Emmenegger T, Hahn S, Bauer S. Individual migration timing of common nightingales is tuned with vegetation and prey phenology at breeding sites. BMC Ecol. 2014;14(1):9.
Article
PubMed
PubMed Central
Google Scholar
Stefanescu C, Puig-Montserrat X, Samraoui B, Izquierdo R, Ubach A, Arrizabalaga A. Back to Africa: autumn migration of the painted lady butterfly Vanessa cardui is timed to coincide with an increase in resource availability. Ecol Entomol. 2017;42(6):737–47.
Article
Google Scholar
Bauer S, Lisovski S, Hahn S. Timing is crucial for consequences of migratory connectivity. Oikos. 2016;125(5):605–12.
Article
Google Scholar
Brönmark C, Hulthén K, Nilsson P, Skov C, Hansson L-A, Brodersen J, et al. There and back again: migration in freshwater fishes. Can J Zool. 2013;92(6):467–79.
Article
Google Scholar
Cristol DA, Baker MB, Carbone C. Differential migration revisited. In: Current ornithology. Boston: Springer; 1999. p. 33–88. https://doi.org/10.1007/978-1-4757-4901-4.
Google Scholar
Thorpe JE, Mangel M, Metcalfe NB, Huntingford FA. Modelling the proximate basis of salmonid life-history variation, with application to Atlantic salmon, Salmo salar L. Evol Ecol. 1998;12(5):581–99.
Article
Google Scholar
Chapman BB, Hulthén K, Blomqvist DR, Hansson LA, Nilsson JÅ, Brodersen J, et al. To boldly go: individual differences in boldness influence migratory tendency. Ecol Lett. 2011;14(9):871–6.
Article
PubMed
Google Scholar
Ketterson ED, Nolan V. The Evolution of Differential Bird Migration. In: Johnston R.F. (eds) Current Ornithology. Current Ornithology. Boston: Springer; 1983;1. https://doi.org/10.1007/978-1-4615-6781-3_12.
Chapter
Google Scholar
Langdon JS, Thorpe JE. The ontogeny of smoltification: developmental patterns of gill Na+ K+-ATPase, SDH, and chloride cells in juvenile Atlantic salmon, Salmo salar L. Aquaculture. 1985;45(1–4):83–95.
Article
CAS
Google Scholar
Powolny T, Bretagnolle V, Dupoué A, Lourdais O, Eraud C. Cold tolerance and sex-dependent hypothermia may explain winter sexual segregation in a farmland bird. Physiol Biochem Zool. 2016;89(2):151–60.
Article
PubMed
Google Scholar
Catry P, Lecoq M, Araújo A, Conway G, Felgueiras M, King JMB, et al. Differential migration of chiffchaffs Phylloscopus collybita and P. ibericus in Europe and Africa. J Avian Biol. 2005;36(3):184–90.
Article
Google Scholar
Werner EE, Gilliam JF. The ontogenetic niche and species interactions in size-structured populations. Annu Rev Ecol Syst. 1984;15(1):393–425.
Article
Google Scholar
Bohlin T, Dellefors C, Faremo U. Optimal time and size for smolt migration in wild sea trout (Salmo trutta). Can J Fish Aquat Sci. 1993;50(2):224–32.
Article
Google Scholar
Økland F, Jonsson B, Jensen A, Hansen L. Is there a threshold size regulating seaward migration of brown trout and Atlantic salmon? J Fish Biol. 1993;42(4):541–50.
Article
Google Scholar
Zera AJ, Harshman LG. The physiology of life history trade-offs in animals. Annu Rev Ecol Syst. 2001;32(1):95–126.
Article
Google Scholar
Fleming IA, Gross MR. Latitudinal clines: a trade-off between egg number and size in Pacific salmon. Ecology. 1990;71(1):1–11.
Article
Google Scholar
Hereford J. A quantitative survey of local adaptation and fitness trade-offs. Am Nat. 2009;173(5):579–88.
Article
PubMed
Google Scholar
Yoshida T, Jones LE, Ellner SP, Fussmann GF, Hairston NG Jr. Rapid evolution drives ecological dynamics in a predator–prey system. Nature. 2003;424(6946):303.
Article
PubMed
CAS
Google Scholar
Kneitel JM, Chase JM. Trade-offs in community ecology: linking spatial scales and species coexistence. Ecol Lett. 2004;7(1):69–80.
Article
Google Scholar
Loose CJ, Dawidowicz P. Trade-offs in diel vertical migration by zooplankton: the costs of predator avoidance. Ecology. 1994;75(8):2255–63.
Article
Google Scholar
Reznick D. The structure of guppy life histories: the tradeoff between growth and reproduction. Ecology. 1983;64(4):862–73.
Article
Google Scholar
Lima SL. Nonlethal effects in the ecology of predator-prey interactions. Bioscience. 1998;48(1):25–34.
Article
Google Scholar
Angilletta MJ Jr, Wilson RS, Navas CA, James RS. Tradeoffs and the evolution of thermal reaction norms. Trends Ecol Evol. 2003;18(5):234–40.
Article
Google Scholar
Lima SL. Stress and decision making under the risk of predation: recent developments from behavioral, reproductive, and ecological perspectives. In: Advances in the study of behavior. Cambridge: Academic Press; 1998;27:215–90. https://doi.org/10.1016/S0065-3454(08)60366-6.
Google Scholar
Sih A, Bell A, Johnson JC. Behavioral syndromes: an ecological and evolutionary overview. Trends Ecol Evol. 2004;19(7):372–8.
Article
PubMed
Google Scholar
Werner EE, Anholt BR. Ecological consequences of the trade-off between growth and mortality rates mediated by foraging activity. Am Nat. 1993;142(2):242–72. https://doi.org/10.1086/285537.
Article
PubMed
CAS
Google Scholar
Werner EE, Hall DJ. Ontogenetic habitat shifts in bluegill: the foraging rate-predation risk trade-off. Ecology. 1988;69(5):1352–66.
Article
Google Scholar
Pomeroy AC. Tradeoffs between food abundance and predation danger in spatial usage of a stopover site by western sandpipers, Calidris mauri. Oikos. 2006;112(3):629–37.
Article
Google Scholar
Brönmark C, Skov C, Brodersen J, Nilsson PA, Hansson L-A. Seasonal migration determined by a trade-off between predator avoidance and growth. PLoS One. 2008;3(4):1–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hulthén K, Chapman BB, Nilsson PA, Vinterstare J, Hansson L-A, Skov C, et al. Escaping peril: perceived predation risk affects migratory propensity. Biol Lett. 2015;11(8):20150466.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kissner K, Weatherhead P, Francis C. Sexual size dimorphism and timing of spring migration in birds. J Evol Biol. 2003;16(1):154–62.
Article
PubMed
CAS
Google Scholar
Nebel S. Differential migration of shorebirds in the east Asian—Australasian flyway. Emu-Aust Ornithol. 2007;107(1):14–8.
Article
Google Scholar
Kuwada T, Tokuhara T, Shimizu M, Yoshizaki G. Body size is the primary regulator affecting commencement of smolting in amago salmon Oncorhynchus masou ishikawae. Fish Sci. 2016;82(1):59–71.
Article
CAS
Google Scholar
Saino N, Rubolini D, Serra L, Caprioli M, Morganti M, Ambrosini R, et al. Sex-related variation in migration phenology in relation to sexual dimorphism: a test of competing hypotheses for the evolution of protandry. J Evol Biol. 2010;23(10):2054–65.
Article
PubMed
CAS
Google Scholar
Guillemain M, Hearn R, King R, Gauthier-Clerc M, Simon G, Caizergues A. Differential migration of the sexes cannot be explained by the body size hypothesis in teal. J Ornithol. 2009;150(3):685.
Article
Google Scholar
Costa-Pereira R, Araújo MS, RdS O, Souza FL, Rudolf VH. Prey limitation drives variation in Allometric scaling of predator-prey interactions. Am Nat. 2018;192(4):E000-E.
Article
Google Scholar
Dieperink C, Bak B, Pedersen LF, Pedersen MI, Pedersen S. Predation on Atlantic salmon and sea trout during their first days as postsmolts. J Fish Biol. 2002;61(3):848–52.
Article
Google Scholar
Gross MR. Evolution of diadromy in fishes. Bethesda: American fisheries society symposium; 1987.
Jepsen N, Pedersen S, Thorstad E. Behavioural interactions between prey (trout smolts) and predators (pike and pikeperch) in an impounded river. Regul Rivers. 2000;16(2):189–98.
Article
Google Scholar
Trépanier S, Rodriguez M, Magnan P. Spawning migrations in landlocked Atlantic salmon: time series modelling of river discharge and water temperature effects. J Fish Biol. 1996;48(5):925–36.
Article
Google Scholar
Hembrel B, Arnekleiv J, L'Abée-Lund J. Effects of water discharge and temperature on the seaward migration of anadromous browntrout, Salmo trutta, smolts. Ecol Freshw Fish. 2001;10(1):61–4.
Article
Google Scholar
Gibbins C, Shellberg J, Moir H, Soulsby C. Hydrological influences on adult salmonid migration, spawning, and embryo survival. Bethesda: American Fisheries Society Symposium; 2008.
Jesmer BR, Merkle JA, Goheen JR, Aikens EO, Beck JL, Courtemanch AB, et al. Is ungulate migration culturally transmitted? Evidence of social learning from translocated animals. Science. 2018;361(6406):1023–5.
Article
PubMed
CAS
Google Scholar
Nelson ME. Development of migratory behavior in northern white-tailed deer. Can J Zool. 1998;76(3):426–32.
Article
Google Scholar
Mueller T, O’Hara RB, Converse SJ, Urbanek RP, Fagan WF. Social learning of migratory performance. Science. 2013;341(6149):999–1002.
Article
PubMed
CAS
Google Scholar
Gulseth OA, Nilssen KJ, Iversen M, Finstad B. Seawater tolerance in first-time migrants of anadromous Arctic charr (Salvelinus alpinus). Polar Biol. 2001;24(4):270–5.
Article
Google Scholar
Allan I, Ritter J. Salmonid terminology. ICES J Mar Sci. 1977;37(3):293–9.
Article
Google Scholar
Alerstam T, Hedenström A. The development of bird migration theory. Journal of Avian Biology. Published by: Wiley on behalf of Nordic Society Oikos. 1998. p. 343–69. https://doi.org/10.2307/3677155.
Article
Google Scholar
Myers J. A test of three hypotheses for latitudinal segregation of the sexes in wintering birds. Can J Zool. 1981;59(8):1527–34.
Article
Google Scholar
Quinn TP, Myers KW. Anadromy and the marine migrations of Pacific salmon and trout: Rounsefell revisited. Rev Fish Biol Fish. 2004;14(4):421–42.
Article
Google Scholar
Dodson JJ, Aubin-Horth N, Thériault V, Páez DJ. The evolutionary ecology of alternative migratory tactics in salmonid fishes. Biol Rev. 2013;88(3):602–25.
Article
PubMed
Google Scholar
Jonsson B. Life history patterns of freshwater resident and sea-run migrant brown trout in Norway. Trans Am Fish Soc. 1985;114(2):182–94.
Article
Google Scholar
Jonsson B, Gravem FR. Use of space and food by resident and migrant brown trout, Salmo trutta. Environ Biol Fishes. 1985;14(4):281–93.
Article
Google Scholar
Stolarski J, Hartman K. Comparisons of growth and condition of fluvial and resident brook trout within partially migratory populations. Fish Manag Ecol. 2010;17(1):33–9.
Article
Google Scholar
Smallwood PD, Ja S. Seasonal shifts in sex ratios of fledgling American kestrels (Falco sparverius paulus): the early bird hypothesis. Evol Ecol. 1998;12(7):839–53.
Article
Google Scholar
Elliott JM. Quantitative ecology and the brown trout. Oxford: Oxford University Press; 1994. ISBN: 0198546785.
Jonsson B, Jonsson N. Ecology of Atlantic Salmon and Brown trout. New York City: Springer; 2011. p. 67–135. https://doi.org/10.1007/978-94-007-1189-1.
Book
Google Scholar
Quinn TP. The behavior and ecology of Pacific salmon and trout. Vancouver: UBC press; 2011.
Stearns SC. Evolution illuminated: salmon and their relatives. Oxford: Oxford University Press; 2003.
Bohlin T, Dellefors C, Faremo U. Date of smolt migration depends on body-size but not age in wild sea-run brown trout. J Fish Biol. 1996;49(1):157–64.
Article
Google Scholar
Fängstam H, Berglund I, Sjöberg M, Lundqvist H. Effects of size and early sexual maturity on downstream migration during smolting in Baltic samon (Salmo salar). J Fish Biol. 1993;43(4):517–29.
Google Scholar
Jonsson B, Jonsson N. Migratory timing, marine survival and growth of anadromous brown trout Salmo trutta in the river Imsa, Norway. J Fish Biol. 2009;74(3):621–38.
Article
PubMed
CAS
Google Scholar
Power G, Balon E. Charrs: salmonid fishes of the genus Salvelinus. The Hague: EK Kluwer Boston Inc USA; 1980.
Google Scholar
Jepsen N, Aarestrup K, Økland F, Rasmussen G. Survival of radiotagged Atlantic salmon (Salmo salar L.)–and trout (Salmo trutta L.) smolts passing a reservoir during seaward migration. Hydrobiologia. 1998;371:347.
Article
Google Scholar
Poe TP, Hansel HC, Vigg S, Palmer DE, Prendergast LA. Feeding of predaceous fishes on out-migrating juvenile salmonids in John Day reservoir, Columbia River. Trans Am Fish Soc. 1991;120(4):405–20.
Article
Google Scholar
Elson P. The importance of size in the change from parr to smolt in Atlantic salmon. Canadian Fish Culturist. 1957;21:1–6.
Google Scholar
Hoar WS. Smolt transformation: evolution, behavior, and physiology. J Fisher Board Can. 1976;33(5):1233–52.
Article
Google Scholar
Rippmann UC. Biologie und Bewirtschaftung der Seeforelle (Salmo trutta lacustris) des Vierwaldstättersees unter besonderer Berücksichtigung der urnerischen Gewässer (Doctoral dissertation, ETH Zurich). https://doi.org/10.3929/ethz-a-000471598.
Dermond P. Phenotypic and ecological diversification in relation with habitat stability. Master's thesis. Kastanienbaum: University of Zurich: EAWAG Swiss Federal Institute of Aquatic Science and Technology, Centre of Ecology, Evolution and Biogeochemistry; 2014.
Elliott J, Hurley M, Fryer R. A new, improved growth model for brown trout, Salmo trutta. Functional ecology. 1995. p. 290–8. Published by: British Ecological Society. https://doi.org/10.2307/2390576.
Article
Google Scholar
Eaton JW, Bateman D, Hauberg S, Wehbring R. GNU octave version 4.2.0 manual: a high-level interactive language for numerical computations; 2016.
Google Scholar
Larsen MH, Thorn AN, Skov C, Aarestrup K. Effects of passive integrated transponder tags on survival and growth of juvenile Atlantic salmon Salmo salar. Anim Biotelemet. 2013;1:19. https://doi.org/10.1186/2050-3385-1-19.
Article
Google Scholar
Skov C, Brodersen J, Brönmark C, Hansson LA, Hertonsson P, Nilsson P. Evaluation of PIT-tagging in cyprinids. J Fish Biol. 2005;67(5):1195–201.
Article
Google Scholar
R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2018.
Google Scholar
Jonsson B, Jonsson N. Habitat use. In: Ecology of Atlantic Salmon and Brown Trout. New York City: Springer; 2011. p. 67–135.
Chapter
Google Scholar
Parker GA, Smith JM. Optimality theory in evolutionary biology. Nature. 1990;348(6296):27.
Article
Google Scholar
Aldvén D, Degerman E, Höjesjö J. Environmental cues and downstream migration of anadromous brown trout (Salmo trutta) and Atlantic salmon (Salmo salar) smolts; 2015.
Google Scholar
Alerstam T, Hedenström A, Åkesson S. Long-distance migration: evolution and determinants. Oikos. 2003;103(2):247–60.
Article
Google Scholar
Jonsson N, Jonsson B, Hansen LP. Partial segregation in the timing of migration of Atlantic salmon of different ages. Anim Behav. 1990;40(2):313–21.
Article
Google Scholar
Persson L, Andersson J, Wahlstrom E, Eklov P. Size-specific interactions in lake systems: predator gape limitation and prey growth rate and mortality. Ecology. 1996;77(3):900–11.
Article
Google Scholar
Truemper H, Lauer T. Gape limitation and piscine prey size-selection by yellow perch in the extreme southern area of Lake Michigan, with emphasis on two exotic prey items. J Fish Biol. 2005;66(1):135–49.
Article
Google Scholar
Lundvall D, Svanbäck R, Persson L, Byström P. Size-dependent predation in piscivores: interactions between predator foraging and prey avoidance abilities. Can J Fish Aquat Sci. 1999;56(7):1285–92.
Article
Google Scholar
Christensen B. Predator foraging capabilities and prey antipredator behaviours: pre-versus postcapture constraints on size-dependent predator-prey interactions. Oikos. 1996. p. 368–80. Published by: Wiley on behalf of Nordic Society Oikos. https://doi.org/10.2307/3546209.
Article
Google Scholar
Nilsson PA, Brönmark C. Prey vulnerability to a gape-size limited predator: behavioural and morphological impacts on northern pike piscivory. Oikos. 2000;88(3):539–46.
Article
Google Scholar
L'Abée-Lund JH, Langeland A, Jonsson B, Ugedal O. Spatial segregation by age and size in Arctic charr: a trade-off between feeding possibility and risk of predation. J Anim Ecol. 1993:160–8. Published by: British Ecological Society. https://doi.org/10.2307/5490.
Article
Google Scholar
Forseth T, Nesje TF, Jonsson B, Hårsaker K. Juvenile migration in brown trout: a consequence of energetic state. J Anim Ecol. 1999;68(4):783–93.
Article
Google Scholar
Fronhofer EA, Klecka J, Melián CJ, Altermatt F. Condition-dependent movement and dispersal in experimental metacommunities. Ecol Lett. 2015;18(9):954–63.
Article
PubMed
Google Scholar
Pomeroy A, Acevedo Seaman D, Butler R, Elner R, Williams T, Ydenberg R. Feeding–danger tradeoffs underlie stopover site selection by migrants. Avian Cons Ecol. 2008;3:7.
Google Scholar
Prop J, Black JM, Shimmings P. Travel schedules to the high arctic: barnacle geese trade-off the timing of migration with accumulation of fat deposits. Oikos. 2003;103(2):403–14.
Article
Google Scholar
Smith HG, Nilsson JÅ. Intraspecific variation in migratory pattern of a partial migrant, the blue tit (Parus caeruleus): an evaluation ofdifferent hypotheses. The Auk. 1987;104(1):109–115. Published by: British Ecological Society. https://doi.org/10.2307/5987.
Article
Google Scholar
Chapman BB, Brönmark C, Nilsson JÅ, Hansson LA. The ecology and evolution of partial migration. Oikos. 2011;120(12):1764–75.
Article
Google Scholar
Leonard JB, McCormick SD. Effects of migration distance on whole-body and tissue-specific energy use in American shad (Alosa sapidissima). Can J Fish Aquat Sci. 1999;56(7):1159–71.
Article
Google Scholar
Bohlin T, Pettersson J, Degerman E. Population density of migratory and resident brown trout (Salmo trutta) in relation to altitude: evidence for a migration cost. J Anim Ecol. 2001;70(1):112–21.
Article
Google Scholar
Jonsson N, Jonsson B, Hansen L. Changes in proximate composition and estimates of energetic costs during upstream migration and spawning in Atlantic salmon Salmo salar. J Anim Ecol. 1997:425–36.Published by: British Ecological Society. https://doi.org/10.2307/5987.
Article
Google Scholar
Thomsen DS, Koed A, Nielsen C, Madsen SS. Overwintering of sea trout (Salmo trutta) in freshwater: escaping salt and low temperature or an alternate life strategy? Can J Fish Aquat Sci. 2007;64(5):793–802.
Article
Google Scholar
Pulido F. Evolutionary genetics of partial migration–the threshold model of migration revis (it) ed. Oikos. 2011;120(12):1776–83.
Article
Google Scholar
Armstrong J, McKelvey S, Smith G, Rycroft P, Fryer R. Effects of individual variation in length, condition and run-time on return rates of wild-reared Atlantic salmon Salmo salar smolts. J Fish Biol. 2018;92(3):569–78.
Article
PubMed
CAS
Google Scholar