Simpson JH, Sharples J. Introduction to the physical and biological oceanography of shelf seas. Cambridge: Cambridge University Press; 2012.
Book
Google Scholar
Sathyendranath S, Longhurst A, Caverhill CM, Platt T. Regionally and seasonally differentiated primary production in the North Atlantic. Deep-Sea Res Pt I. 1995;42:1773–802.
Article
Google Scholar
Stevick PT, Incze LS, Kraus SD, Rosen S, Wolff N, Baukus A. Trophic relationships and oceanography on and around a small offshore bank. Mar Ecol Prog Ser. 2008;363:15–28.
Article
Google Scholar
Brennan CE, Blanchard H, Fennel K. Putting temperature and oxygen thresholds of marine animals in context of environmental change: a regional perspective for the Scotian Shelf and Gulf of St. Lawrence. PLoS One. 2016;11(12):e0167411.
Cox SL, Embling CB, Hosegood PJ, Votier SC, Ingram SN. Oceanographic drivers of marine mammal and seabird habitat-use across shelf-seas: a guide to key features and recommendations for future research and conservation management. Est Coast Shelf Sci. 2018;212:294–310.
Article
Google Scholar
Gende SM, Sigler MF. Persistence of forage fish ‘hot spots’ and its association with foraging Steller sea lions (Eumetopias jubatus) southeast Alaska. Deep-Sea Res Pt II. 2006;53:432–41.
Article
Google Scholar
Sydeman WJ, Brodeur RD, Grimes CB, Bychkov AS, McKinnell S. Marine habitat “hotspots” and their use by migratory species and top predators in the North Pacific Ocean: introduction. Deep-Sea Res Pt II. 2006;53:247–9.
Article
Google Scholar
Dodge KL, Galuardi B, Miller TJ, Lutcavage ME. Leatherback turtle movements, dive behavior, and habitat characteristics in ecoregions of the Northwest Atlantic Ocean. PLoS One. 2014;9(3):e91726.
Article
PubMed
PubMed Central
CAS
Google Scholar
Thys TM, Ryan JP, Dewar H, Perle CR, Lyons K, O'Sullivan J, et al. Ecology of the ocean sunfish, Mola mola, in the southern California current system. J Exp Mar Biol Ecol. 2015;471:64–76.
Article
Google Scholar
Yen PPW, Sydeman WJ, Bograd SJ, Hyrenbach KD. Spring-time distributions of migratory marine birds in the southern California current: oceanic eddy associations and coastal habitat hotspots over 17 years. Deep-Sea Res Pt II. 2006;53(3–4):399–418.
Article
Google Scholar
Bailey H, Thompson P. Effect of oceanographic features on fine-scale foraging movements of bottlenose dolphins. Mar Ecol Prog Ser. 2010;418:223–33.
Article
Google Scholar
Dragon A, Monestiez P, Bar-Hen A, Guinet C. Linking foraging behaviour to physical oceanographic structures: southern elephant seals and mesoscale eddies east of Kerguelen Islands. Prog Oceanogr. 2010;87:61–71.
Article
Google Scholar
Bailey H, Benson SR, Shillinger GL, Bograd SJ, Dutton PH, Eckert SA, Morreale SJ, Paladino FV, Eguchi T, Foley DG, Block BA, Piedra R, Hitipeuw C, Tapilatu RF, Spotila JR. Identification of distinct movement patterns in Pacific leatherback turtle populations influenced by ocean conditions. Ecol Appl. 2012;22(3):735–47.
Article
PubMed
Google Scholar
Field I, Hindell M, Slip D, Michael K. Foraging strategies of southern elephant seals (Mirounga leonina) in relation to frontal zones and water masses. Antarct Sci. 2001;13(4):371–9.
Article
Google Scholar
Scales KL, Miller PI, Embling CB, Ingram SN, Pirotta E, Votier SC. Mesoscale fronts as foraging habitats: composite front mapping reveals oceanographic drivers of habitat use for a pelagic seabird. J R Soc Interface. 2014;11(100):UNSP 20140679.
Article
Google Scholar
Campagna C, Piola AR, Marin MR, Lewis M, Fernandez T. Southern elephant seal trajectories, fronts and eddies in the Brazil/Malvinas Confluence. Deep-Sea Res Pt I. 2006;53(12):1907–24.
Article
Google Scholar
Kuhn CE. The influence of subsurface thermal structure on the diving behavior of northern fur seals (Callorhinus ursinus) during the breeding season. Mar Biol. 2011;158(3):649–63.
Article
Google Scholar
Robinson PW, Simmons SE, Crocker DE, Costa DP. Measurements of foraging success in a highly pelagic marine predator, the northern elephant seal. J Anim Ecol. 2010;79(6):1146–56.
Article
CAS
PubMed
Google Scholar
Carter MID, Bennett KA, Embling CB, Hosegood PJ, Russell DJ. Navigating uncertain waters: a critical review of inferring foraging behaviour from location and dive data in pinnipeds. Mov Ecol. 2016;4(1):25.
Article
PubMed
PubMed Central
Google Scholar
Vacquie-Garcia J, Guinet C, Laurent C, Bailleul F. Delineation of the southern elephant seal’s main foraging environments defined by temperature and light conditions. Deep-Sea Res Pt II. 2015;113:145–53.
Article
Google Scholar
Bestley S, Jonsen ID, Hindell MA, Guinet C, Charrassin J. Integrative modelling of animal movement: incorporating in situ habitat and behavioural information for a migratory marine predator. Proc Royal Soc B. 2013;280(1750):20122262.
Article
Google Scholar
Grecian WJ, Lane JV, Michelot T, Wade HM, Hamer KC. Understanding the ontogeny of foraging behaviour: insights from combining marine predator bio-logging with satellite-derived oceanography in hidden Markov models. J R Soc Interface. 2018;15(143):0180084.
Article
Google Scholar
Langrock R, King R, Matthiopoulos J, Thomas L, Fortin D, Morales JM. Flexible and practical modeling of animal telemetry data: hidden Markov models and extensions. Ecology. 2012;93(11):2336–42.
Article
PubMed
Google Scholar
Barraquand F, Benhamou S. Animal movements in heterogeneous landscapes: identifying profitable places and homogeneous movement bouts. Ecology. 2008;89(12):3336–48.
Article
PubMed
Google Scholar
Carroll G, Cox M, Harcourt B, Pitcher BJ, Slip D, Jonsen I. Hierarchical influences of prey distribution on patterns of prey capture by a marine predator. Funct Ecol. 2017;31:1750–60.
Article
Google Scholar
Scales KL, Hazen EL, Jacox MG, Edwards CA, Boustany AM, Oliver MJ, Bograd SJ. Scale of inference: on the sensitivity of habitat models for wide-ranging marine predators to the resolution of environmental data. Ecography. 2017;40(1):210–20.
Article
Google Scholar
Ream RR, Sterling JT, Loughlin TR. Oceanographic features related to northern fur seal migratory movements. Deep-Sea Res Pt II. 2005;52(5–6):823–43.
Article
Google Scholar
Boehme L, Lovell P, Biuw M, Roquet F, Nicholson J, Thorpe SE, Meredith MP, Fedak M. Technical note: animal-borne CTD-satellite relay data loggers for real-time oceanographic data collection. Ocean Sci. 2009;5:685–95.
Article
Google Scholar
Biuw M, Boehme L, Guinet C, Hindell M, Costa D, Charrassin J-B, Roquet F, Bailleul F, Meredith M, Thorpe S, Tremblay Y, McDonald B, Park Y-H, Rintoul SR, Bindoff N, Goebel M, Crocker D, Lovell P, Nicholson J, Monks F, Fedak MA. Variations in behavior and condition of a Southern Ocean top predator in relation to in situ oceanographic conditions. Proc Natl Acad Sci U S A. 2007;104(34):13705–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jaud T, Dragon A, Garcia JV, Guinet C. Relationship between chlorophyll a concentration, light attenuation and diving depth of the southern elephant seal Mirounga leonina. PLoS One. 2012;7(10):e47444.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hammill MO, den Heyer CE, Bowen WD, Lang SLC. Grey seal population trends in Canadian waters, 1960–2016 and harvest advice. DFO Can Sci Advis Sec Res Doc. 2017;2017/052. v + 30 p.
Bowen WD, McMillan JI, Blanchard W. Reduced population growth of gray seals at Sable Island: evidence from pup production and age of primiparity. Mar Mammal Sci. 2007;23(1):48–64.
Article
Google Scholar
Breed GA, Jonsen ID, Myers RA, Bowen WD, Leonard ML. Sex-specific, seasonal foraging tactics of adult grey seals (Halichoerus grypus) revealed by state-space analysis. Ecology. 2009;90(11):3209–21.
Article
PubMed
Google Scholar
Breed GA, Bowen WD, McMillan JI, Leonard ML. Sexual segregation of seasonal foraging habitats in a non-migratory marine mammal. Proc Royal Soc B. 2006;273:2319–26.
Article
Google Scholar
Mahon R, Smith R. Demersal fish assemblages on the Scotian Shelf, Northwest Atlantic: spatial distribution and persistence. Can J Fish Aquat Sci. 1989;46:134–52.
Article
Google Scholar
Han G, Loder J, Smith P. Seasonal-mean hydrography and circulation in the Gulf of St. Lawrence and on the eastern Scotian and southern Newfoundland Shelves. J Phys Oceanogr. 1999;29(6):1279–301.
Article
Google Scholar
Dever M, Hebert D, Greenan BJW, Sheng J, Smith PC. Hydrography and coastal circulation along the Halifax Line and the connections with the Gulf of St. Lawrence. Atmos Ocean. 2016;54(3):199–217.
Article
CAS
Google Scholar
Loder JW, Han G, Hannah CG, Greenberg DA, Smith PC. Hydrography and baroclinic circulation in the Scotian Shelf region: winter versus summer. Can J Fish Aquat Sci. 1997;54:40–56.
Article
Google Scholar
Fuentes-Yaco C, King M, Li WK. Mapping areas of high phytoplankton biomass in the offshore component of the Scotian Shelf Bioregion: a remotely-sensed approach. DFO Can Sci Advis Sec Res Doc. 2015;2015/036. iv + 40 p.
Hannah C, Shore J, Loder J, Naimie C. Seasonal circulation on the western and central Scotian Shelf. J Phys Oceanogr. 2001;31(2):591–615.
Article
Google Scholar
Han GQ, Loder JW. Three-dimensional seasonal-mean circulation and hydrography on the eastern Scotian Shelf. J Geophys Res-Oceans. 2003;108(C5):3136.
Article
Google Scholar
Beck CA, Bowen WD, McMillan JI, Iverson SJ. Sex differences in the diving behaviour of a size-dimorphic capital breeder: the grey seal. Anim Behav. 2003;66(4):777–89.
Article
Google Scholar
Beck CA, Iverson SJ, Bowen WD, Blanchard W. Sex differences in grey seal diet reflect seasonal variation in foraging behaviour and reproductive expenditure: evidence from quantitative fatty acid signature analysis. J Anim Ecol. 2007;76(3):490–502.
Article
PubMed
Google Scholar
Dujon AM, Lindstrom RT, Hays GC. The accuracy of Fastloc GPS locations and implications for animal tracking. Methods Ecol Evol. 2014;5(11):1162–9.
Article
Google Scholar
Lidgard DC, Bowen WD, Jonsen ID, Iverson SJ. Predator-borne acoustic transceivers and GPS tracking reveal spatiotemporal patterns of encounters with acoustically tagged fish in the open ocean. Mar Ecol Prog Ser. 2014;501:157–68.
Article
Google Scholar
Bryant E. 2D location accuracy statistics for Fastloc cores running firmware versions 2.2 & 2.3. Redmond: Wildtrack Telemetry Systems Ltd.; 2007.Technical Report TR01. http://www.wildtracker.com/results_files/Technical%20Report%20TR01.pdf.
Vacquie-Garcia J, Mallefet J, Bailleul F, Picard B, Guinet C. Marine bioluminescence: measurement by a classical light sensor and related foraging behavior of a deep diving predator. Photochem Photobiol. 2017;93(5):1312–9.
Article
CAS
PubMed
Google Scholar
R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2018. URL https://www.R-project.org/.
Google Scholar
Krause DJ, Goebel ME, Marshall GJ, Abernathy K. Summer diving and haul-out behavior of leopard seals (Hydrurga leptonyx) near mesopredator breeding colonies at Livingston Island, Antarctic Peninsula. Mar Mammal Sci. 2016;32(3):839–67.
Article
Google Scholar
Nowak BVR. In situ measurements by instrumented grey seals (Halichoerus grypus) reveal fine-scale oceanographic properties and environmental influences on movement patterns. Master’s Thesis. Halifax: Dalhousie University; 2019.
Google Scholar
Ross T, Craig SE, Comeau A, Davis R, Dever M, Beck M. Blooms and subsurface phytoplankton layers on the Scotian Shelf: insights from profiling gliders. J Mar Syst. 2017;172:118–27.
Article
Google Scholar
Teo SLH, Kudela RM, Rais A, Perle C, Costa DP, Block BA. Estimating chlorophyll profiles from electronic tags deployed on pelagic animals. Aquat Biol. 2009;5:195–207.
Article
Google Scholar
Thompson D, Hammond P, Nicholas K, Fedak M. Movements, diving, and foraging behavior of gray seals (Halichoerus grypus). J Zool. 1991;224:223–2.
Article
Google Scholar
Jessopp M, Cronin M, Hart T. Habitat-mediated dive behaviour in free-ranging grey seals. PLoS One. 2013;8(5):e63720.
Article
CAS
PubMed
PubMed Central
Google Scholar
Whoriskey K, Auger-Methe M, Albertsen CM, Whoriskey FG, Binder TR, Krueger CC, et al. A hidden Markov movement model for rapidly identifying behavioral states from animal tracks. Ecol Evol. 2017;7(7):2112–21.
Article
PubMed
PubMed Central
Google Scholar
Jonsen ID, Flemming JM, Myers RA. Robust state–space modeling of animal movement data. Ecology. 2005;86(11):2874–80.
Article
Google Scholar
Dragon A, Bar-Hen A, Monestiez P, Guinet C. Comparative analysis of methods for inferring successful foraging areas from Argos and GPS tracking data. Mar Ecol Prog Ser. 2012;452:253–67.
Article
Google Scholar
Patterson TA, Basson M, Bravington MV, Gunn JS. Classifying movement behavior in relation to environmental conditions using hidden Markov models. J Anim Ecol. 2009;78:1113–23.
Article
PubMed
Google Scholar
Breslow NE, Clayton DG. Approximate inference in generalized linear mixed models. J Am Stat Assoc. 1993;88(421):9–25.
Google Scholar
Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JS. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol. 2009;24(3):127–35.
Article
PubMed
Google Scholar
Jonsen I, McMahon C, Patterson T, Auger-Methe M, Harcourt R, Hindell M, Bestley S. Movement behaviour responses to environment: fast inference of individual variation with a mixed effects model. Ecology. 2018;100:314690.
Google Scholar
Tucker S, Bowen WD, Iverson SJ. Dimensions of diet segregation in grey seals Halichoerus grypus revealed through stable isotopes of carbon (delta C-13) and nitrogen (delta N-15). Mar Ecol Prog Ser. 2007;339:271–82.
Article
CAS
Google Scholar
McIntyre T, Ansorge IJ, Bornemann H, Ploetz J, Tosh CA, Bester MN. Elephant seal dive behaviour is influenced by ocean temperature: implications for climate change impacts on an ocean predator. Mar Ecol Prog Ser. 2011;441:257–72.
Article
Google Scholar
Malpress V, Bestley S, Corney S, Welsford D, Labrousse S, Sumner M, et al. Bio-physical characterisation of polynyas as a key foraging habitat for juvenile male southern elephant seals (Mirounga leonina) in Prydz Bay, East Antarctica. PLoS One. 2017;12(9):e0184536.
Article
PubMed
PubMed Central
CAS
Google Scholar
Beck CA, Bowen WD, McMillan JI, Iverson SJ. Sex differences in diving at multiple temporal scales in a size-dimorphic capital breeder. J Anim Ecol. 2003;72(6):979–93.
Article
Google Scholar
Russell DJF, McClintock BT, Matthiopoulos J, Thompson PM, Thompson D, Hammond PS, Jones EL, MacKenzie ML, Moss S, McConnell BJ. Intrinsic and extrinsic drivers of activity budgets in sympatric grey and harbour seals. Oikos. 2015;124(11):1462–72.
Article
Google Scholar
Beck CA, Bowen WD, Iverson SJ. Sex differences in the seasonal patterns of energy storage and expenditure in a phocid seal. J Anim Ecol. 2003;72(2):280–91.
Article
Google Scholar
Lidgard DC, Boness DJ, Bowen WD, McMillan JI. State-dependent male mating tactics in the grey seal: the importance of body size. Behav Ecol. 2005;16(3):541–9.
Article
Google Scholar
Bowen WD, den Heyer CE, McMillan JI, Iverson SJ. Offspring size at weaning affects survival to recruitment and reproductive performance of primiparous gray seals. Ecol Evol. 2015;5(7):1412–24.
Article
PubMed
PubMed Central
Google Scholar
van Beest FM, Mews S, Elkenkamp S, Schuhmann P, Tsolak D, Wobbe T, Bartolino V, Bastardie F, Dietz R, von Dorrien C, Galatius A, Karlsson O, McConnell B, Nabe-Nielsen J, Tange Olsen M, Teilmann J, Langrock R. Classifying grey seal behaviour in relation to environmental variability and commercial fishing activity: a multivariate hidden Markov model. Sci Rep. 2019;9:5642.
Article
PubMed
PubMed Central
CAS
Google Scholar
McClintock BT, London JM, Cameron MF, Boveng PL. Bridging the gaps in animal movement: hidden behaviors and ecological relationships revealed by integrated data streams. Ecosphere. 2017;8(3):e01751.
Article
Google Scholar
O'Toole MD, Lea M, Guinet C, Schick R, Hindell MA. Foraging strategy switch of a top marine predator according to seasonal resource differences. Front Mar Sci. 2015;2:21.
Article
Google Scholar
Austin D, Bowen WD, McMillan JI, Iverson SJ. Linking movement, diving, and habitat to foraging success in a large marine predator. Ecology. 2006;87(12):3095–108.
Article
PubMed
Google Scholar
Breeze H, Fenton DG, Rutherford RJ, Silva MA. The Scotian Shelf: an ecological overview for ocean planning. DFO Can Tech Rep Fish Aquat Sci. 2002;2393: x + 259 pp.
Baumgartner MF, Lysiak NSJ, Schuman C, Urban-Rich J, Wenzel FW. Diel migration behavior of Calanus finmarchicus and its influence on right and sei whale occurrence. Mar Ecol Prog Ser. 2011;423:167–84.
Article
Google Scholar
Perry RI, Smith SJ. Identifying habitat associations of marine fishes using survey data: an application to the Northwest Atlantic. Can J Fish Aquat Sci. 1994;51(3):589–602.
Article
Google Scholar
Methratta ET, Link JS. Seasonal variation in groundfish habitat associations in the Gulf of Maine-Georges Bank region. Mar Ecol Prog Ser. 2006;326:245–56.
Article
Google Scholar
Houston AI, McNamara JM. A general theory of central place foraging for single-prey loaders. Theor Popul Biol. 1985;28(3):233–62.
Article
Google Scholar
Guinet C, Dubroca L, Lea M, Goldsworthy S, Cherel Y, Duhamel G, Bonadonna F, Donnay J. Spatial distribution of foraging in female Antarctic fur seals Arctocephalus gazella in relation to oceanographic variables: a scale-dependent approach using geographic information systems. Mar Ecol Prog Ser. 2001;219:251–64.
Article
Google Scholar
Carter MID, Russell DJF, Embling CB, Blight CJ, Thompson D, Hosegood PJ, Bennett KA. Intrinsic and extrinsic factors drive ontogeny of early-life at-sea behaviour in a marine top predator. Sci Rep. 2017;7:15505.
Article
PubMed
PubMed Central
CAS
Google Scholar
Brodie P, Beck B. Predation by sharks on the grey seal (Halichoerus grypus) in eastern Canada. Can J Fish Aquat Sci. 1983;40(3):267–71.
Article
Google Scholar
LeBoeuf B, Crocker DE, Costa DP, Blackwell SB, Webb PM, Houser DS. Foraging ecology of northern elephant seals. Ecol Monogr. 2000;70(3):353–82.
Article
Google Scholar
King M, Fenton D, Aker J, Serdynska A. Offshore ecologically and biologically significant areas in the Scotian Shelf bioregion. DFO Can Sci Advis Sec Res Doc. 2016; 2016/007. viii + 92 p.
Frank K. Scotian Shelf sand lance. DFO Atlantic Fisheries Stock Status Report. 1996; 1996/77E.