Alaska Department of Fish and Game (ADFG). Our wealth maintained: a strategy for conserving Alaska’s diverse wildlife and fish resources. Juneau: Alaska Department of Fish and Game; 2006. p. xviii+824. https://www.adfg.alaska.gov/static/species/wildlife_action_plan/cwcs_full_document.pdf.
Google Scholar
Arctic Monitoring and Assessment Programme (AMAP). Snow, water, ice, and permafrost in the Arctic: summary for policy-makers. Oslo; 2017. Retrieved from www.amap.no/swipa.
Arthur SM, Manly BFJ, Garner GW. Assessing habitat selection when availability changes. Ecology. 1996;77(1):215–27.
Article
Google Scholar
Beck PSA, Goetz SJ, Mack MC, Alexander HD, Jin Y, Randerson JT, et al. The impacts and implications of an intensifying fire regime on Alaskan boreal forest composition and albedo. Glob Chang Biol. 2011;17(9):2853–66. https://doi.org/10.1111/j.1365-2486.2011.02412.x.
Article
Google Scholar
Bourgoin G, Garel M, Blanchard P, Dubray D, Maillard D, Gaillard JM. Daily responses of mouflon (Ovis gmelini musimon × Ovis sp.) activity to summer climatic conditions. NRC Research Press. 2011;89(9):765–73. https://doi.org/10.1139/Z11-046.
Article
Google Scholar
Boyce MS. Scale for resource selection functions. Divers Distrib. 2006;12(3):269–76. https://doi.org/10.1111/j.1366-9516.2006.00243.x.
Article
Google Scholar
Boyce MS, Vernier PR, Nielsen SE, Schmiegelow FKA. Evaluating resource selection functions. Ecol Model. 2002;157(2–3):281–300.
Article
Google Scholar
Brenning A. Statistical geocomputing combining R and SAGA: the example of landslide susceptibility analysis with generalized additive models. In: Boehner J, Blaschke T, Montanarella L, editors. SAGA - seconds out (= hamburger Beitraege zur Physischen Geographie und Landschaftsoekologie), vol. 19; 2008. p. 23–32.
Google Scholar
Brivio F, Zurmühl M, Grignolio S, Von Hardenberg J, Apollonio M, Ciuti S. Forecasting the response to global warming in a heat-sensitive species. Sci Rep. 2019;9(3048):1–16. https://doi.org/10.1038/s41598-019-39450-5.
Article
CAS
Google Scholar
Brodie JF, Post ES, Doak DF. Wildlife conservation in a changing climate. Chicago: University of Chicago Press; 2012.
Book
Google Scholar
Broders HG, Coombs AB, Mccarron JR. Ecothermic responses of moose (Alces alces) to thermoregulatory stress on mainland Nova Scotia. Alces. 2012;48:53–61.
Google Scholar
Bump JK, Webster CR, Vucetich JA, Rolf O, Shields JM, Powers MD. Ungulate carcasses perforate ecological filters and create biogeochemical hotspots in forest herbaceous layers allowing trees a competitive advantage. Ecosystems. 2009;12(6):996–1007. https://doi.org/10.1007/s10021-009-9274-0.
Article
Google Scholar
Burkett VR, Wilcox DA, Stottlemyer R, Barrow W, Fagre D, Baron J, et al. Nonlinear dynamics in ecosystem response to climatic change: case studies and policy implications. Ecol Complex. 2005;2(4):357–94. https://doi.org/10.1016/j.ecocom.2005.04.010.
Article
Google Scholar
Cameron RD, Smith T, Fancy SG, Gerhart KL, White RG. Calving success of female caribou in relation to body weight. Can J Zool. 1993;71(3):480–6.
Article
Google Scholar
Christie KS, Ruess RW, Lindberg MS, Mulder CP. Herbivores influence the growth, reproduction, and morphology of a widespread Arctic willow. PLoS One. 2014;9(7):1–9. https://doi.org/10.1371/journal.pone.0101716.
Article
Google Scholar
Clarke A, Rothery P. Scaling of body temperature in mammals and birds. Funct Ecol. 2008;22(1):58–67. https://doi.org/10.1111/j.1365-2435.2007.01341.x.
Article
Google Scholar
Coops NC, Wulder MA. Breaking the habit(at). Trends Ecol Evol. 2019;34(7):585–7. https://doi.org/10.1016/j.tree.2019.04.013.
Article
PubMed
Google Scholar
Corlatti L, Gugiatti A, Ferrari N, Formenti N, Trogu T, Pedrotti L. The cooler the better? Indirect effect of spring–summer temperature on fecundity in a capital breeder. Ecosphere. 2018;9(6):1–13. https://doi.org/10.1002/ecs2.2326.
Article
Google Scholar
Craiu RV, Duchesne T, Fortin D. Inference methods for the conditional logistic regression model with longitudinal data. Biom J. 2008;50(1):97–109.
Article
Google Scholar
Demarchi MW, Bunnell FL. Forest cover selection and activity of cow moose in summer. Acta Theriol. 1995;4(1):23–36.
Article
Google Scholar
Dodge S, Bohrer G, Weinzierl R, Davidson S, Kays R, Douglas D, et al. The environmental-DATA automated track annotation (Env-DATA) system: linking animal tracks with environmental data. Movement Ecology. 2013;1(1):3. https://doi.org/10.1186/2051-3933-1-3.
Article
PubMed
PubMed Central
Google Scholar
Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carr G, et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography. 2013;36(1):27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x.
Article
Google Scholar
Dussault C, Ouellet J-P, Courtois R, Huot J, Breton L, Larochelle J. Behavioural responses of moose to thermal conditions in the boreal forest. Ecoscience. 2004;11(3):321–8.
Article
Google Scholar
Dussault C, Ouellet J, Courtois R, Huot J, Breton L, Jolicoeur H. Linking moose habitat selection to limiting factors. Ecography. 2005;28(5):619–28.
Article
Google Scholar
Elmore RD, Carroll JM, Tanner EP, Hovick TJ, Grisham BA, Fuhlendorf SD, et al. Implications of the thermal environment for terrestrial wildlife management. Wildl Soc Bull. 2017;41(2):183–93. https://doi.org/10.1002/wsb.772.
Article
Google Scholar
Epting J, Verbyla D. Landscape-level interactions of prefire vegetation , burn severity, and postfire vegetation over a 16-year period in interior Alaska. Can J For Res. 2005;35(6):1367–77. https://doi.org/10.1139/X05-060.
Article
Google Scholar
Fortin D, Beyer HL, Boyce MS, Smith DW, Duchesne T, Mao JS. Wolves influence elk movements: behavior shapes a trophic cascade in Yellowstone National Park. Ecology. 2005;86(5):1320–30.
Article
Google Scholar
Gelman A. Scaling regression inputs by dividing by two standard deviations. Stat Med. 2008;27(15):2865–73. https://doi.org/10.1002/sim.3107.
Article
PubMed
Google Scholar
Gurarie E, Mahoney P, LaPoint S, Davidson S. Above: functions and methods for the animals on the move project of the Arctic boreal vulnerability experiment (ABoVE - NASA). R package version 0.11; 2018.
Google Scholar
Hansen BB, Herfindal I, Aanes R, Sæther B-E, Henriksen S. Functional response in habitat selection and the tradeoffs between foraging niche components in a large herbivore. Nordic Society Oikos. 2009;118(6):859–72.
Article
Google Scholar
Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, et al. High-resolution global maps of forest cover change. Science. 2013;342(6160):850–3. https://doi.org/10.1126/science.1244693.
Article
CAS
Google Scholar
Hayes RD, Harestad AS. Wolf functional response and regulation of moose in the Yukon. Can J Zool. 2000;78(1):60–6.
Article
Google Scholar
Hebblewhite M, Merrill E. Modelling wildlife-human relationships for social species with mixed-effects resource selection models. J Appl Ecol. 2008;45(3):834–44. https://doi.org/10.1111/j.1365-2664.2008.01466.x.
Article
Google Scholar
Hijmans RJ. Raster: geographic data analysis and modeling. R package version 3.0–2; 2019. https://CRAN.R-project.org/package=raster.
Google Scholar
Hosmer DW, Lemeshow S. Applied logistic regression. 2nd ed. New York: Wiley; 2000.
Book
Google Scholar
Intergovernmental Panel on Climate Change (IPCC). In: Core Writing Team, Pachauri RK, Meyer LA, editors. Climate Change 2014: Synthesis Report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Geneva: IPCC; 2014. p. 151.
Chapter
Google Scholar
Johnson EA. Fire and vegetation dynamics: studies from the north American boreal forest. New York: Cambridge University Press; 1996.
Johnson DH. The comparison of usage and availability measurements for evaluating resource preference. Ecology. 1980;61(1):65–71.
Article
Google Scholar
Johnstone JF, Chapin FSIII. Fire interval effects on successional trajectory in boreal forests of Northwest Canada. Ecosystems. 2006;9(2):268–77. https://doi.org/10.1007/S10021-005-0061-2.
Article
Google Scholar
Johnstone JF, Hollingsworth TN, Chapin FSIII, Mack MC. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Glob Chang Biol. 2010;16(4):1281–95. https://doi.org/10.1111/j.1365-2486.2009.02051.x.
Article
Google Scholar
Joly K, Craig T, Sorum MS, McMillan JS, Spindler MA. Variation in fine-scale movements of moose in the upper Koyukuk River drainage, northcentral Alaska. Alces. 2015;51:97–105.
Google Scholar
Joly K, Klein DR, Verbyla DL, Rupp TS, Chapin FS III. Linkages between large-scale climate patterns and the dynamics of Arctic caribou populations. Ecography. 2011;34(2):345–52. https://doi.org/10.1111/j.1600-0587.2010.06377.x.
Article
Google Scholar
Joly K, Sorum MS, Craig T, Julianus EL. The effects of sex, terrain, wildfire, winter severity, and maternal status on habitat selection by moose in north-Central Alaska. Alces. 2016;52:101–15.
Google Scholar
Kasischke ES, Turetsky MR. Recent changes in the fire regime across the north American boreal region — spatial and temporal patterns of burning across Canada and Alaska. Geophys Res Lett. 2006;33(9). https://doi.org/10.1029/2006GL025677.
Kasischke ES, Verbyla DL, Rupp TS, McGuire AD, Murphy KA, Jandt R, et al. Alaska’s changing fire regime — implications for the vulnerability of its boreal forests 1. Candian J Forest Res. 2010;40(7):1313–24. https://doi.org/10.1139/X10-098.
Article
Google Scholar
Keating KA, Gogan PJP, Vore JM, Irby L. A simple solar radiation index for wildlife habitat studies. J Wildl Manag. 2007;71(4):1344–8. https://doi.org/10.2193/2006-359.
Article
Google Scholar
Kelly R, Chipman ML, Higuera PE, Stefanova I, Brubaker LB, Sheng F. Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. Proc Natl Acad Sci. 2013;110(32):13055–60. https://doi.org/10.1073/pnas.1305069110.
Article
PubMed
Google Scholar
Kielland K, Bryant JP. Moose herbivory in taiga: effects on biogeochemistry and vegetation dynamics in primary succession. Oikos. 1998;82(2):377–83.
Article
Google Scholar
Leblond M, Dussault C, Ouellet JP. What drives fine-scale movements of large herbivores? A case study using moose. Ecography. 2010;33(6):1102–12. https://doi.org/10.1111/j.1600-0587.2009.06104.x.
Article
Google Scholar
Lenarz MS, Nelson ME, Schrage MW, Edwards AJ. Temperature mediated moose survival in northeastern Minnesota. J Wildl Manag. 2009;73(4):503–10. https://doi.org/10.2193/2008-265.
Article
Google Scholar
Markon C, Gray S, Berman M, Eerkes-Medrano L, Hennessy T, Huntington H, et al. Alaska. In: Reidmiller DR, Avery CW, Easterling DR, Kunkel KE, Lewis KLM, Maycock TK, Stewart BC, editors. Impacts, risks, and adaptation in the United States: fourth National Climate Assessment, volume II. Washington, DC: US Global Change Research Program; 2018. p. 11–85–1241.
Google Scholar
Mason TH, Brivio F, Stephens PA, Apollonio M, Grignolio S. The behavioral trade-off between thermoregulation and foraging in a heatsensitive species. Behav Ecol. 2017;28(3):908–18.
Article
Google Scholar
McCain CM, King SRB. Body size and activity times mediate mammalian responses to climate change. Glob Chang Biol. 2014;20(6):1760–9. https://doi.org/10.1111/gcb.12499.
Article
PubMed
Google Scholar
McCann NP, Moen RA, Harris TR. Warm-season heat stress in moose (Alces alces). Can J Zool. 2013;91(12):893–8 Retrieved from http://www.nrcresearchpress.com/doi/abs/10.1139/cjz-2013-0175.
Article
Google Scholar
McLaren BE, Peterson RO. Wolves, moose, and tree rings on isle Royale. Science. 1994;266(5190):1555–8.
Article
CAS
Google Scholar
Melin M, Matala J, Mehtätalo L, Tiilikainen R, Tikkanen OP, Maltamo M, et al. Moose (Alces alces) reacts to high summer temperatures by utilizing thermal shelters in boreal forests - an analysis based on airborne laser scanning of the canopy structure at moose locations. Glob Chang Biol. 2014;20(4):1115–25. https://doi.org/10.1111/gcb.12405.
Article
PubMed
Google Scholar
Mesinger FM, DiMego G, Kalnay E, Mitchell K, Shafran PC, Ebiuzaki W, et al. North american regional reanalysis. Am Meterological Soc. 2006;87(3):343–60. https://doi.org/10.1175/BAMS-87-3-343.
Article
Google Scholar
Montgomery RA, Redilla KM, Moll RJ, Van Moorter B, Rolandsen CM, Millspaugh JJ, et al. Movement modeling reveals the complex nature of the response of moose to ambient temperatures during summer. J Mammal. 2019;100(1):169–77. https://doi.org/10.1093/jmammal/gyy185.
Article
Google Scholar
Morales JM, Moorcroft PR, Matthiopoulos J, Frair JL, Kie JG, Powell RA, et al. Building the bridge between animal movement and population dynamics. Philos Transact Royal Society B: Biol Sci. 2010;365(1550):2289–301. https://doi.org/10.1098/rstb.2010.0082.
Article
Google Scholar
Moreau G, Fortin D, Couturier S, Duchesne T. Multi-level functional responses for wildlife conservation: the case of threatened caribou in managed boreal forests. J Appl Ecol. 2012;49(3):611–20. https://doi.org/10.1111/j.1365-2664.2012.02134.x.
Article
Google Scholar
Muff S, Signer J, Fieberg J. Accounting for individual-specific variation in habitat-selection studies: efficient estimation of mixed-effects models using Bayesian or frequentist computation. J Anim Ecol. 2020;89(1):80–92. https://doi.org/10.1111/1365-2656.13087.
Article
PubMed
Google Scholar
Murray DL, Cox EW, Ballard WB, Whitlaw HA, Lenarz MS, Custer TW, et al. Pathogens, nutritional deficiency, and climate influences on a declining moose population. Wildl Monogr. 2006;166:1), 1–30.
Article
Google Scholar
Mysterud A, Ims R. Functional responses in habitat use: availability influences relative use in trade-off situations. Ecology. 1998;79(4):1435–41. https://doi.org/10.2307/176754.
Article
Google Scholar
National Oceanic and Atmospheric Administration (NOAA). National Centers for environmental information, temperature summaries; 2019. [FIPS:02]. Retrieved from https://www.ncdc.noaa.gov/cdo-web/search, [Accessed 1/6/2020].
Google Scholar
Nowacki GJ, Spencer P, Fleming M, Jorgenson T. Unified ecoregions of Alaska, U.S. Geol Surv Open File Rep. 2003. p. 02–297 (map). https://pubs.er.usgs.gov/publication/ofr2002297.
Pan W. Akaike’s information criterion in generalized estimating equations. Biometrics. 2001;57(1):120–5.
Article
CAS
Google Scholar
Paragi TF, Kellie KA, Peirce JM, Warren MJ. Movements and Sightability of moose in game management unit 21E. Juneau: Alaska Department of Fish and Game; 2017.
Google Scholar
Pekel JF, Cottam A, Gorelick N, Belward AS. High-resolution mapping of global surface water and its long-term changes. Nature. 2016;540(7633):418–22. https://doi.org/10.1038/nature20584.
Article
CAS
PubMed
Google Scholar
Porter, Claire, Morin, Paul; Howat, Ian; Noh, Myoung-Jon; Bates, Brian; Peterman, Kenneth; Keesey, Scott; Schlenk, Matthew; Gardiner, Judith; Tomko, Karen; Willis, Michael; Kelleher, Cole; Cloutier, Michael; Husby, Eric; Foga, Steven; Nakamura, Hitomi; Platson, Melisa; Wethington, Michael, Jr.; Williamson, Cathleen; Bauer, Gregory; Enos, Jeremy; Arnold, Galen; Kramer, William; Becker, Peter; Doshi, Abhijit; D’Souza, Cristelle; Cummens, Pat; Laurier, Fabien; Bojesen, Mikkel, 2018, “ArcticDEM”, https://doi.org/10.7910/DVN/OHHUKH, Harvard Dataverse, V1, 2018, [Accessed 10/1/2018].
Post E, Brodie J, Hebblewhite M, Anders AD, Maier JAK, Wilmers CC. Global population dynamics and hot spots of response to climate change. Bioscience. 2009;59(6):489–97. https://doi.org/10.1525/bio.2009.59.6.7.
Article
Google Scholar
Prima MC, Duchesne T, Fortin D. Robust inference from conditional logistic regression applied to movement and habitat selection analysis. PLoS One. 2017;12(1):1–13. https://doi.org/10.1371/journal.pone.0169779.
Article
CAS
Google Scholar
R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2019. URL https://www.R-project.org/.
Google Scholar
Renecker LA, Hudson RJ. Seasonal energy expenditures and thermoregulatory responses of moose. Can J Zool. 1986;64(2):322–7.
Article
Google Scholar
Renecker LA, Schwartz CC. Food habits and feeding behavior. In: Franzmann, Schwartz CC, editors. Ecology and Management of the North American Moose. 2nd ed. Washington, D.C.: Wildlife Management Institutions; 2007. p. 403–39.
Rönnegård L, Forslund P, Danell Ö. Lifetime patterns in adult female mass, reproduction, and offspring mass in semidomestic reindeer (Rangifer tarandus tarandus). Can J Zool. 2002;80(12):2047–55. https://doi.org/10.1139/Z02-192.
Article
Google Scholar
Schwartz CC, Renecker LA. Nutrition and energetics. In: Franzmann, Schwartz CC, editors. Ecology and Management of the North American Moose. 2nd ed. Washington, D.C.: Wildlife Management Institutions; 2007. p. 441–78.
Screen JA. Arctic amplification decreases temperature variance in northern mid- to high-latitudes. Nat Clim Chang. 2014;4(7):577–82. https://doi.org/10.1038/NCLIMATE2268.
Article
Google Scholar
Shenoy A, Johnstone JF, Kasischke ES, Kielland K. Persistent effects of fire severity on early successional forests in interior Alaska. For Ecol Manage. 2011;261(3):381–90. https://doi.org/10.1016/j.foreco.2010.10.021.
Article
Google Scholar
Speakman JR, Król E. Maximal heat dissipation capacity and hyperthermia risk: neglected key factors in the ecology of endotherms. J Anim Ecol. 2010;79(4):726–46. https://doi.org/10.1111/j.1365-2656.2010.01689.x.
Article
PubMed
Google Scholar
Street GM, Rodgers AR, Fryxell JM. Mid-day temperature variation influences seasonal habitat selection by moose. J Wildl Manag. 2015;79(3):505–12. https://doi.org/10.1002/jwmg.859.
Article
Google Scholar
Testa JW, Becker EF, Lee GR. Movements of female moose in relation to birth and death of calves. Alces. 2000;36:155–62.
Google Scholar
Therneau T. A package for survival analysis in S. version 2.38; 2015. https://CRAN.R-project.org/package=survival.
Google Scholar
Thompson DP, Barboza PS, Crouse JA, McDonough TJ, Badajos OH, Herberg AM. Body temperature patterns vary with day, season, and body condition of moose (Alces alces). J Mammal. 2019;100(5):1466–78.
Article
Google Scholar
Thompson DP, Crouse JA, Jaques S, Barboza PS. Redefining physiological responses of moose (Alces alces) to warm environmental conditions. J Therm Biol. 2020;102581.
Timmermann HR, McNicol JG. Moose habitat needs. For Chron. 1988;64(3):238–45.
Article
Google Scholar
Thurfjell H, Ciuti S, Boyce MS. Applications of step-selection functions in ecology and conservation. Movement Ecology. 2014;2(4):1–12. https://doi.org/10.1186/2051-3933-2-4.
Article
Google Scholar
van Beest FM, Milner JM. Behavioural responses to thermal conditions affect seasonal mass change in a heat-sensitive northern ungulate. PLoS One. 2013;8(6). https://doi.org/10.1371/journal.pone.0065972.
van Beest FM, Van Moorter B, Milner JM. Temperature-mediated habitat use and selection by a heat-sensitive northern ungulate. Anim Behav. 2012;84(3):723–35. https://doi.org/10.1016/j.anbehav.2012.06.032.
Article
Google Scholar
van Beest FM, Rivrud IM, Loe LE, Milner JM, Mysterud A. What determines variation in home range size across spatiotemporal scales in a large browsing herbivore? J Anim Ecol. 2011;80(4):771–85. https://doi.org/10.1111/j.1365-2656.2011.01829.x.
Article
PubMed
Google Scholar
Vors LS, Boyce MS. Global declines of caribou and reindeer. Glob Chang Biol. 2009;15(11):2626–33. https://doi.org/10.1111/j.1365-2486.2009.01974.x.
Article
Google Scholar
Walker WH, Meléndez-Fernández OH, Nelson RJ, Reiter RJ. Global climate change and invariable photoperiods: a mismatch that jeopardizes animal fitness. Ecol Evol. 2019;9(17):10044–54. https://doi.org/10.1002/ece3.5537.
Article
PubMed
PubMed Central
Google Scholar
Walther GR. Community and ecosystem responses to recent climate change. Philos Transact Royal Society B: Biol Sci. 2010;365(1549):2019–24. https://doi.org/10.1098/rstb.2010.0021.
Article
Google Scholar
Wells K, O’Hara RB, Cooke BD, Mutze GJ, Prowse TAA, Fordham DA. Environmental effects and individual body condition drive seasonal fecundity of rabbits: identifying acute and lagged processes. Oecologia. 2016;181(3):853–64. https://doi.org/10.1007/s00442-016-3617-2.
Article
PubMed
Google Scholar
Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016.
Book
Google Scholar
Wolken JM, Hollingsworth TN, Rupp TS, Chapin FS, Trainor SF, Barrett TM, et al. Evidence and implications of recent and projected climate change in Alaska’s forest ecosystems. Ecosphere. 2011;2(11):1–35. https://doi.org/10.1890/ES11-00288.1.
Article
Google Scholar