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Abstract

Background: Habitat suitability models give insight into the ecological drivers of species distributions and are
increasingly common in management and conservation planning. Telemetry data can be used in habitat models to
describe where animals were present, however this requires the use of presence-only modeling approaches or the
generation of ‘pseudo-absences’ to simulate locations where animals did not go. To highlight considerations for
generating pseudo-absences for telemetry-based habitat models, we explored how different methods of pseudo-
absence generation affect model performance across species’ movement strategies, model types, and environments.

Methods: We built habitat models for marine and terrestrial case studies, Northeast Pacific blue whales (Balaenoptera
musculus) and African elephants (Loxodonta africana). We tested four pseudo-absence generation methods commonly
used in telemetry-based habitat models: (1) background sampling; (2) sampling within a buffer zone around presence
locations; (3) correlated random walks beginning at the tag release location; (4) reverse correlated random walks
beginning at the last tag location. Habitat models were built using generalised linear mixed models, generalised
additive mixed models, and boosted regression trees.

Results: We found that the separation in environmental niche space between presences and pseudo-absences was
the single most important driver of model explanatory power and predictive skill. This result was consistent across
marine and terrestrial habitats, two species with vastly different movement syndromes, and three different model
types. The best-performing pseudo-absence method depended on which created the greatest environmental
separation: background sampling for blue whales and reverse correlated random walks for elephants. However, despite
the fact that models with greater environmental separation performed better according to traditional predictive skill
metrics, they did not always produce biologically realistic spatial predictions relative to known distributions.

Conclusions: Habitat model performance may be positively biased in cases where pseudo-absences are sampled from
environments that are dissimilar to presences. This emphasizes the need to carefully consider spatial extent of the
sampling domain and environmental heterogeneity of pseudo-absence samples when developing habitat models, and
highlights the importance of scrutinizing spatial predictions to ensure that habitat models are biologically realistic and
fit for modeling objectives.
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Background
Animal telemetry has revolutionized our understanding
of animal movement and habitat use in both marine and
terrestrial environments [29, 35]. Telemetry data have
allowed for the exploration of behavioural and environ-
mental drivers of animal space use, habitat selection,
and migration [4, 39, 43, 49], and enabled the identifica-
tion of important biological hotspots to inform conser-
vation and management [14, 32, 55]. Animal telemetry
data can also be used as inputs to habitat models (also
known as ‘species distribution models’), to predict pat-
terns of distribution or resource selection across space
and time based on a species’ preference for particular
characteristics of the environment [25]. However, a fun-
damental challenge of using telemetry data in habitat
models is that they are presence-only, and thus cannot
be used to infer environmental drivers in areas where
animals were absent. To address this, a variety of tech-
niques exist to generate data representing where animals
could have gone but did not go (i.e. ‘pseudo-absences’,
e.g. [9]). However, the relative performances of different
pseudo-absence generation methods have not yet been
assessed for telemetry-based habitat models. Further-
more, the literature lacks an evaluation of the relative
utility of pseudo-absence methods between marine and
terrestrial systems, where differences in the scales of
habitat heterogeneity may influence model outcomes.
Approaches for generating pseudo-absences range

from simple (e.g., background sampling, [46, 54]) to
complex [e.g., biased sampling, [9, 41]]. Background
sampling is the most commonly used approach, which
involves randomly sampling the entire study area or
habitat extent to produce absences that represent a
broad range of characteristics [37, 38, 46]. While back-
ground sampling is the backbone of presence-only mod-
eling techniques such as Maxent [54], it does not
consider how animals actually move through space and
treats all areas and habitats as being equally accessible.
To address this issue, approaches that explicitly incorp-
orate information on animal movement have been devel-
oped, such as buffer sampling (analogous to ‘step
selection’ [7, 19, 60]. This approach treats habitat selec-
tion as a series of step-by-step decisions, with pseudo-
absences randomly sampled within a predetermined
step-length from each presence location. A third ap-
proach is to create pseudo-absences that have the same
autocorrelation structure as actual tracks using corre-
lated random walks (CRWs) [1, 30, 31, 42, 67]. CRWs
recreate movement patterns using sampled step-lengths
and turn angles from interpolated animal tracks, in order
to realistically simulate the movement characteristics of
study species. CRWs can also be generated in reverse
(reverse CRWs) to control for biases generated by non-
random animal tagging locations [53].

In order to highlight key considerations for generating
pseudo-absences for habitat models built from telemetry
data, the effects and biases of pseudo-absence generation
methods need to be explored across species’ movement
strategies, model types, and environments. Here we
examine pseudo-absence generation methods using two
mobile megafauna, the blue whale (Balaenoptera muscu-
lus) and African elephant (Loxodonta africana). These
two species forage near the base of the food web, yet in-
habit completely different physical environments and
employ different movement strategies [2, 8, 61]. In the
Northeast Pacific, blue whales undertake basin-scale mi-
grations from breeding to foraging grounds, while in
Etosha National Park, Namibia, elephants move nomad-
ically within the park boundaries. For each species, we
compare the effects of four different pseudo-absence
generation techniques (background sampling, buffer
sampling, CRW and reverse CRW) on habitat model
performance. We compare results across three model
types commonly applied to telemetry data (generalised
linear mixed models, generalised additive mixed models
and boosted regression trees) to test if the relative per-
formance of different pseudo-absence generation
methods was robust across different model types.

Methods
Species data
We explored two previously published mega-vertebrate
tracking datasets for Northeast Pacific blue whales and
African elephants (Fig. 1). The blue whale data con-
tained 10,664 daily locations in the eastern North
Pacific, representing 104 ARGOS-tracked blue whales
tracked between 1998 and 2009. This dataset has been
studied extensively to identify critical habitat [36],
understand patterns and drivers of migration [2, 8], and
guide spatial management strategies [4, 30]. In this
study, we examined foraging habitat selection by blue
whales when resident in the central California Current
System (CCS; 2,240,000 km2), excluding migratory be-
havior through Mexican waters and presumed breeding
behavior in the southern end of their range. The ele-
phant dataset contained 40,273 locations taken every 6 h
from 14 GPS-collared elephants in Etosha National Park,
Namibia (EtNP; 22,900 km2) between 2008 and 2014.
These data have previously been used to explore animal
movement syndromes [3] and drivers of habitat use [61].

Environmental data
We selected six out of twelve potential environmental
variables for blue whales that have previously been
shown to be important drivers of habitat use during mi-
gration and foraging [4, 30, 52]: sea surface temperature,
the spatial variability of sea surface temperature (an
index of frontal activity), sea level anomaly, chlorophyll-
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a, oxygen concentration at 100 m depth, and bathymetry
(Table S1). For elephants, we selected three variables
that have been shown to most strongly influence ele-
phant movement in the study area (Table S1, [61]): dis-
tance to the nearest road, multiannual mean normalized
difference vegetation index (NDVI), and distance to the

nearest water source. The two study systems, the CCS
and EtNP, have vastly different patterns of environmen-
tal dynamism. The CCS has strong seasonal upwelling
driving cool, productive nearshore waters [15], with off-
shore waters characterized by ephemeral features like
fronts and eddies that can shift at daily to weekly

Fig. 1 Presence data (blue points) and pseudo-absence data (red points) for the four pseudo-absence generation techniques a background, b
buffer, c Correlated Random Walks (CRWs), d reverse CRW for blue whales (left), elephants (middle), and in theory (right). White represents areas
unvisited by tagged individuals or simulated pseudo-absences. Density by latitude (top of panel) and longitude (right side of panel) highlights
the difference in pseudo-absence sampling approach (red) from observed habitat using tracking data (blue). The Southern California Bight (top
left) and salt pans (middle left) are indicated with blue stars. Study domains of the California Current, U.S. and Etosha National Park, Namibia are
shown in the bottom two panels. In the right-most panels, the theory behind calculation of pseudo-absences for each approach is shown with
blue being actual positions and red being simulated positions
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timescales [20]. In contrast, EtNP experiences more
gradual seasonal variation in temperature and rainfall
[61]. Accordingly, the environmental variables selected
for modelling mirror this dynamism: dynamic variables
for the CCS were acquired at a daily or monthly reso-
lution, whereas EtNP variables were either static or
long-term averages (in the case of NDVI).

Pseudo-absence types
We compared four methods of pseudo-absence gener-
ation that represent different assumptions about where
animals could be distributed relative to observed tracks:
‘background sampling’, where random locations are sam-
pled across the entire domain; ‘buffer sampling’, where
random locations are sampled within a certain distance
from each presence location; and ‘correlated random
walks’ (CRW) and ‘reverse CRWs’, where tracks are sim-
ulated from given start or end points respectively, based
on observed step lengths and turn angles. We outline
each method below, and illustrate key concepts in Fig. 1.
Background sampling is designed to capture the full

range of conditions under which species could be found,
assuming they were distributed randomly across the en-
vironment. Habitat models are then used to contrast
characteristics of preferred habitat where species are
more likely to be observed, with this completely random
distribution [21]. This approach is adapted from system-
atic survey design ([37] and references therein), where
individual presences are not assumed to be autocorre-
lated [59]. Thus, even when applied to tracking data
where each presence location depends on the one pre-
ceding it, background sampling of pseudoabsences in-
corporates no information or assumptions regarding
characteristics of animal movement, such as distance
traveled or direction of movement.
Buffer sampling for habitat modeling was originally

used to minimize pseudo-absence overlap with pres-
ences, by sampling points outside a certain radius
around each presence [33]. However, more recent ap-
proaches use buffers to restrict the sampling domain to
areas accessible by the animal, by sampling from within
a given radius around a presence [10, 24]. For tracking
data, buffer size has been determined based on the mean
or median step-length (e.g. distance traveled between
two positions over a set time interval), irrespective of
direction [34]. Resource selection functions use buffer
sampling at each step to estimate the relative probability
of selecting a specific parcel of habitat, relative to others
that were equally accessible at that movement step [46].
CRWs and reverse CRWs sample the paired distribu-

tion of distance and turn angle from the empirical move-
ment distributions in order to simulate realistic tracks
(e.g. [1, 30]). CRWs have been used to create potential
trajectories that animals could have taken based on

measured movement parameters such as distance trav-
eled and turning angle between consecutive locations
[42]. CRWs have been implemented particularly when
animals are wide ranging and can access areas far from
the original tagging location [67]. In theory, CRWs offer
the ability to create absences that best reflect the spatial
and temporal auto-correlation of the actual tracks. Fur-
ther, when there are implicit drivers of directionality or
seasonality (e.g. movement away from competing col-
onies, or migration through less desirable habitat to
reach more favorable habitat), entire CRW tracks can be
selected that appropriately recreate important features of
original tracks, such as the maximum displacement, or
the mean angle of travel [30, 63]. Reverse CRWs have
been introduced to address the issue of biases in tagging
locations, recreating movement from the last known lo-
cation and simulating backwards in time to the original
tagging date [53].

Pseudo-absence generation
We used a common sampling extent for all generation
methods for each species based on the maximum extent
of their tracks: for blue whales, a bounding box from 32°
to 45° N and − 140° to − 115° W within the CCS; and for
elephants the fenced boundary of EtNP (Fig. 1). For each
pseudo-absence method, we generated a 1:1 ratio of
pseudo-absences to presences to maintain consistency
across models.
For background sampling, pseudo-absences were

drawn randomly from within the domain for each spe-
cies. For buffer sampling, we used the mode step length
to create a radius of 100 km (whales) and 10 km (ele-
phants) around each presence point, and randomly sam-
pled one absence within each buffer zone. For CRWs,
we randomly sampled a paired distance and turn angle
from the observed distributions. Points were generated
consecutively, starting from the locations where animals
were tagged, until the number of pseudo-absences
equaled the number of presences. The reverse CRW
used the same approach but instead moved backwards
in time from the last recorded position of the tag.

Habitat modeling
We selected three commonly used statistical correlative
models to test how model type influenced the relative
performance of the pseudo-absence generation methods.
We selected generalised linear mixed models (GLMMs),
which are parametric and estimate linear species-
environment relationships; generalised additive mixed
models (GAMMs) which are semi-parametric and use
smoothers to represent non-linear species-environment
relationships; and boosted regression trees (BRTs) which
are non-parametric and use boosting to determine opti-
mal partitioning of variance. For both GLMMs and
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GAMMs, we used the gamm function in the ‘mgcv’ R
package [64] and included individual tag identification as
a random effect. For GAMMs, we used a thin-plate
spline smoother with knots set to 5 per variable. BRTs
were fit using the gbm.fixed function in the ‘dismo’ R
package [23] with a learning rate of 0.005, a bag fraction
of 0.75, tree complexity of 5, and 2000 trees (following
[26]).

Model performance
We evaluated model performance holistically across
three dimensions: explanatory power, predictive skill,
and biological realism. Explanatory power indicates a
model’s ability to explain the variability in a given data-
set, and was evaluated using % explained deviance (R2).
Predictive skill indicates a model’s ability to correctly
predict species presence or absence on novel data, and
was evaluated with Area Under the Receiver Operating
Characteristic Curve (AUC) and True Skill Statistic
(TSS, [5]). As independent validation data do not exist at
the scale of the original data, we tested predictive skill
using three cross-validation approaches: the first used
100% of the data for both model training and testing.
The second used randomly subsampled 75% of the data
to train models, with the remaining 25% used to test
models. Third, we also trained models on 11 of 12
months, and withheld a single month (twelve times) for
testing for the dynamic blue whale models. As the ter-
restrial predictors for elephants were static or climato-
logical averages, we were unable to test a temporal
leave-one-out approach. We present the 100% training
and testing results so that inferences were consistent
across validation approaches.
Previous work has identified that habitat model per-

formance will increase as environmental dissimilarity be-
tween presences and absences increases [45]. We
explored this phenomenon by using density plots to
qualitatively evaluate the environmental dissimilarity be-
tween presences and pseudo-absences generated by the
four methods. Additionally, we quantified the statistical
independence of the environmental niches of the pres-
ences and pseudo-absences for each variable and species
using Bhattacharayya’s coefficient [13]. To determine the
effect of environmental dissimilarity on model perform-
ance, we used linear regression to test relationships be-
tween Bhattacharyya’s coefficient and model predictive
skill (AUC) for the three most important predictor vari-
ables for each species.
Finally, [62] recommended supplementing evaluations

of model performance with evaluations of biological
realism based on expert opinion and published litera-
ture. Following this advice, we qualitatively evaluated the
ability of the models to predict realistic patterns of spe-
cies distributions by assessing spatial prediction maps

using expert knowledge. Specifically, we considered
spatial predictions biologically realistic for blue whales if
they predicted inshore habitat along the coast and repro-
duced the known blue whale hotspot in the Southern
California Bight during summer months [12, 18, 36]; we
considered spatial predictions biologically realistic for el-
ephants if they avoided predictions in the large salt pan
in the northeast corner of EtNP and preferred areas
closer to roads, water, and fences [61]. We also quanti-
fied the ability of models to capture where blue whales
and elephants are present and putatively absent by cal-
culating mean predicted values at known presences and
pseudo-absences, respectively.

Results
Spatial and environmental separation of pseudo-absences
and presences
Blue whale presences were clustered adjacent to the
California coastline, with highest densities in the South-
ern California Bight (Fig. 1). Elephant presences were
clustered in the southern portion of EtNP, and no pres-
ences were located within the large salt pan in the
northeast corner of the park (Fig. 1). There was similar
spatial separation between pseudo-absences and pres-
ences across the four generation methods for both spe-
cies (Fig. 1). Background sampling - which randomly
sampled pseudo-absences across the study area - re-
sulted in the greatest spatial contrast between pseudo-
absences and presences, with pseudo-absences sampled
in offshore regions of the CCS, and in the salt pan and
northern extent of EtNP (Fig. 1). Buffer sampling -
which sampled pseudo-absences within 100 km and 10
km of blue whale and elephant presences, respectively,
resulted in the lowest spatial contrast between pseudo-
absences and presences, while CRW and reverse CRW
resulted in intermediate spatial contrast (Fig. 1).
The separation of environmental variables between

presence and pseudo-absence locations were similar to
the spatial contrasts among pseudo-absence generation
methods (Fig. 2). For blue whales, background sampling
had the greatest environmental separation between pres-
ences and pseudo-absences for all variables, largely due
to the preference of tracked animals for the nearshore
200 m depth contour and the strong onshore-offshore
environmental gradients that were sampled by the
pseudo-absences (Fig. 2a-d). For example, sea surface
temperature had a single peak at 28 °C for background
sampling, compared to double peaks around 28 °C and
16 °C in the presence data, CRW, reverse CRW, and buf-
fer sampling (Fig. 2a). All pseudo-absence methods sam-
pled deeper, more oxygenated waters with lower
chlorophyll concentrations compared to the blue whale
presences (Fig. 2b-d). The elephants showed less envir-
onmental separation between pseudo-absences and
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presences compared to blue whales, and fewer differ-
ences in separation among pseudo-absence methods
(Fig. 2e-g). For elephants, buffer sampling resulted in the
greatest environmental overlap between pseudo-
absences and presences for the three predictor variables,
whereas reverse CRW sampling had the lowest overlap
with presences. Pseudo-absence methods generally sam-
pled areas that were further from roads and water, and
with lower NDVI values compared to where elephants
were present (Fig. 2e-g). For both species, habitat model
response curves highlighted how unique the environ-
mental data range of background sampling was com-
pared to the other pseudo-absence methods (Fig. S1).

Model performance
Blue whale model performance was strongly driven by
pseudo-absence type, with models built using back-
ground sampling having the best explanatory power,
predictive skill, and ability to capture where blue whales
are present (Table 1). CRWs were best able to capture
where blue whales were absent (mean prediction at
pseudo-absences). In contrast, elephant model perform-
ance was predominantly influenced by model type, with
BRTs having the best explanatory power, predictive skill,
and ability to capture where elephants were absent re-
gardless of pseudo-absence type. This pattern of BRTs
performing best was also apparent in blue whales, but to
a lesser extent due to the large effect of pseudo-absence
type (Table 1). Following BRTs, GAMMs outperformed

GLMMs in terms of explanatory power and predictive
skill for both species.
Environmental similarity between presences and

pseudo-absences (Bhattacharyya’s coefficient) had a sig-
nificant negative relationship (p < 0.05) with model pre-
dictive skill (AUC) for each model type and species
(Fig. 3). That is, as the environments sampled by
pseudo-absences became more similar to presence loca-
tions, model performance decreased. This pattern was
also reflected in the relationship between Bhattacharyya’s
coefficient and both TSS and R2 values (Table 1). The
lowest Bhattacharyya’s coefficient (highest environmen-
tal separation) was found in blue whale background
sampling, which also had the highest R2, AUC, and TSS
values across all models and both species. Conversely,
the highest Bhattacharyya’s coefficient (lowest environ-
mental separation) was found in the elephant buffer
sampling, which also had the lowest R2, AUC, and TSS
values across all models and species (Table 1, Tables S1,
S2). These results provide evidence that model explana-
tory power and predictive skill is strongly related to en-
vironmental separation between presences and absences,
regardless of species or habitat model type.
Spatial predictions of species distributions showed di-

vergent results across pseudo-absence generations
methods and model types. For blue whales, background
sampling predicted more uniformly suitable habitat on
the continental shelf, whereas other pseudo-absence
methods predicted higher inshore use. CRWs and re-
verse CRWs were best able to reproduce the known blue

Fig. 2 Degree of environmental separation for key predictor variables between presences (black line) and each pseudo-absence generation
technique (colors) for blue whales (a-d), and elephants (e-g). Grey shading represents overlap across all techniques
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whale hotspot in the Southern California Bight during
summer months [12, 18, 36]. In general, there was more
consistency in spatial predictions among model types than
among pseudo-absence generation methods (Fig. 4). For
elephants, spatial differences among both pseudo-absence
methods and model types were minimal, with all (except
GAMM with buffer) reproducing low habitat selection in-
side the large salt pan in the northeast of the park (Fig. 5).
The BRT model with highest predictive skill was reverse
CRW, while background sampling was able to highlight
areas of low habitat preference in the northern extent of
the EtNP that matched patterns in the tracking data to a
greater degree than the other sampling methods and
model types (Fig. 5). Elephant BRTs captured fine-scale
patterns of habitat use across pseudo-absence types, while

GLMMs and GAMMs predicted smoother and more
homogeneous distributions (Fig. 5).

Discussion
A critical component of habitat modeling for presence-
only data like animal telemetry is selecting pseudo-
absence points that provide insight into how habitat se-
lected by animals differs from the range of available
habitat [9]. Here we explored the performance of
pseudo-absence generation techniques across species,
study systems, and model types to help inform best
practices for telemetry-based habitat modeling. We
found that the environmental separation between pres-
ences and pseudo-absences was an important driver of
model explanatory power and predictive skill - a result

Table 1 Summary of model predictive skill statistics (R2, AUC, TSS) for blue whale and elephant habitat models, each model type,
and each pseudo-absence generation technique. Biological realism was assessed using the predictions at simulated absences and
true presences, with visual realism assessed by the full suite of authors based on skill within the Southern California Bight (blue
whales) and Etosha salt pan (elephants). Figure panel is also included for Fig. 4 (blue whales) and 5 (elephants) to aid cross-
referencing. The best performing model using 100% test and training is shown in red with the worst shown in blue. For R2, AUC,
TSS, and Predictions at presences, high values indicate better performance. For Predictions at pseudo-absence, values closer to 0
indicate better performance. Bold values are the top 4 performing models in each category, with blue backgrounds representing
the best performing in that category and red representing worse
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that held true across marine and terrestrial habitats, two
species with different movement syndromes (migratory
vs. nomadic), and three different model types. However,
greater environmental separation between presences and
pseudo-absences did not necessarily lead to greater bio-
logical realism in spatial predictions, highlighting the im-
portance of using multiple inferences to evaluate model
performance. Model performance metrics may be posi-
tively biased in cases where pseudo-absences are sam-
pled from dissimilar habitats relative to those used by
the study species, without a concurrent increase in the
model’s ability to make accurate predictions of habitat
use. This emphasizes the need to carefully consider the
spatial extent of the sampling domain and environmen-
tal separation between presences and sampled pseudo-
absences when developing habitat models.
Previous studies have demonstrated that model per-

formance is influenced by study area extent and the pro-
portion of this extent occupied by species, such that
species that occupy small extents of a large study area
are better predicted than species that occupy large ex-
tents of small study areas [44, 45, 62]. Separation in en-
vironmental niche space may dominate any differences
between pseudo-absence generation approaches. For ex-
ample, [51] found CRWs were less successful than back-
ground sampling. However, the study used CRWs only

within the species’ domain and background sampling
from outside the species’ domain to understand habitat
use. Thus the separation between environmental condi-
tions in the two sampling extents likely dominates any
difference between pseudo-absence approach. Sampling
across broad spatial and environmental gradients can be
useful for identifying patterns of presence and absence
and result in increased model performance, but may not
be the most appropriate approach for understanding
finer scale patterns of movement and habitat selection,
highlighting the need to identify ecological questions
and applications prior to modeling.
The four pseudo-absence methods differed in their

ability to describe patterns in elephant and blue whale
distributions, including correctly differentiating areas
where species were probably present from areas where
they were probably absent (e.g. offshore CCS, and in the
Etosha salt pan). We assessed biological realism of our
spatial predictions (Figs. 4 and 5) and found that the
most biologically realistic models were not always those
that performed best according to traditional model per-
formance metrics. For example, blue whale background
sampling had the highest predictive performance, but
failed to identify the gradient between off-shelf absence
and near-shore suitability where blue whales frequently
occur. Background sampling tended to overestimate

Fig. 3 Relationship between model predictive skill (AUC; Area Under the Receiver Operating Characteristic Curve) and environmental separation
between presences and pseudo-absences (Bhattacharyya’s coefficient) for blue whales (upper) and elephants (lower). Bhattacharyya’s coefficient
was calculated for key environmental covariates (symbols). Sub-panels for each model type (BRT, GAMM, GLMM) are shown, with colors indicating
pseudo-absence generation technique. The lines represent linear regression between the AUC value and the Bhattacharyya’s coefficient
independent of pseudo-absence type and variable
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suitable habitat, and was therefore the most inaccurate
at capturing areas where whales were absent (Table 1).
In comparison, CRW sampling was more biologically
realistic and better at capturing blue whale absence
within the CCS domain despite this sampling approach
resulting in models with poorer predictive performance
and out of sample testing. Boosted regression tree
models based on CRW and reverse CRW had anomal-
ously high offshore habitat predictions where blue
whales were rarely present even with strong realism
nearshore, indicating these models would not be a good
candidate for extrapolation [66].
The tradeoff between model skill and biological real-

ism has practical implications for habitat modeling,

where modellers should decide a priori on a model’s
purpose and whether the ultimate goal is to better pre-
dict species presence or absence (e.g. [28]. We advise
caution when comparing model performance across
multiple studies that may be driven by different manage-
ment goals or that use different underlying data, model-
ing types, or pseudo-absence generation approaches. For
example, a blue whale habitat modeling application that
aims to conservatively identify all areas where whales
might be present in order to afford them maximum
spatial protection could benefit from using the back-
ground method, whereas an application that seeks to
identify areas where whales are most likely not in direct
contact with human activities outside areas of core

Fig. 4 Effect of pseudo-absence generation type for BRT (a-d, four panels on left), GAMM (e-h), and GLMM models (i-l) and model type using
background sampling (a, e, i - top three panels), buffer sampling (b, f, j), CRW sampling (c, g, k), and reverse CRW sampling (d, h, l) on blue
whale model predictions for a given day, August 1st, 2006. Yellow indicates high habitat suitability while blue is low habitat suitability. GLMMs
and GAMMs have white pixels where there were missing predictor variables (e.g. due to cloud cover) for the day. The blue star in panel A is
pointing to the Southern California Bight
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habitat use might benefit from the CRW approach. Ul-
timately, which pseudo-absence method is best for a
given goal will depend to a large extent on what envir-
onmental range it is sampling compared to presences.
Johnson [40] describes four orders of resource selection
that animals may exhibit, ranging from coarse to fine
spatial scales: a species’ geographic range (1st order); an
area within the geographic range (e.g. a home range; 2nd
order); an area within the home range (3rd order); and a
specific site or resource within the selected area (4th
order; [40]). We propose similar attention should be
paid to the modeling or management aim to inform the
pseudo-absence selection approach (see Table 2). Ultim-
ately, ensemble approaches may be worth exploring to
gain inference across model differences [4] or among
data types and modeling approaches [65].
We found consistent rankings among the three habitat

model types (GLMMs < GAMMs < BRTs) based on ex-
planatory power and predictive skill. These patterns held
across species despite differences among the pseudo-
absence methods. For elephants in particular, model type
had a larger impact on model results compared to the
pseudo-absence method. This importance of model type
for elephants may be a function of the static nature of
the habitat model, where variation in elephant presence
(locations every 6 h) was not as well explained by the en-
vironmental covariates and resulted in models with non-
linear functions (BRTs and GAMMs) performing better
than linear models (GLMMs). Further, the ability of
BRTs to best predict elephant presence was likely a

function of the sharp step-wise transitions in the re-
sponse curves (e.g. recursive binary splits) that can best
describe habitat preferences near discrete features such
as water holes and roads.
Comprehensive comparisons of habitat model ap-

proaches exist elsewhere in the literature [11, 17, 23, 50],
thus we explored the interaction between model type
and pseudo-absence method to provide practical recom-
mendations. We found that selection of the optimal
pseudo-absence method varied based on the questions
being asked of the model, on the animals’ movement
syndromes [3], and on the width of environmental niche
space sampled by presences and generated pseudo-
absences. Single habitat models and single approaches
towards model validation may be sufficient for exploring
ecological inference, but when models are used for man-
agement or conservation purposes such as spatial plan-
ning, multiple approaches and validation metrics should
be considered to ensure the robustness of design and
implementation [4, 6, 48, 58]. Taken holistically, model
purpose is of utmost importance when choosing
pseudo-absence generation method and model type to
ensure that predictions are tuned to scales of animal
movement and management need.

Conclusions
Maximizing predictive skill while maintaining biological
realism is a key part of developing habitat models that
optimize spatial protections for species while minimizing

Fig. 5 Effect of pseudo-absence generation type for elephants for BRT (a-d, four panels on left), GAMM (e-h), and GLMM models (i-l) and model
type using background sampling (a, e, i, top three panels), buffer sampling (b, f, j), CRW sampling (c, g, k), and reverse CRW sampling (d, h, l)
Yellow indicates high habitat suitability while blue is low habitat suitability
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uncertainty and opportunity costs of erroneous predic-
tions. Scientists have placed a lot of faith in quantitative
metrics for evaluating predictive skill, but high per-
forming models still may not be accurately addressing
the research question at scale [27, 45]. Decisions such
as choosing the most appropriate modeling framework
for a given data structure and deciding how to repre-
sent absences can impact the robustness of models
built for conservation and management applications.
For this reason, careful consideration of model purpose
and rigorous assessment of the robustness and accuracy
of spatial predictions in relation to these decisions are
important steps towards an improved understanding of
the drivers of animal movement, predictions of habitat
for use in spatial planning, and assessments of risk of
human-wildlife conflicts.
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Table 2 Discussion of best practices for pseudo-absence
selection method

Scenario A: Model purpose is to understand broadscale distribution of
species habitat often averaged across multiple years [47, 57].
Background sampling has been used to understand where species
could have been but were not sighted. These plots are useful for long-
term planning and understanding general patterns of habitat use, for
example planning military uses in the ocean, shipping lane designation,
or off-shore energy sites. Based on Johnson [40] four orders of resource
selection, background sampling can be targeted towards a species’
geographic range (1st order) or an area within the geographic range
(e.g. a home range; 2nd order). Specific care needs to be taken to
ensure that the background sampling extent represents the potential
habitat and not beyond because oversampling can lead to inflated
model skill. Background sampling often has the greatest environmental
separation between presences and absences of the pseudo-absence
methods explored.

Scenario B: Model purpose is to describe fine-scale dynamic habitat of
species [4, 30, 56, 67]. Correlated random walk sampling is used to
create where an individual could have gone in the environment but did
not choose to go. This approach is better at capturing fine scale
changes in habitat as a function of changes in the environment, for
example producing daily maps of predicted habitat to reduce bycatch,
or ship-strike risk as a function of the changing environment. Reverse
CRWs have also been used to counter the effects of tag-location bias on
habitat selection [53]. CRW and reverse CRW both address Johnson [40]
third-order of an area within the home range, and can be responsive
towards more dynamic selection of habitat. These two approaches had
intermediate separation between presences and absences of the
pseudo-absence methods explored.

Scenario C: Model purpose is to understand the factors that drive
decision-making at each step for tagged individuals. Habitat models
with buffer sampling are restricted to each location [19, 22]. Buffer
pseudo-absence generation is used to assess individual potential steps
rather than the track at a whole. This approach is best suited for
understanding the fine-scale factors that influence habitat selection
rather than broader habitat preferences, for example which habitat
variables and anthropogenic features influence animal movements as
they move through the landscape. Buffer sampling for species
distribution models address similar aims as resource selection functions
(RSF [16];) targeting Johnson [40] 4th order for specific site or resources
within broader habitat. This method often results in the least
environmental separations between presences and absences of the
pseudo-absence methods explored.
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