used one site. This pattern is likely an outcome 
that, constrained by logistics, many sites visited by the 
birds were unsurveyed or only sporadically surveyed 
(as illustrated for Great Knots in [23]); and at the sur-
veyed sites, ground observers could have missed some 

flocks or some marked individuals within dense flocks. 
Although tracking individual birds with satellite trans-
mitters does have its limitations, e.g. the handicap of 
carrying a tag can alter migration patterns in some 
cases [57], tags do provide a more representative meas-
ure of site use and fidelity than mark-resighting data. 
However, since mark-resighting data is still the most 
prevalent data set for most shorebird species in the East 
Asian-Australasian Flyway and elsewhere, it can be 

Fig. 3 Movements among sites within the Yellow Sea used by satellite‑tagged (A) Bar‑tailed Godwits and (B) Great Knots in 2015–2017. Solid lines 
connect sites visited by an individual within the same northward or southward migration season. Sites within the Yellow Sea where individually 
marked (C) Bar‑tailed Godwits and (D) Great Knots were resighted during northward migration in 2008–2017. Dashed lines connect sites visited 
by an individual within the same migration season
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utilized for multi-species comparisons of site fidelity, 
bearing in mind that the results should be interpreted 
as a relative measure of site fidelity.

Site fidelity and the response to habitat loss 
and deterioration in the Yellow Sea
During our study, shorebird habitats in Northwest Aus-
tralia remained stable, whereas habitats in the Yellow 
Sea underwent significant loss and deterioration [25–28, 
58]. Notably, a major event of habitat deterioration that 
occurred just prior to our study may have impacted Great 
Knots more heavily than Bar-tailed Godwits. In April 
2006, ~ 290  km2 of tidal flats were impounded by the 
closure of the 33  km-seawall at Saemangeum (35.8°N, 
126.6°E) in South Korea. This area supported 20–30% of 
the world population of Great Knots during both north-
ward and southward migration in the late 1990s to early 
2000s [59]. About 100,000 Great Knots disappeared from 
Saemangeum and the adjacent Geum Estuary and no 
substantial increase in Great Knot numbers was observed 
at other nearby staging sites [60]. If these missing birds 
mostly died, Great Knots should show a particularly 
severe decline in survival and population size. However, 
the subsequent rates of decline in adult survival (2006–
2012) and in population size (1993–2012) did not differ 
between Knots and the less-habitat affected Godwits [28, 
29]. One possible explanation for this pattern might be 
that the lower site faithfulness of Great Knots allowed 
them to respond to this dramatic loss of habitat by mov-
ing to alternative sites, which might have helped to soften 
the impact.

Similar processes could have happened when habitat 
deteriorated at other main staging sites for Bar-tailed 
Godwits and Great Knots. One well-documented habitat 
deterioration event took place at Yalu Jiang Estuary of the 
Yellow Sea [40]. Yearly monitoring of the macrobenthic 
community in 2011–2016 showed that the population of 
Potamocorbula laevis, a main bivalve prey of shorebirds, 
had drastically declined starting in 2013; the very high 
density in 2011 (708 ind/m2) had declined by > 99% in 
2016 [54]. This drastic change likely profoundly impacted 
the Great Knot, a mollusk specialist, and less so the Bar-
tailed Godwit which also feeds on polychaetes [61]. The 
lower site fidelity of Great Knots compared to Bar-tailed 
Godwits in the Yellow Sea might partly reflect that the 
Great Knots were more affected by habitat deteriora-
tion and thus, needed to move to alternative sites more 
often. However, the same between-species difference in 
site fidelity was also found in Northwest Australia. This 
leads to the question of whether the individual Great 
Knots that survived habitat deterioration events are the 
individuals with the tendency for lower site fidelity. If so, 
this could contribute to the site fidelity patterns that we 
measured at the population level. And, if site fidelity has a 
heritable component, events selecting for low site fidelity 
individuals would lead to a decrease in site fidelity level 
over generations. Of particular interest would be the situ-
ation of habitat gains rather than losses: if some Yellow 
Sea habitats are being restored in the future, would less 
site faithful individuals be faster at discovering restored 
sites? Thus, would populations with a higher proportion 
of low-site fidelity individuals recover more rapidly?

Conclusions
To answer the questions raised above, site fidelity exhib-
ited by different species should be measured over periods 
of positive or negative changes in habitat quality. Our 
study provides essential insights towards such a compar-
ative approach. We show that differences in site fidelity 
between species are consistent across satellite tracking 
and resighting data. While satellite tracking data provides 
more fine-scaled patterns [62], these data are more costly 
to collect and have not been implemented in many spe-
cies. Therefore, long-term resighting data are a viable 
alternative for quantifying site fidelity. As differences in 
site fidelity between the Knots and Godwits persisted in 
both the non-breeding and migration periods, further 
studies with multiple species would verify if a migratory 
species’ site fidelity in one location can provide insights 
into its site fidelity in the whole annual cycle. Ultimately, 
concurrent measurements of demographic rates (survival 

Fig. 4 Proportion of time spent at the same sites during northward 
and southward migration (of total staging duration in southward 
migration) for satellite‑tracked Bar‑tailed Godwits (n = 20) and Great 
Knots (n = 12) in 2015–2017. Each dot represents the proportion 
calculated for an individual
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and recruitment) and population trends would be needed 
to understand the significance of site fidelity variation in 
population response to human-induced environmental 
changes.
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