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Abstract 

Background:  Habitat specialists living in human-dominated landscapes are likely to be affected by habitat fragmen-
tation and human disturbances more than generalists. But there is a paucity of information on their response to such 
factors. We examined the effect of these factors on movement patterns of red pandas Ailurus fulgens, a habitat and 
diet specialist that inhabits the eastern Himalaya.

Methods:  We equipped 10 red pandas (six females, four males) with GPS collars and monitored them from Septem-
ber 2019 to March 2020 in Ilam, eastern Nepal. We collected habitat and disturbance data over four seasons. We con-
sidered geophysical covariates, anthropogenic factors and habitat fragmentation metrics, and employed linear -mixed 
models and logistic regression to evaluate the effect of those variables on movement patterns.

Results:  The median daily distance travelled by red pandas was 756 m. Males travelled nearly 1.5 times further than 
females (605 m). Males and sub-adults travelled more in the mating season while females showed no seasonal vari-
ation for their daily distance coverage. Red pandas were relatively more active during dawn and morning than the 
rest of the day, and they exhibited seasonal variation in distance coverage on the diel cycle. Both males and females 
appeared to be more active in the cub-rearing season, yet males were more active in the dawn in the birthing season. 
Two sub-adult females dispersed an average of 21 km starting their dispersal with the onset of the new moon follow-
ing the winter solstice. The single subadult male did not disperse. Red pandas avoided roads, small-habitat patches 
and large unsuitable areas between habitat patches. Where connected habitat with high forest cover was scarce the 
animals moved more directly than when habitat was abundant.

Conclusions:  Our study indicates that this habitat specialist is vulnerable to human disturbances and habitat frag-
mentation. Habitat restoration through improving functional connectivity may be necessary to secure the long-term 
conservation of specialist species in a human-dominated landscape. Regulation of human activities should go in par-
allel to minimize disturbances during biologically crucial life phases. We recommend habitat zonation to limit human 
activities and avoid disturbances, especially livestock herding and road construction in core areas.

Keywords:  Activity pattern, Female-biased dispersal, Fragmentation effect, GPS telemetry, Human disturbances, 
Road effect
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Introduction
Wildlife increasingly live in human-modified landscapes 
[1, 2]. Movement of animals through such landscapes is 
necessary to maintain ecosystem health and viability of 
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local populations and metapopulations [3, 4]. An unwill-
ingness to move through modified habitats makes habitat 
specialists especially vulnerable to human-induced frag-
mentation and disturbances [1, 3, 5], with implications 
for foraging, reproduction, and conspecific interactions 
[6–9]. Movement patterns usually vary across sex and age 
classes on a temporal scale [10–12]. An animal’s response 
to disturbances and risk may be more conspicuous in 
the presence of disturbances and risk, but it may differ 
based on the situation, proximity to the risk and land-
scape features where they alter their movement patterns 
to minimise the risk [13–15]. Furthermore, an animal’s 
responsiveness to disturbances may also be dependent on 
its species, age, sex, reproductive condition, nutritional 
condition and prior experience [3, 7, 16].

Variation in movement trajectory can be considered 
a proxy for response to risk and disturbances [3, 14]. 
Usually an animal’s movement path is direct, faster and 
shorter in areas with high risk and disturbance [3, 5, 14, 
15]. Conversely, they follow a tortuous path and slow-
down in high quality habitat [14]. The potential risk level 
also increases with an increase in the proportion of time 
spent in unsuitable areas [17]. Likewise animals modify 
their movement pattern across diel and seasonal cycles in 
response to disturbances [18]. Their dispersal pattern can 
also reveal some clues of the effects of disturbances [19, 
20].

Usually the dispersal distance increases with home 
range and body size but other factors also influence this 
process [19]. For instance life history traits, social and 
environmental factors affect the dispersal distance which 
varies across species and even within members of the 
same species [19–21]. While this is true, the landscape 
structure strongly influences the dispersal ability of ani-
mals [14]. Animals residing in disturbed and fragmented 
habitats may experience high risk and avoid interactions 
with humans [20, 21]. Such movement is important in 
maintaining genetic diversity and minimizing inbreed-
ing depression at the population level [20, 22]. However, 
in the absence of a particular type of habitat feature, as 
is more likely in fragmented habitats, habitat special-
ists usually have low dispersal capacity [23]. Despite the 
importance of dispersal information for conservation 
studying this process is challenging as young animals 
have to be observed. Furthermore it becomes more com-
plicated in endangered species as only a few individuals 
are available for study [24].

A recent study on an arboreal specialist folivore, the 
koala Phascolarctos cinereus, reported adverse effects of 
habitat fragmentation on movement patterns [5]. Nev-
ertheless there is a lack of information on how arboreal 
habitat specialists inhabiting mountain habitat deal with 
disturbances and habitat fragmentation. Therefore we 

aimed to study the effects of human disturbances on the 
montane, red panda Ailurus fulgens, in a human-dom-
inated landscape. This endangered species is a habitat 
and diet specialist of the Eastern Himalaya [25, 26]. In 
our study area it lives in an environment composed of a 
mixed matrix of pristine and disturbed habitat patches 
(Fig.  1). High resolution GPS tracking of red panda 
through this well characterised landscape matrix allowed 
us to estimate the response of the red panda to both nat-
ural factors and anthropogenic disturbances in detail that 
has not previously been possible.

The red panda has a restricted range in temperate for-
ests with abundant bamboo within an elevation from 
2300 to 4000 m with sporadic records beyond this range 
[26]. Red pandas also represent a group of herbivorous 
members of the order Carnivora having a specialized diet 
with poor nutrient content [27–29]. In order to obtain 
their energy requirements red pandas spend long hours 
foraging and remain less active outside feeding hours 
[30]. For this reason their active phases are interspersed 
with short resting periods [10, 30, 31]. This mammal is 
facing acute threats due to habitat loss and fragmentation 
[26], and poaching [32]. Over the red panda’s range land 
cover and usage is rapidly changing due to increasing 
development and human population growth [33]. Their 
global population in the wild has declined by nearly 50% 
in three generations i.e. less than 20 years [26]. This issue 
has raised the need for a better understanding of the 
movement ecology of red pandas in disturbed habitat. 
Previous studies have reported the avoidance of interac-
tions with humans [34–36] and an increase in red panda 
home range size in areas with low forest cover [36]. 
However, none of those studies [10, 31, 37] attempted 
to investigate red panda’s responses to disturbances and 
habitat fragmentation from a movement perspective.

We tested four a-priori hypotheses that red pandas: 
(1) have movement patterns that vary across sex and age 
classes on a seasonal scale, (2) are active throughout the 
diel cycle with only short passive periods, (3) move faster 
and more directly in risky and fragmented habitat, and 
(4) exhibit risk avoidance behaviour when dispersing.

Methods
Study area
This study was carried out in Ilam and Panchthar  dis-
trict, eastern Nepal (Fig. 1). The study area borders with 
Singalila National Park in India to the east. This area has 
sub-tropical and temperate climate. The mean annual 
temperature of the study area was 13.1  °C (SD 6.78, 
range − 1 to 28.9  °C; Additional file  1: Table  S1) with 
annual precipitation of 2590 mm [38]. This area harbours 
many other mammals including marbled cat Pardofelis 
marmorata, Asiatic golden cat Catopuma temminckii, 
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Fig. 1  The inset shows the study area located in eastern Nepal bordering India in the east. The study was carried out in Ilam and Panchthar districts 
in eastern Nepal. The elevation of study area ranges from 1500 to 3636 m. Black and grey lines represent road and human tracks respectively, while 
human habitations are shown as orange dots. Light green shading shows forest and white represents non-forest areas. We collared 10 animals 
including four males and six females in two sites: Site 1 (7 animals: 3 males, 4 females) and Site 2 (3 animals: 1 male, 2 females). It is clear from this 
figure that some areas of the study site are relatively close to human disturbance whereas others are relatively remote
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leopard cat Prionailurus bengalensis, leopard Panthera 
pardus, clouded leopard Neofelis nebulosa, tiger Panthera 
tigris, Northern red muntjac Muntiacus vaginalis, wild 
boar Sus scrofa, Himalayan goral Naemorhedus goral, 
Himalayan serow Capricornis thar, Assam macaque 
Macaca assamensis, yellow-throated marten Martes fla-
vigula, and Himalayan black bear Ursus thibetanus [39, 
40]. The study area was ideal to study red panda move-
ment patterns in a human-modified landscape as the 
component patches were surrounded to varying extents 
by human settlements with roads, human-walking 
tracks and livestock grazing activities present through-
out the year. There were more than 15 settlements with 
a total population of nearly 700 people living around the 
selected site [41]. The study area had a road density of 
3.84 ± 3.7 km/km2.

Data collection
We captured 10 red pandas (six females and four males) 
using cage traps and equipped them with GPS satellite 
collars (LiteTrack Iridium 150 TRD) following a standard 
operating procedure (see detail in [42]). Of these collared 
animals, seven were adults (four females, three males) 
and three were sub-adults (two females, one male). 
We monitored them from September 2019 to Decem-
ber 2020. The GPS collars were set with one fix every 2 h, 
transferred remotely. Our GPS telemetry data had two 
issues: missing location fixes, and imprecise locations of 
successfully acquired fixes. Therefore we omitted data 
with unsuccessful GPS fixes. We also omitted imprecise 
data with the dilution of precision > 5 [43]. Further, we 
retained only those fixes having a minimum of 2-h inter-
val of each animal. Finally, we retained only locations at 
possible elevations for our study area between 1500 and 
3636  m. We tested the collar for errors in the field and 
found errors up to 25 m. Hence, we considered 25 m as 
the threshold of telemetry errors in further analyses.

We also carried out camera trapping to quantify 
human, livestock, free-ranging dog and vehicular traffic. 
We deployed 34 trail cameras (Bushnell 20/24MP Trophy 
Cam HD No-Glow, X-change Color Model 1279) along 
roads, human trails and forest areas and fastened each 
camera to a tree at 40 cm above the ground. We placed 
these cameras at a minimum of 250 m apart. We used the 
program Camera Base 1.7 to sort the camera data [44]. 
We considered image captures of an individual taken 
30 min apart as an independent event.

Data analyses
Movement and dispersal
We estimated home range size as weighted Autocor-
related Kernel Density estimation at 95% isopleth in the 
ctmm package [45]. Initially we calculated step length 

(Table 1) and time lag using the move package [46]. Then 
we corrected telemetry errors, calculated the time lag 
between successive GPS fixes and retained those fixes 
with a 2-h time lag to avoid duplication in distance aggre-
gation. We calculated the moon fraction for each loca-
tion and considered the value from 0 to 1 representing 
new moon and full moon respectively [47]. We estimated 
movements during four periods of the diel time: dawn, 
day, dusk and night, and moon fraction using the suncalc 
package [47]. We considered four seasons based on red 
panda biology: premating (November–December), mat-
ing (January–March), gestation and birthing (hereafter 
birthing, April–July), and cub-rearing (August–October).

Animal movement is directed by the topography in 
their habitat [48]. We therefore considered the topo-
graphic distances following contours between natal and 
new home ranges as the dispersal distances (Table  1) 
which are longer than the straight-line distances between 
two points [48]. We calculated dispersal distances with 
the TopoDistance package [49]. To do this we obtained 
30  m resolution elevation data from Shuttle Radar 
Topography Mission [50], and extracted elevation, slope 
and Topographic Position Index (TPI, Table 1).

Effect of disturbance and fragmentation
We considered the Euclidean distance between a red 
panda location and: road, settlement, human-walking 
track, and cattle station as indicators of human distur-
bance (Table  1) and located these features in ArcMap 
10.8. Each herder had at least two cattle stations where 
they move seasonally with their livestock. We accessed 
Sentinal-2A satellite images of the study area between 15 
October 2019 and 13 January 2020 at 10 m spatial reso-
lution, reclassified into two land-cover types: forest and 
non-forest [51], and extracted the land cover area within 
seasonal home ranges of each animal.

We considered patch as well as class-level metrics 
(Table  1) to analyse the habitat fragmentation effects in 
the home range of an animal. Patch area (AREA) and 
the proportion of land cover availability (PLAND) were 
used to quantify the land cover type in home ranges. 
Shape describes complexity of patches and reveals the 
causes behind the fragmentation [52]. Patches due to 
natural causes have more complex and irregular shapes 
while the human-induced patches have regular shapes 
[52]. We used the Fractal Dimension Index (FRAC) to 
measure shape complexity. Aggregation is a key aspect 
of landscape ecology which refers to the degree to which 
patches are spatially aggregated [53]. Therefore we chose 
the Connectance Index (CONNECT), Clumpiness Index 
(CLUMPY), Patch Density (PD), and Euclidean Nearest 
Neighbour Index (ENN) metrics at a landscape level to 
measure the aggregation of any given habitat [52–54]. 
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Table 1  Description of variables used in movement analyses

Variables Description

Demographic variables

 Sex Male, female

 Age Adult, sub-adult

Temporal variables

 Season Mating (January–March), Birthing (April–July), Cub-rearing (August–October), Premating (November–
December)

 Diel time Dawn (period between astronomical dawn when the sun is at 18° below the horizon and golden hour 
after sunrise), Dusk (period between golden hour before sunset and astronomical dusk), Day (period 
between two golden hours after sunrise and before sunset), Night (period between astronomical dusk 
and astronomical dawn)

Movement metrics

 Step length The Euclidean distance (m) between two consecutive GPS fixes of an animal that were recorded at an 
interval of 2 h

 Distance Refers to the sum of step length distances (m) covered by an individual in 24 h. It refers to the daily 
distance unless otherwise specified

 Dispersal distance The topographic distance (km) following contours between the natal and the new home range. It 
refers to the total distance covered by a disperser unless otherwise specified

 Straightness index The ratio of the square root of net square displacement, i.e. the square of the Euclidean distance 
between two points, divided by the sum of the step lengths of the movement trajectory of each red 
panda for each season [98]. These two points were the start and end points of the movement trajec-
tory. Values range from 0 to 1 relating to increasing straightness with higher values

Geo-physical variables

 Elevation (Elev) Elevation of red panda presence points (m). Source: Shuttle Radar Topography Mission (SRTM, 1 arc-
second) Global Digital Elevation Model (DEM)—https://​earth​explo​rer.​usgs.​gov/

 Topographic Position Index (TPI) Topographic Position Index measures elevation difference. Values ranged between − 9 and 10 with 
higher values being mountain ridges and lower values being mountain valleys. Source: SRTM, 1 arc-
second, DEM

 Slope Slope of red panda presence points (°). Source: SRTM, 1 arc-second, DEM

Fragmentation metrics within home ranges

 Habitat patch Refers to the set of neighbouring cells belonging to same land cover type, i.e., forest cover

 Fractal Dimension Index (FRAC) Describes the shape complexity of each habitat patch based on perimeter-area relationships. Values 
range between 1 and 2 with very simple perimeters close to 1 and highly convoluted complex shape 
towards 2 [52]. Habitat patches due to natural causes have more complex and irregular shapes while 
human-induced patches have regular shapes

 Patch density (PD) Is the number of forest habitat patches in the home range of an animal divided by the home range 
area (number of patches/ha)

 Edge density (ED) Sum of total length of edge of forest habitat patches within an animal’s home range (m/ha)

 Proportion of land cover (PLAND) We included two land cover type: forest and non-forest. PLAND represents the proportion of forest 
cover in a home range (%)

 Patch area (AREA) The area (ha) of each habitat patch

 Connectance Index (CONNECT) Refers to the percentage of the maximum possible connection among the forest habitat patches 
within the Euclidean distance of 50 m, see details in [52]. A zero value refers to a single patch or no 
connection between any patches, while 100 means there is connection between all patches [52]

 Clumpiness Index (CLUMPY) Refers to the distribution pattern of forest habitat patches. It ranges from − 1 to 1. A zero value refers 
to random distribution of patches, and values close to − 1 and + 1 show increasing dispersal and 
increasing clumpiness of patches respectively, see details in [52]. The index will be 1 for single patch in 
a landscape

 Euclidean Nearest Neighbour Index (ENN) Refers to the shortest straight-line edge-to-edge distance between two forest habitat patches (m)

Disturbance variables

 Distance to road (Road_dist) Euclidean distance between the red panda presence points and the nearest road (m). Source: https://​
www.​opens​treet​map.​org/

 Distance to human-walking track (Trac_dist) Euclidean distance between the red panda presence points and the nearest human-walking trail (m): 
Source: https://​www.​opens​treet​map.​org/

 Distance to cattle station (Catt_dist) Euclidean distance between the red panda presence points and the nearest cattle station (m)

https://earthexplorer.usgs.gov/
https://www.openstreetmap.org/
https://www.openstreetmap.org/
https://www.openstreetmap.org/
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We estimated these fragmentation metrics using Frag-
stat v4.2.1 [55]. We used the straightness index (Table 1) 
to measure the shape of red panda movement paths to 
quantify disturbances due to human activities and frag-
mentation [56].

Statistical analyses
Initially we examined multicollinearity of predictors 
and retained only those with a variation inflation factor 
smaller than 5 [57]. We standardised continuous predic-
tors by centering around the mean with a unit stand-
ard deviation [58]. We fitted four Linear  Mixed Models 
(LMM) in lme4 package [59] and included individual 
identity (i.e., unique code of each study animal) as a ran-
dom term.

•	 Variation in distance coverage with daily distance 
as the response variable and sex, age and season as 
fixed factors. An animal’s behaviour varies with age 
and sex due to changes in the physical environment 
of habitat and biological requirements across seasons 
[11]. We therefore included the interaction terms 
season by age and season by sex.

•	 Variation in activity pattern with step length as the 
response variable and sex, age, season and diel time 
as fixed factors. In addition to the additive effect of 
these four predictors, we included the interaction 
terms season by sex, season by diel time, and sex by 
diel time in the global model.

•	 Response to disturbances at patch level using step 
length as the response variable, and eight fixed fac-
tors: distance to cattle station, road and track, AREA, 
ENN, FRAC, season and diel time. Herders move 
their cattle to low elevation during the winter and 
reverse their movement in the summer. We hypoth-
esised that red pandas respond to such seasonal 
movement of cattle by avoiding those sites or parti-
tion their movement pattern to minimize distur-
bances. We therefore included the interaction terms 
distance to cattle stations by season and distance to 
cattle stations by diel time in the full model with step 
length as the response variable.

•	 Movement pattern at landscape level using the 
straightness index as the response variable, and 
PLAND, AREA, CLUMPY and CONNECT as fixed 
factors.

We examined the difference in distance travelled (sum of 
step length distances) across the diel time using Kruskal–
Wallis rank sum test and performed post-hoc Dunn test 
to compare pair-wise differences. We considered step 

length as a proxy of activity pattern. Then we plotted the 
activity pattern across the diel time.

The time-series plot can be used to visualize the dis-
tance between a pair of animals in any given time [60]. 
We plotted the time-series plot to assess the distance 
between mothers and their dependent cubs. Further-
more, we fragmented their movement trajectory to 
identify dispersal and non-dispersal phases with the 
segclust2d package [60]. After identifying the dispersal 
and non-dispersal phases, we tested differences in daily 
distance travelled using the Wilcoxon-signed-rank test. 
Then we evaluated the effect of elevation, slope, TPI, 
step length, and distance to the nearest cattle station and 
walking track. We used the binary response (dispersal 
phase and non-dispersal phase) as the response variable 
in the generalized linear modelling with the binomial 
family and logit link function to evaluate the effects of 
variables during the dispersal phase.

We used model selection to test all combinations of the 
predictor variables; model selection was based on Akai-
ke’s information criterion (AIC) using the MuMIn pack-
age [61]. We selected the model with the smallest AIC 
[62] but averaged models if more than one model was 
within AIC value of 4 [63].

Results
We recorded 13,749 telemetry locations of 10 red pandas 
between 22 September 2019 and 15 December 2020. We 
retained 6947 locations within the 2-hour time lag after 
removing outliers and erroneous locations. Disturbance 
variables and fragmentation metrics were interlinked 
at patch level (Additional file  1: Fig. S1), and they had 
skewed distributions (Additional file  1: Fig. S2a). Dis-
tances between the disturbances and randomly generated 
points also exhibited similar patterns (Additional file  1: 
Fig. S2b). We estimated median annual home range of 
red pandas as 1.41 km2 (male 1.73 km2, female 0.94 km2, 
see detail in [64]). We found the median (interquartile 
range [IQR]) forest cover as 92.8% (90.8–98.1%) with PD 
of 5 (2.8–7.1) within each animal’s home range. Median 
area of these forest patches was 19.2  ha (12.5–34.4  ha). 
The median values of clumpiness and connectance indi-
ces were 0.7 (0.5–0.7) and 66.7 (29.3–100) respectively. 
Median FRAC of forest patches was 1 (1–1.1) while the 
median Euclidean distance between two neighbouring 
forest patches was 22 m (20–30 m) with maximum dis-
tance up to 125 m. Median distance between red panda 
presence points and disturbance sources varied: cattle 
stations (1415 m [1224–1681 m]), human tracks (134 m 
[60–451 m]), road (309 m [212–616 m]) and settlement 
(573 m [400–781 m]).
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Daily distance
The median (IQR) daily distance travelled by red 
pandas was 756  m IQR 518–1167  m [males: 953  m 
(660–1473  m), females: 605  m (419–841  m)]. Males 
travelled nearly double the distance (mean 1474  m) of 
females (mean 795 m) in the mating season (β = 679.14, 
p < 0.001, Fig.  2a, Additional file  1: Tables S2 and S3). 
Males were less active during cub-rearing (β =  − 381.5, 
p < 0.01), birthing (β =  − 321.1, p < 0.03) and premating 
(β =  − 321.1, p = 0.06) seasons than in the mating sea-
son. There was no difference for the distances females 
travelled over the seasons although they travelled mar-
ginally less in the birthing season (β =  − 143.16, p = 0.09, 
Fig.  2a). Subadults covered longer distances (mean 
861  m) than adults (mean 795  m) in the mating season 
and travelled less than adults in other seasons (Fig. 2b). 
However, these differences were not significant (Addi-
tional file 1: Table S3). We recorded the maximum daily 
distance travelled as 5300 m by an adult male during the 
premating season.

Movement in diel cycle
Distance travelled across the diel time varied significantly 
(Kruskal–Wallis rank sum test = 198.7, df = 3, p = 0). The 
post-hoc Dunn test showed that red pandas covered 
longer distances in the day and night than in the dawn 
and travelled the least distance at dusk (Fig.  3a). They 

exhibited a uni-modal pattern but with minor peaks in 
the afternoon, evening and night (Fig.  3b). They were 
more active from dawn until 3–4  h after sunrise. Their 
activity levels gradually decreased but fluctuated until 
mid-night. We observed no variation in activity pat-
terns between adults and subadults although it differed 
across sex classes. The seasonal activity pattern of males 
and females differed across the diel time (Additional 
file  1: Tables S4 and S5, Fig.  3c). Female’s activity level 
was higher at dawn while rearing their cubs than during 
the mating season (β = 14.3, p < 0.006). They remained 
more active at day (β =  − 13.4, p < 0.02) and less active 
in the dusk (β =  − 14.5, p < 0.05) and night (β =  − 17.5, 
p < 0.003) while rearing their cubs than in the mating sea-
son (Additional file 1: Table S5, Fig. 3c). Males were also 
more active at dawn of the cub-rearing (β = 7.7, p < 0.06, 
Fig. 3c) and birthing (β = 9.25, p < 0.03, Additional file 1: 
Table S5, Fig. 3c) seasons than in the mating season.

Dispersal
We had only two female sub-adult red pandas collared 
but both of them separated from their mothers with the 
onset of the new moon between 30 January and 7 Feb-
ruary, when they were seven to eight months old (Addi-
tional file  1: Fig. S3). Age estimation was based on the 
birthing records of two adult females in early July 2020. 
One disperser left her natal home three weeks after sepa-
ration from her mother, and the other after five weeks. 

Fig. 2  Predicted daily distance travelled by red pandas during the four seasons. a The blue line represents the distance travelled by males (n = 4), 
and the red line represents females (n = 6). b The blue line is for subadults (n = 3) and the red line is for adults (n = 7). The square box represents the 
predicted distance while error bars on both sides show the 95% CI
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The former reached a new range in 42 days and the latter 
took 26 days. Both sub-adults spent another 42 to 44 days 
exploring their new range before establishing their terri-
tory. Clustering of movement trajectories further aided 
in demarcation of dispersal and non-dispersal phases 
(Additional file  1: Fig. S4). We also observed one more 
(uncollared) cub of a collared mother living alone in the 
natal site on 26 February 2020. Another three uncollared 
cubs of two collared mothers also dispersed before mid-
February in the following year. The two sub-adult females 
spent nearly three months dispersing before settling in a 
new home. Their dispersal distance was 17.9 and 24.1 km 
respectively (Additional file 1: Fig. S5). The median daily 

distance travelled during dispersal was 584  m (IQR 
332–1059  m) which was significantly more than during 
the non-dispersal phase: 405  m (IQR 259–582  m; Wil-
coxon-signed-rank test, Z = 8.1, p < 0.001). All dispersing 
animals had 6 to 7 stopover sites where they spent 1 to 
4 days during this journey.

The best-fit model to explain the variation between 
dispersal and non-dispersal phases included distance to 
human-walking tracks, distance to cattle stations, eleva-
tion, TPI, step length and slope (Table  2). Dispersers 
exhibited affinity for low elevations and avoided moun-
tain ridges and areas close to cattle stations and human 
tracks (Table 3).

Fig. 3  Distance travelled and activity levels across the diel cycle. a Statistical summary of the distance travelled across the diel time. Estimated 
distance is based on the raw data. The Kruskal–Wallis rank-sum test showed significant differences in distance travelled during these different times 
(p < 0.001). Further, the post-hoc Dunn test revealed significant differences between the distance travelled between five pairs except dawn-dusk. 
b Activity patterns of red pandas across the diel cycle. This is based on annual raw data. We took step length as a proxy of activity which is scaled 
between 0 to 1. The area between two sky-blue lines represents dawn and dusk, the grey area shows night and the wide area between two 
sky-blue lines is day. The thin ribbon around the line shows the 95% CI. c Predicted activity levels of males and females during the diel cycle across 
seasons. Step length was considered as proxy of activity level. The square box and error bars represent the predicted activity level and 95% CI 
respectively. Each colour depicts a season (see legend). Predicted values and confidence intervals are scaled between 0 and 1
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Effect of disturbance and fragmentation
The averaged model showed a clear relationship between 
step lengths, human disturbance and fragmentation 
metrics (Fig.  4, Additional file  1: Table  S6). Red pan-
das moved with a significantly longer step length while 
approaching roads (β =  − 0.06, p < 0.02). In contrast they 
slowed down in areas close to human-walking tracks 
(β = 0.11, p < 0.02). Their step length during the night 
was longer than during the day (β = 0.04) although it was 
not significant. Red pandas moved more slowly when 
moving away from cattle stations in the night than they 
did in the day (β =  − 0.12, p < 0.002). The effect of cattle 
distance was conspicuous in the cub-rearing season as 
red pandas’ step lengths were lower when far from cat-
tle stations (β =  − 0.3, p < 0.007). Apart from this, their 
response to disturbances did not vary across seasons 
although their step lengths were longer during the day 
in the mating season than during the birthing season 
(β = 0.39, p < 0.001). Their step lengths were also longer 
in small-sized habitat patches (β =  − 0.11, p < 0.001), and 
they moved faster between two habitat patches when the 
inter-patch distance was high (β = 0.15, p < 0.001).

PLAND and CLUMPY were the best explanatory pre-
dictors of the straightness of movement path in the aver-
aged model (Table 4), but only PLAND had a significant 
influence (β =  − 0.03, p < 0.001, Fig. 5).

Discussion
Firstly we conclude that this investigation was conducted 
in habitat that was clearly disturbed by human activities. 
All disturbance variables had right skewed distributions 
(Additional file  1: Fig. S2a). Distances between the dis-
turbances and randomly generated points also exhibited 
similar patterns (Additional file  1: Fig. S2b). Since the 
randomly placed points also showed the same skewed 
distribution, we suggest that it was not possible to move 
large distances from these human disturbances because 
the habitat patch size was small. In other words red 
pandas had no choice but to stay close to human distur-
bances because they could not get far away from distur-
bance without exiting the habitat patch. Here we showed 

that red pandas avoided areas close to roads, human 
tracks, and cattle stations. They also avoided small, iso-
lated habitat patches and areas with low forest cover. Red 
pandas responded to habitat fragmentation at both patch 
and landscape levels. Overall, they travelled (1) faster 
during the night than in the day; (2) long-distances at 
night while the day was mostly for foraging; and (3) faster 
in smaller patches and their speed was higher in unsuit-
able landscape matrix between neighbouring patches. 
There was also seasonal variation in daily distance trav-
elled and activity pattern across the diel cycle.

Daily distance
Consistent with our a priori hypothesis, red pandas 
exhibited seasonal variation across sex and age classes 
on a seasonal scale. Male red pandas travelled longer 
distances than females which corroborates previous 
studies [10, 31, 65]. This trait is common in territorial 
males in mammals who travel longer distances to main-
tain their territory [66]. Their relatively longer distance 
coverage during the mating season could be attributed 
to maintaining territory and finding mating partners 
[67]. We found red panda males meeting up to three 
females during a mating season. However, average daily 
distance travelled by red pandas in this study was found 

Table 2  Models describing variables affecting the dispersal phase of red pandas (with dispersal phase as reference)

We included step length, Topographic Position Index, aspect, slope, elevation, distance to road, and distance to cattle stations as predictors. First four top models 
resulting from model selection based on AIC are shown. Models with ΔAIC < 4 were averaged
# Step_leng: step length, TPI: Topographic Position Index, Catt_dist: distance to cattle station, Trac_dist: distance to walking tracks

Models# df AIC ΔAIC weight

Step_leng + TPI + Elev + Catt_dist + Trac-dis 6 262.2 0 0.67

Step_leng + TPI + Slope + Elev + Catt_dist + Trac_dist 7 264.2 2.01 0.24

TPI + Elev + Catt_dist + Trac_dist 5 268.2 5.97 0.03

Step_leng + Elev + Catt_dist + Trac_dist 5 268.5 6.28 0.03

Table 3  Effects of predictors on dispersal phase. Estimates are 
based on the averaged model with ΔAIC < 4 (see Table 2)*

Significant estimates are highlighted in bold

*Tjur’s R2 = 0.31, #Catt_dist: distance to cattle station, Trac_dist: distance to 
walking tracks, Elev: elevation, Step_leng: step length, TPI: Topographic Position 
Index

Variables# Estimate SE z-value p

Intercept − 24.94 6.33 3.93 0.00

Catt_dist − 0.01 0.00 5.43 0.00
Trac_dist − 0.002 0.00 7.13 0.00
Elev 0.011 0.00 4.41 0.00
Step_leng 0.001 0.00 1.25 0.21

TPI − 0.19 0.07 2.77 0.01
Slope 0.001 0.02 0.09 0.93
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to be nearly double that identified in previous research 
[10, 31, 65]. Use of GPS telemetry leading to higher 

sampling resolution may have captured this variation as 
the previous studies were based on VHF collars.

Females usually travel shorter distances during gesta-
tion and birthing seasons than in other seasons. Preg-
nant females need more energy and do not expend 
energy by travelling longer distances, rather they stay 
in a small area before parturition [68]. Further, red 
panda gestation overlaps with the pre-monsoon and 
early-monsoon season when an abundance of rain-
fall increases food availability [29]. A female’s calorific 
requirement is higher during lactation [69] which lasts 
beyond the rainy season when food availability starts 
to dwindle forcing them to travel more to find enough 
food to increase energy intake. Previous studies have 
also reported less distance coverage during gestation 

Fig. 4  Parameter estimates of variables affecting red panda step length. Estimates are based on averaged model from the set of top models with 
ΔAIC < 4 (see Additional file 1: Table S6). The yellow line represents the zero effect. Significant responses are highlighted with stars. The x-axis depicts 
estimates while the y-axis represents variables. Asterisks indicate significance level: * = 0.05, ** = 0.005, *** = 0.0005

Table 4  Models describing the straightness index as a function 
of PLAND, AREA, CLUMPY, CONNECT*

First top four models resulting from model selection based on corrected Akaike’s 
Information Criterion (AICc). Models with ΔAICc < 4 were retained for model 
averaging

*Marginal R2 = 0.24, conditional R2 = 0.73, #PLAND: proportion of land cover, 
CLUMPY: Clumpiness Index

Models# df AICc ΔAICc Weight

Null model 3 − 9.4 0 0.48

PLAND 4 − 8.3 1.12 0.27

CLUMPY 4 − 7.5 1.89 0.19

CLUMPY + PLAND 5 − 5.2 4.23 0.06
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and birthing seasons which was relatively higher in the 
cub-rearing season [10, 31, 65]. These movement pat-
terns suggest that season-specific energetic require-
ments drive the movement pattern in females.

Activity pattern in diel cycle
Our observation supports the hypothesis that red pan-
das are active throughout the diel cycle with only short 
passive periods. They were relatively more active dur-
ing the dawn and morning hours with slight fluctuations 
throughout the diel cycle. This observation is in line with 
other reports [10, 37, 70], but it contradicts the crepuscu-
lar pattern reported elsewhere [10, 70]. Our observation 
is similar to some other specialists having a specialized 
bamboo diet, such as the giant panda Ailuropoda mel-
anoleuca [12], southern bamboo lemur  Hapalemur 
meridionalis [71] and bale monkey Chlorocebus djamd-
jamensis [72]. Such a prolonged activity pattern could 
be attributed to their trade off to obtain optimal energy 
from the nutritionally poor diet [12, 30]. Animals relying 
on poor-quality diet have to spend more time foraging 
in degraded habitat which may affect their welfare in the 
long run. These include species feeding on bamboo, such 
as the golden monkey Cercopithecus mitis kandti [73], 
mountain gorilla Gorilla beringei beringei [74], and euca-
lyptus, such as the koala [75].

The energetic cost, resource availability and predation 
risk vary across seasons [76–78], which have a direct 
effect on animal’s activity patterns. This effect was obvi-
ous in our study as we observed red pandas to be more 
active during the cub-rearing season with a nearly uni-
form pattern in other seasons. Their activity patterns also 
varied at an individual level: random variance = 84 (SD 
9.2). Such variation at an individual level could be related 
to an individual’s adaptive traits in response to extrinsic 
factors [10, 79]. However, the narrow confidence interval 
of activity level of males suggest that they remain more 
active throughout the year unlike females (Fig. 3c).

Dispersal
Despite a small sample size, our study generates a 
hypothesis for future tracking studies on dispersal of red 
pandas which here exhibited female-biased dispersal. 
The only two studied sub-adult females dispersed, while 
the single sub-adult male did not. The finding of female-
biased dispersal is consistent with Hu et  al. [25] who’s 
report was based on genetic evidence. However, the small 
sample size warrants caution at this stage of knowledge. 
A similar pattern of dispersal is also evident in the giant 
panda, another species with a similar diet [80], and many 
primates [81]. We recorded 21 km mean dispersal which 
is relatively large for arboreal mammals and herbivores 
of this size [19, 22]. For instance, average dispersal dis-
tance of the koala, a solitary and arboreal mammal with a 
folivorous diet is 3.5 km (range 0.3–10.6 km) [82]. Roads 
and similar other linear features may act as barriers for 
dispersal as one individual appeared to have shortened 
its dispersal distance after encountering a road along her 
path. This observation underpins the need for landscape-
level planning for red panda conservation.

The cost of dispersal varies with disturbances and pho-
toperiod [83, 84]. Red pandas moved more slowly on 
luminous nights than on dark nights, which could be 
due to increased vigilance to avoid predators in brighter 
moon light. This observation suggests that artificial light 
could affect these key ecological processes of red pandas 
and other lunar-phobic species [85–87].

In our study, red pandas travelled longer distances dur-
ing the dispersal phase which overlapped with the mat-
ing season. Further, they stayed at low elevations and 
avoided cattle stations and human trails, which suggests 
an ability to differentiate risky areas. However, these ani-
mals crossed apparently unsuitable habitat matrix during 
dispersal which makes them more prone to encounters 
with dogs, humans and predators. These findings dem-
onstrate the risk avoidance behaviour of dispersers. Fur-
ther, three cases of non-collared red panda rescue and 
deaths were reported to the Red Panda Network (https://​
www.​redpa​ndane​twork.​org/) within seven months 

Fig. 5  The available forest cover (PLAND) affected straightness 
of movement trajectory. This plot is based on the prediction of 
linear-mixed model (see Table 4). The PLAND and straightness index 
are shown in x and y axes respectively. The value of straightness index 
ranges from 0 to 1 relating to increasing straightness with higher 
values

https://www.redpandanetwork.org/
https://www.redpandanetwork.org/
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(May–November) which indicates the high stress and 
risk to dispersers. Of these two were found dead due to 
dog attack, one was rescued when found being chased 
by a dog, and the last one was found outside the habitat 
range. Three of these cases were reported during the dis-
persal phase (March–May). Most of the mortality causes 
of dispersers in other mammals are also related with 
anthropogenic causes, especially dogs and roads [88, 89]. 
Furthermore dispersing individuals are more likely to be 
restricted to sub-optimal habitat in part because resi-
dents will defend high quality habitat [90]. Hence, there is 
likely to be high mortality during dispersal [17, 90].

Effect of disturbances and fragmentation on movement
Wildlife perceives some landscape features as risky. 
We observed red pandas avoiding roads by increasing 
their speed when in their proximity. Roads usually have 
reduced forest cover, lower bamboo density, higher graz-
ing disturbance, high human traffic and dog presence 
[91], possibly making red pandas feel insecure whilst near 
such features. The camera trapping data revealed human-
walking tracks had relatively less traffic volume (2.7 indi-
viduals/day) in comparison to roads (8.3 individuals/day). 
Predators often use such linear features thus making 
them ecological traps [92]. Red pandas may slow down 
to be more vigilant when close to human tracks and very 
carefully crossed the trails.

Red panda’s response to cattle stations was more con-
spicuous during the cub-rearing season than other sea-
sons. Animals with offspring avoid risky areas [93] as 
proposed by the ecology of fear hypothesis [94]. Red 
pandas seemed to adopt a nocturnal pattern to cope with 
livestock disturbances which could be ascribed to open 
space, increased human presence and fear of livestock 
herder’s dogs [95]. Their high speed in unsuitable matrix 
could be their adaptation to minimize encounters with 
dogs and human-induced threats [95]. Likewise, for red 
panda small-sized habitat patches and habitat patches 
with low forest cover may not supply enough resources 
for diet, resting and security from predation risk [96]. 
Such small-sized habitat patches impose high movement 
costs [97], which may have provoked red pandas to avoid 
such patches by moving faster following less tortuous 
paths. These movement patterns provide further support 
for the hypothesis that animals move faster and follow 
less tortuous path in risky and fragmented habitat.

Conclusions
In a world ever more dominated by human activities it is 
increasingly important to understand how wild animals 
adapt in anthropogenic landscapes. Our approach can be 

applied for evaluating how a species inhabiting the human-
dominated landscape responds to disturbances. Not-
withstanding this study is based on a single species, our 
findings have implications for the conservation of habitat 
and diet specialists. Firstly, the data show that landscape 
attributes and disturbances can directly influence an ani-
mal’s movement pattern. Despite the small sample size, 
the large dispersal distance has highlighted the potential 
impact of habitat fragmentation and the importance of 
undisturbed and continuous habitat extended over large 
scale for the conservation of red panda and other habitat 
specialists. Secondly, our study highlights the importance 
of habitat management during biologically critical periods, 
particularly during the mating, birthing, cub-rearing and 
dispersal. We recommend habitat zonation to limit human 
activities and avoid disturbances, especially livestock herd-
ing and road construction in core areas. Thirdly, we sug-
gest improving functional connectivity by increasing 
inter-patch and intra-patch connectivity guided by resist-
ance and habitat suitability analyses. Lastly, it is obvious 
that surviving in human-modified habitat is challenging 
due to the high energetic cost to adapt in such fearful land-
scapes. Therefore further studies should evaluate the stress 
level and energetic cost of animals living in such habitat. 
In addition, we also recommend further study on (1) the 
effect of disturbances and fragmentation on space-use, 
interaction, and resource-selection patterns; and (2) the 
dynamics of activity and movement patterns in response to 
climatic factors and anthropogenic disturbances.
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