Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, Smouse PE. A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci U S A. 2008;105:19052–9.
Article
CAS
Google Scholar
Perry G, Pianka ER. Animal foraging: past, present and future. Trends Ecol Evol. 1997;12:360–4.
Article
CAS
Google Scholar
Drent RH, Daan S. The prudent parent: energetic adjustments in avian breeding. Ardea. 1980;68:225–52.
Google Scholar
Soanes LM, Arnould JPY, Dodd SG, Milligan G, Green JA. Factors affecting the foraging behaviour of the European shag: implications for seabird tracking studies. Mar Biol. 2014;161:1335–48.
Article
Google Scholar
Schwemmer P, Garthe S, Mundry R. Area utilization of gulls in a coastal farmland landscape: habitat mosaic supports niche segregation of opportunistic species. Landscape Ecol. 2008;23:355–67.
Article
Google Scholar
Yoda K, Tomita N, Mizutani Y, Narita A, Niizuma Y. Spatio-temporal responses of black-tailed gulls to natural and anthropogenic food resources. Mar Ecol Prog Ser. 2012;466:249–59.
Article
Google Scholar
Camphuysen KCJ, Shamoun-Baranes J, van Loon EE, Bouten W. Sexually distinct foraging strategies in an omnivorous seabird. Mar Biol. 2015;162:1417–28.
Article
Google Scholar
Strann K, Vader W. The nominate lesser black-backed gull Larus fuscus fuscus, a gull with a tern-like feeding biology, and its recent decrease in northern Norway. Ardea. 1992;80:133–42.
Google Scholar
Kubetzki U, Garthe S. Distribution, diet and habitat selection by four sympatrically breeding gull species in the south-eastern North Sea. Mar Biol. 2003;143:199–207.
Article
Google Scholar
Götmark F. Food and foraging in five European Larus gulls in the breeding season: a comparative review. Ornis Fennica. 1984;61:9–18.
Google Scholar
Lif M, Hjernqvist M, Olsson O, Österblom H. Long-term population trends in the Lesser Black-backed Gull Larus f. fuscus at Stora Karlsö and Lilla Karlsö, and initial results on breeding success. Ornis Svec. 2005;15:105–12.
Google Scholar
ArtDatabanken: Rödlistade arter i Sverige 2015. ArtDatabanken SLU, Uppsala. 2015. http://www.artdatabanken.se/media/2013/hela-boken.pdf Accessed 2 Dec 2015.
Alm DS. Elevated adult mortality in Larus gulls of the Baltic Sea – analyses with an ecosystem change approach. Sweden: Degree thesis, Stockholm University; 2006.
Google Scholar
Duhem C, Roche P, Vidal E, Tatoni T. Effects of anthropogenic food resources on yellow-legged gull colony size on Mediterranean islands. Popul Ecol. 2008;50:91–100.
Article
Google Scholar
Navarro J, Oro D, Bertolero A, Genovart M, Delgado A, Forero MG. Age and sexual differences in the exploitation of two anthropogenic food resources for an opportunistic seabird. Mar Biol. 2010;157:2453–9.
Article
CAS
Google Scholar
Blight LK, Hobson KA, Kyser TK, Arcese P. Changing gull diet in a changing world: A 150-year stable isotope (δ13C, δ15N) record from feathers collected in the Pacific Northwest of North America. Glob Change Biol. 2015;21:1497–507.
Article
Google Scholar
Möllmann C, Diekmann R, Müller‐Karulis B, Kornilovs G, Plikshs M, Axe P. Reorganization of a large marine ecosystem due to atmospheric and anthropogenic pressure: a discontinuous regime shift in the Central Baltic Sea. Glob Change Biol. 2009;15:1377–93.
Article
Google Scholar
Casini M, Lövgren J, Hjelm J, Cardinale M, Molinero JC, Kornilovs G. Multi-level trophic cascades in a heavily exploited open marine ecosystem. P Roy Soc Lond B Bio. 2008;275:1793–801.
Article
Google Scholar
Kadin M, Olsson O, Hentati-Sundberg J, Willerström Ehrning E, Blenckner T. Common Guillemot Uria aalge parents adjust provisioning rates to compensate for low food quality. Ibis. 2016;158:167–78.
Article
Google Scholar
Tyson C, Shamoun-Baranes J, Loon EEV, Camphuysen K, Hintzen NT. Individual specialization on fishery discards by lesser black-backed gulls (Larus fuscus). ICES J Mar Sci. 2015;72:1882–91.
Article
Google Scholar
Kim S-Y, Monaghan P. Interspecific differences in foraging preferences, breeding performance and demography in herring (Larus argentatus) and lesser black-backed gulls (Larus fuscus) at a mixed colony. J Zool. 2006;270:664–71.
Article
Google Scholar
Annett CA, Pierotti R. Chick hatching as trigger for dietary switching in the Western gull. Colonial Waterbirds. 1989;12:4–11.
Article
Google Scholar
Perrins CM, Smith SB. The breeding Larus gulls on Skomer island national nature reserve. Pembrokeshire Atlantic Seabirds. 2000;2:195–210.
Google Scholar
Camphuysen CJ. A historical ecology of two closely related gull species (Laridae): multiple adaptations to a man-made environment. Groningen: Ph D. thesis, University of Groningen; 2013.
Google Scholar
Tasker ML, Camphuysen CJ, Fossum P. Variation in prey taken by seabirds. In: Furness RW, Tasker ML, editors. Diets of seabirds and consequences of changes in food supply. ICES Coop. Res. Report No. 232, International Council for the Exploration of the Sea, Copenhagen. 1999. p.18–28.
Coulson JC, Coulson BA. Lesser Black-Backed Gulls Larus fuscus nesting in an inland urban colony: the importance of earthworms (Lumbricidae) in their diet. Bird Study. 2008;55:297–303.
Article
Google Scholar
Buckley PA, McCarthy MG. Insects, vegetation, and the control of laughing gulls (Larus atricilla) at Kennedy International Airport, New York City. J Appl Ecol. 1994;31:291–302.
Article
Google Scholar
Kruuk H. Foraging and spatial organization of the European badger, Meles meles L. Behavioral Ecol Sociobiol. 1978;4:75–89.
Article
Google Scholar
Devereaux CL, Whittingham MJ, Krebs JR, Fernandez-Juricic E, Vickery JA. What attracts birds to newly mown pasture? Decoupling the action of mowing from the provision of short swards. Ibis. 2006;146:302–6.
Article
Google Scholar
Blount JD, Houston DC, Surai PF, Møller AP. Egg-laying capacity is limited by carotenoid pigment availability in wild gulls Larus fuscus. P Roy Soc Lond B Bio. 2004;271:79–81.
Article
Google Scholar
Elliott KH, Gaston AJ, Crump D. Sex-specific behavior by a monomorphic seabird represents risk partitioning. Behav Ecol. 2010; doi:10.1093/beheco/arq076.
Hentati-Sundberg J, Österblom H, Kadin M, Jansson Å, Olsson O. The Karlsö murre lab methodology can stimulate innovative seabird research. Marine Ornithol. 2012;40:11–6.
Google Scholar
Bouten W, Baaij EW, Shamoun-Baranes J, Camphuysen KCJ. A flexible GPS Tracking system for studying bird behavior at multiple scales. J Ornithol. 2013;154:571–80.
Article
Google Scholar
Thaxter CB, Ross-Smith VH, Clark JA, Clark NA, Conway GJ, Marsh M, et al. A trial of three harness attachment methods and their suitability for long-term use on Lesser Black-backed Gulls and Great Skuas. Ringing Migr. 2014;29:65–76.
Article
Google Scholar
Coulson JC, Thomas CS, Butterfield JEL, Duncan N, Monaghan P, Shedden C. The use of head and bill length to sex live gulls Laridae. Ibis. 1983;125:549–57.
Article
Google Scholar
Kanamitsu M, Ebisuzaki W, Woollen J, Yang S-K, Hnilo JJ, Fiorino M, et al. NCEP-DOE AMIP-II Reanalysis (R-2). B Am Meteorol Soc. 2002;1631–1643.
R Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. 2013. http://www.R-project.org/
Kemp MU, van Loon E, Shamoun-Baranes J, Bouten W. RNCEP: global weather and climate data at your fingertips. Methods Ecol Evol. 2012;3:65–70.
Article
Google Scholar
Bivand R, Lewin-Koh N, Pebesma E, Archer E, Baddeley A, Bearman N, et al. Tools for reading and handling spatial objects. 2015. http://r-forge.r-project.org/projects/maptools/
Elliott KH, Chivers LS, Bessey L, Gaston AJ, Hatch SA, Kato A, et al. Windscapes shape seabird instantaneous energy costs but adult behavior buffers impact on offspring. Mov Ecol. 2014;2:17.
Article
Google Scholar
Dänhardt J. On the importance of farmland as stopover habitat for migrating birds. Ph.D. thesis, Lund University, Lund. 2009.
Bates D, Maechler M, Bolker B, Walker S. Lme4: Linear mixed-effects models using Eigen and S4. R package version 1.0-6. 2014. https://cran.rproject.org/web/packages/lme4/index.html. Accessed 7 April 2016.
Burnham KP, Anderson DR. Model selection and multimodel inference: a practical information-theoretic approach. 2nd ed. New York: Springer; 2002.
Google Scholar
Nakagawa S, Schielzeth H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol. 2013;4:133–42.
Article
Google Scholar
Barton K. MuMIn: Multi-model inference. R package version 1.10.0. 2014. https://cran.rproject.org/web/packages/MuMIn/index.html. Accessed 7 April 2016.
Gelman A. Scaling regression inputs by dividing by two standard deviations. Stat Med. 2008;27:2865–73.
Article
Google Scholar
Gelman A, Su YS, Yajima M, Hill J, Pittau MG, Kerman J, et al. arm: Data Analysis Using Regression and Multilevel/Hierarchical Models. 2015. https://cran.r-project.org/web/packages/arm/index.htmle. Accessed 7 April 2016.
Baayen RH. Analyzing linguistic data: A practical introduction to statistics using R. Cambridge: Cambridge University Press; 2008
Nakagawa S, Schielzeth H. Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol Rev. 2010;85:935–56.
Google Scholar
Garamszegi LZ. Uncertainties due to within-species variation in comparative Studies: measurement errors and statistical weights. In: Garamszegi LZ, editor. Modern phylogenetic comparative methods and their application in evolutionary biology. Berlin: Springer; 2014. p. 157–99.
Google Scholar
Hario M. Breeding failure and feeding conditions of lesser black-backed gulls Larus f. fuscus in the Gulf of Finland. Ornis Fennica. 1990;67:113–29.
Google Scholar
Corman AM, Mendel B, Voigt CC, Garthe S. Varying foraging patterns in response to competition? A multicolony approach in a generalist seabird. Ecol Evol. 2016; doi:10.1002/ece3.1884
Cama A, Abellana R, Christel I, Ferrer X, Vieites DR. Living on predictability: modelling the density distribution of efficient foraging seabirds. Ecography. 2012;35:912–21.
Article
Google Scholar
Humphreys EM, Wanless S, Bryant DM. Stage-dependent foraging in breeding black-legged kittiwakes Rissa tridactyla: distinguishing behavioural responses to intrinsic and extrinsic factors. J Avian Biol. 2006;37:436–46.
Article
Google Scholar
Bernstein C, Kacelnik A, Krebs JR. Individual decisions and the distribution of predators in a patchy environment. II. The influence of travel costs and structure of the environment. J Anim Ecol. 1991;60:205–25.
Article
Google Scholar
Shamoun-Baranes J, van Loon E. Energetic influence on gull flight strategy selection. J Exp Biol. 2006;209:3489–98.
Article
Google Scholar
Vernon JDR. Food of the common gull on grassland in autumn and winter. Bird Study. 1970;17:36–8.
Article
Google Scholar
Steele WK. Factors influencing inland foraging by gulls. The Ostrich. 1989;60:45–7.
Google Scholar
Spear LB, Ainley DG. Flight behavior of seabirds in relation to wind direction and wing morphology. Ibis. 1997;139:221–33.
Article
Google Scholar
Lewis S, Phillips RA, Burthe SJ, Wanless S, Daunt F. Contrasting responses of male and female foraging effort to year-round wind conditions. J Anim Ecol. 2015;84:1490–6.
Article
Google Scholar
Lewis S, Benvenuti S, Dall-Antonia L, Griffiths R, Money L, Sherratt TN, et al. Sex-specific foraging behavior in a monomorphic seabird. P Roy Soc Lond B Bio. 2002;269:1687–93.
Article
CAS
Google Scholar
Pons J. Feeding strategies of male and female herring gulls during the breeding season under various feeding conditions. Ethol Ecol Evol. 1994;6:1–12.
Article
Google Scholar
Patenaude-Monette M, Belisle M, Giroux J-F. Balancing energy budget in a central-place forager: which habitat to select in a heterogeneous environment? PLoS ONE. 2014; doi:10.1371/journal.pone.0102162
Pierotti R, Annett CA. Diet choice in the herring gull: constraints imposed by reproductive and ecological factors. Ecology. 1991;72:319–28.
Article
Google Scholar
Annett CA, Pierotti R. Long-term reproductive output in Western gulls: consequences of alternate tactics in diet choice. Ecology. 1999;80:288–97.
Article
Google Scholar
Bolnick DI, Svanbäck R, Fordyce JA, Yang LH, Davis JM, Hulsey CD, Forister ML. The ecology of individuals: incidence and implications of individual specialization. Am Nat. 2003;161:1–28.
Article
Google Scholar
Vander Zanden HB, Bjorndal KA, Reich KJ, Bolten AB. Individual specialists in a generalist population: results from a long-term stable isotope series. Biol Lett. 2010;6:711–4.
Article
Google Scholar
Camphuysen CJ, de Boer P, Bouten W, Gronert A, Shamoun-Baranes J. Mammalian prey in Laridae: increased predation pressure on mammal populations expected. Lutra. 2010;53:5–20.
Google Scholar
Tremblay Y, Thiebault A, Mullers R, Pistorius P. Bird-borne video-cameras show that seabird movement patterns relate to previously unrevealed proximate environment, not prey. PLoS ONE. 2014; doi:10.1371/journal.pone.0088424
Capandegui E. Factors influencing the breeding success of two ecologically similar gulls the lesser black-backed gull Larus f. fuscus and herring gull Larus argentatus at Stora Karlsö. Stockholm: Degree thesis, Stockholm University; 2006.
Google Scholar
Liebers D, Helbig AJ. Phylogeography and colonization history of Lesser Black-backed Gulls (Larus fuscus) as revealed by mtDNA sequences. J Evol Biol. 2002;15:1021–33.
Article
CAS
Google Scholar