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The physiology of movement
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Abstract

Movement, from foraging to migration, is known to be under the influence of the environment. The translation of
environmental cues to individual movement decision making is determined by an individual’s internal state and
anticipated to balance costs and benefits. General body condition, metabolic and hormonal physiology
mechanistically underpin this internal state. These physiological determinants are tightly, and often genetically
linked with each other and hence central to a mechanistic understanding of movement. We here synthesise the
available evidence of the physiological drivers and signatures of movement and review (1) how physiological state
as measured in its most coarse way by body condition correlates with movement decisions during foraging,
migration and dispersal, (2) how hormonal changes underlie changes in these movement strategies and (3) how
these can be linked to molecular pathways.
We reveale that a high body condition facilitates the efficiency of routine foraging, dispersal and migration. Dispersal
decision making is, however, in some cases stimulated by a decreased individual condition. Many of the biotic and
abiotic stressors that induce movement initiate a physiological cascade in vertebrates through the production of stress
hormones. Movement is therefore associated with hormone levels in vertebrates but also insects, often in interaction
with factors related to body or social condition. The underlying molecular and physiological mechanisms are currently
studied in few model species, and show –in congruence with our insights on the role of body condition- a central role
of energy metabolism during glycolysis, and the coupling with timing processes during migration. Molecular insights
into the physiological basis of movement remain, however, highly refractory. We finalise this review with a critical
reflection on the importance of these physiological feedbacks for a better mechanistic understanding of movement
and its effects on ecological dynamics at all levels of biological organization.
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Introduction
An individual-based view on organismal movement as
propounded by the Movement Ecology Paradigm (MEP)
has provoked a breakthrough in movement ecology as it
links the biomechanical and behavioural basis of move-
ment to fitness [1]. The MEP puts three environmentally
dependent components of movement forward: motion
capacity, navigation capacity, and internal state. As move-
ment operates across different spatiotemporal scales, it
can be dissected into its underlying building blocks [2].
The Fundamental Movement Elements (FME) form

the smallest unit of organismal movement and include
for instance step size and wing beat frequency. The
FMEs hence depend directly on the motion capacity and
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internal state components (Fig. 1) and mechanistically
integrate into different distinct movement modes [2], re-
ferred to as Canonical Activity Modes (CAMs) that are
characterized by a distinct movement speed, directional-
ity and correlations of the movement angles. Examples
of CAMs include routine foraging, dispersal and migra-
tion. Routine movements occur at small temporal and
spatial scales with the aim of resource intake, and in-
clude displacements at the same scale in response to the
same or other species (mate location, predator escape,..).
We refer to dispersal as any specific movement during
an individual’s lifespan, that make individuals leave the
place they were born to a new location where they pro-
duce offspring. At short temporal, but usually large
spatial scales, individuals can move recurrently between
areas in response to environmental cues that predict en-
vironmental change. We refer to these movements as
migration, and note that despite large distances covered,
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Fig. 1 Setting the scene. a The physiological state of an individual determines the fundamental elements of movement (FME), as well as an
individual’s decision making to switch between different movement modes (CAM) like resting, foraging, dispersing and migrating. Integrated over
lifetime, movement is thus central to individual performance, and to fitness across generations. b The physiological state of an organism is
directly determined by the environment and the elementary (FME) and canonical (CAM) movement modes. Feedbacks among these will affect
ecological dynamics at the population and community-level which in turn are anticipated to steer physiology and movement through
environmental changes
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migration should not result in dispersal as breeding loca-
tions may be identical or very closeby among years.
Individuals make decisions to switch between CAMs

in response to both the environmental context and in-
ternal state. As the sequence and variation in FME’s are
strung into an organism’s CAM, any decision made re-
garding shifts in these CAM’s will depend on an individ-
ual’s internal state (and navigation capacity). Because
resources are rarely homogeneously distributed in the
environment and often continuously changing in time as
well, movement will be essential to gain access to re-
sources (such as food, mates and shelter) and will dir-
ectly impact the individual’s internal state. This
feedbacks between an individual’s immediate environ-
ment and its internal state will therefore shape its life-
time movement trajectory and fitness [1].
The maximisation of energy balances forms the basis of op-

timal foraging theory and directly links an individual’s ener-
getic state (body condition) to routine foraging activities [3, 4].
While straightforward from its most fundamental perspective
(i.e., the marginal value theorem), we now appreciate that opti-
mal foraging is modulated by environmental factors that have
equal or stronger fitness effects, namely predation and disease
risk perception and its translation to landscapes of fear and
disgust [5, 6]. Foraging movement will thus directly influence
energy gain and shape temporal variation in an individual’s in-
ternal state. Maximising body condition does, however, not
maximise fitness as individuals also have to deal with unpre-
dictable environmental changes at larger spatiotemporal
scales. Organisms therefore need to disperse and expose
themselves to costs largely exceeding those experienced dur-
ing routine movements [7, 8]. Movement is thus a fundamen-
tal behaviour in life history and the result of a continuous
decision making process in terms of how, when and where to
displace [1, 9]. Since an individual’s internal state will deter-
mine movement, while movement as such will reciprocally
affect the individual’s internal state [10], they are tightly con-
nected in a closed feedback loop. Because internal state is
closely connected to life histories and behaviour [11], we fol-
low Jachowski and Singh's suggestion to use physiological state
as a more accurate term for this internal state [10].
Understanding the causes and consequences of the

variation in movement trajectories has been identified as
an important knowledge gap in movement ecology [12].
As a first step to integrate feedbacks between movement
and physiological state into a formal movement theory,
we here provide a view on the current state of the art.
More specifically, we synthesise the available evidence
on the physiological drivers and signatures of movement.
As our aim is to link this condition-dependence to ecology,
we do not review the current neurobiological basis of move-
ment decisions as in [13–16], nor the physiology behind wing
development in insects [17, 18] but instead provide a synthesis
on (1) how physiological state as measured in its most coarse
way by body condition correlates with movement decisions re-
lated to foraging, migration and dispersal, (2) how changes in
stress hormones underlie changes in these movement strat-
egies and (3) whether these can be related to alternative
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physiological pathways. We finally critically integrate these in-
sights to advance our understanding of the importance of
eco-physiological feedbacks in movement ecology and close
this review by formulating some unresolved questions.

Body condition
From routine movements to dispersal
There is an abundant body of literature on how different
movement strategies are related to metrics of body condi-
tion. Body condition is predominantly measured in a coarse
way by residual or absolute body mass. The efficiency and
pace of foraging movements are mostly positively related to
a better body condition [19–21]. A good body condition
does, however, not necessarily result in longer foraging trips
[19]. Rather on the contrary, when foraging costs are sub-
stantial, individuals in better body conditions are able to han-
dle prey more efficiently and may show reduced foraging
distances [22–24]. Parasites are documented to directly de-
crease foraging performance by depleting energy reserves
and causing physiological damage [25].
Dispersal is a three-stage process, encompassing decision

making in terms of departure, displacement and settlement
[7, 26]. The social dominance hypothesis predicts emigra-
tion of individuals in an inferior physiological state [27]. In
house sparrows (Passer domesticus), lower ranked individ-
uals leave natal areas earlier than their conspecifics that oc-
cupy higher positions in the social hierarchy [28]. Many
empirical studies on non-social species report variable rela-
tionships between body condition and dispersal [9]. We
argue that these different patterns of body condition de-
pendence arise from different levels of spatiotemporal vari-
ation of habitat quality. Indeed, theory has shown that
costly dispersal is undertaken by individuals in the best
body condition in heterogeneous environments where indi-
viduals experience variation in fitness prospects [27, 29–
31]. This pattern has been widely documented in nature
and by means of controlled experiments [32–42]. Interest-
ingly, in metapopulations where local relatedness is high
because of low evolved dispersal [27], the opposite Evolu-
tionary Stable Strategy emerges. This has been documented
in apterous aphids (Acyrthosiphon pisum), where individ-
uals with a decreased energy content dispersed earlier than
their siblings in better condition [43].
The eventual dispersal distance and speed is positively asso-

ciated with a better body condition in insects [44, 45], sala-
manders [46], fish [47], birds [48–50] and mammals [36]. In
two group-living bird species, however, individuals in the best
condition remained closest to their place of birth [51, 52]. In a
saproxylic beetle (Osmoderma eremita) species, flight speed
and take-off completion were negatively condition dependent
[53]. The unexpected associations are explained by increased
advantages of philopatry as familiarity and, hence, fitness pros-
pects in terms of mate finding decrease with distance from
the natal range. In a study using money spiders (Erigone atra)
as a model, emigration has been demonstrated to be positively
body condition dependent, with settlement improving under
competition in those phenotypes that previously engaged in
dispersal [54]. Similar strategies were found in meerkats (Suri-
cata suricatta), where individuals in better conditions were
found to engage more in prospecting and thereby increased
settlement probability [55].
Migrations and stop-over events
Migration is, like dispersal, a decision making process. If
only a certain fraction of the individuals engage in mi-
gration, while others remain resident, the strategy is re-
ferred to as partial migration. Here, body condition is
expected to vary within and among populations and to
steer variation in migratory tendency [8]. The three main
hypotheses that have been put forward on how body con-
dition may modulate the decision to migrate, are (i) The
arrival time hypothesis stating that a migration decision is
made when residents have fitness gains by prioritising ter-
ritory establishment, whereas (ii) the dominance hypoth-
esis states that individuals migrate to escape competition
by dominant conspecifics, and lastly (iii), the body-size hy-
pothesis states that a high body condition reduces costs
during migration [56]. Both the arrival time and domin-
ance hypothesis predict subordinate individuals to engage
in migration, and was found in trout (Salmo trutta) [57].
However, other studies focusing on a fish (Rutilis rutilis),
bird (Otus elegans botelensis) and a large mammal herbi-
vore (Odocoileus hemionus), did not find an association
between migration and within-population heterogeneity
in body condition [58–60]. An excellent overview of these
hypotheses may be found in Chapman et al. [56] and we
refer to Hegemann et al. [58] for a more physiological per-
spective on partial migration.
Not surprisingly, a body of literature shows that migration

trajectories are strongly impacted by the individual’s ener-
getic state. Our insights so far are primarily dominated by re-
search on birds and to a lesser degree migratory fish.
Migratory trajectories comprise distances that are magni-
tudes beyond the daily routine movements and are typically
segmented in several migratory movement episodes and
stopovers where individuals engage in foraging for refuelling.
As energy demands are high to cross these long distances,
time spent for stopover activities is higher for individuals in
lower body condition [59–71], and hence leads to increased
foraging of to allow refuelling [59, 65]. Integrated over the
entire migration trajectory, individuals that start migration in
better body condition will therefore migrate faster, more dir-
ectionally and arrive earlier at breeding sites [72–76]. In two
anadromous fish species, migration is also negatively related
to body condition, [77, 78], but here this correlation is deter-
mined by local adaptation to freshwater and hence the up-
stream breeding grounds.
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A threshold-view on movement decision making
As outlined above, a positive correlation between body
condition and the efficiency of routine movements, dis-
persal and migration has been mostly documented. Effi-
cient movements, do not always translate into longer
and faster movements, but instead, evidence is pointing
at cost-reducing strategies being the rule for individuals
in a good body condition (e.g., [22–24]). Individuals in
poor body condition are therefore anticipated to either
invest their energy in extended movements or to follow
energy-saving strategies by reducing further energy ex-
penditure. Movement-decision making can thus be con-
sidered as a threshold trait [79, 80] with individual
shifting CAMs when body condition is reaching a spe-
cific value. Individuals may adopt in this respect more
endurance (thresholds to engage in costly movements at
relative high body condition), or conservative (thresholds
at low body condition) strategies. Under frequency de-
pendence, both strategies may stably coexist in single
populations. While theoretically established [81], it re-
mains to be studied whether such a within-population
heterogeneity in movement decision making is effect-
ively related to different strategies adopted in response
to body conditions, and whether such fitness stabilising
strategies eventually affect population dynamics. Add-
itionally, it remains unclear to which degree physiological
constraints overrule this decision-making. Individuals in poor
condition might be energetically so depleted that any engage-
ment in extended and beneficial movements might simply
not be possible. In kangaroo rats (Dipodomys spectabilis), for
instance, the timing of emigration is strongly body condition
dependent, and only initiated when male individuals reach a
critical mass [82]. Feedbacks between movement as both an
energy-consuming and an energy-gaining process are thus
likely key to spatial behaviours in the wild, but to date poorly
understood despite the increase of biologging studies across
a wide variety of taxa [83]. Moreover, most insights on such
conditional-dependent strategies come from studies that fo-
cussed on the active departure phases and neglected decision
making in terms of settlement [84]. Given the link between
body-condition and competitive ability, it remains to be stud-
ied to which degree presumed maladaptive departure deci-
sions may eventually be compensated by facilitated
settlement in new environments – especially when demo-
graphic and environmental conditions are strongly different
between locations.

Hormones
Body-condition dependent strategies are often overruled
by hormonal changes in response to acute biotic and
abiotic stressors [85]. We here review the current state-
of-the art in order to facilitate the integration of these
endogenous processes within a mechanistic movement
ecology [70].
Glucocorticoids in vertebrates
In vertebrates, external triggers of movement deci-
sions such as food shortage, fear and antagonistic in-
teractions with conspecifics are known to initiate a
physiological cascade through the hypothalamic-
pituitary-adrenal (HPA) axis by which stress hor-
mones (glucocorticoids; abbreviated here as CORT)
are released from the adrenal cortex. Creel et al.
[85] provide an extensive review on the environmen-
tal triggers of this HPA axis activity in social and
territorial species. As the main environmental cues
of CORT production are known to trigger move-
ment, especially dispersal, it is not surprising that
movement is strongly associated with CORT levels,
often in interaction with factors related to body or
social condition [85].
Food shortage and social interactions attenuate

foraging activity through hormonal regulation in
birds [86–88]. Elevated CORT levels will equally
determine the timing of dispersal in birds and rep-
tiles [86, 88–90]. These elevated hormone levels can
be maternally determined [90, 91] and the duration
of exposure to maternal CORT amplitudes deter-
mines whether individuals stay or disperse [92]. In
social vertebrates, increased CORT levels are associ-
ated with elevated extra territorial forays, hence
with prospecting prior to pre- and dispersal behav-
iour [93, 94] or with settlement [95].
Baseline plasma CORT levels are elevated in mi-

grating birds to facilitate migratory fattening while
protecting skeletal muscle from catabolism, but they
also induce health costs [96–100]. The migration
modulation hypothesis is brought forward as an ex-
planation of their repressed levels in relation to
acute stress during long-distance migration [101].
Studies on partial migration however do not con-
firm this general pattern [102]. Instead, CORT
levels are found to be elevated during landing
[101], and increase during stop-over events, where
it is positively correlated with fuel loading and be-
havioural restlessness when active migration is re-
sumed [103, 104]. In nightingales (Luscinia
luscinia), elevated CORT-levels are modulated by
geomagnetic information [105]; and in The Euro-
pean robin (Erithacus rubecula) CORT-levels differ
between spring and autumn migration [106].
CORT-levels are thus to a large degree externally
induced. In dark-eyed juncos (Junco hyemalis), gen-
etic variation in these responses was found among
two populations overwintering in areas that varied
in the level of environmental predictability [107].
More specifically, birds wintering in less predictable
and more extreme environments showed a higher
amplitude corticosterone response, which may
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enable them to adjust their behaviour and physi-
ology more rapidly in response to environmental
stressors such as storms [107]. Although most stud-
ies have targeted CORT, other hormones like ghrelin
and melatonin are also known to influence food in-
take and lipid storage dependent on body condition
in migrating birds and other vertebrates [108–110].

Hormones in insects
Octopamine and adipokinetic hormones are known to
regulate energy supply, the oxidative capacity of the
flight muscles, heart rate, and probably also a general
stimulation of the insect nervous system during periods
of intense flight [111]. Octopamine can be considered as
the insect counterpart of adrenaline [112]. Although no
insect equivalents of corticosteroids have been identified
it seems that the adipokinetic hormones perform similar
functions [111]. In invertebrates and insects in particu-
lar, Juvenile hormone (JH) regulates development,
reproduction, diapause, polyphenism, and behaviour
[113]. While JH production has been predominantly as-
sociated with wing development [114] it has also been
shown that lower JH titers advance and increase the dur-
ation of flight in corn rootworms (Diabrotica virgifera)
[115] and milkweed bugs (Oncopeltus fasciatus) [116]. In
migrant Monarch butterflies (Danaus plexippus), migra-
tion necessitates the persistence through a long winter
season. This prolonged survival has been shown to result
from suppressed JH synthesis [117].

The molecular and physiological basis underlying
body condition dependent movement
As outlined above, the dependency of movement strategies
on body condition is highly complex and multidimensional,
rendering the characterization of the underlying molecular
and physiological mechanisms highly refractory. Tradition-
ally, the contribution of candidate genes to foraging, disper-
sal, and migration behavior has been studied in isolation. We
briefly discuss genes of major effect on different movement
strategies and subsequently attempt to unify the molecular
drivers of movement.

The usual suspects: genes that greatly influence animal
movement
Phosphoglucose isomerase (PGI) is an important meta-
bolic enzyme that catalyzes the reversible second step
within the glycolytic pathway. In a series of pioneering
studies, Watt and colleagues discovered that different
allozymes (different alleles, separable by electrophoresis)
of PGI have different thermostabilities in Colias butter-
flies and that their frequencies change in response to
heat stress [118–122]. Polymorphisms in the pgi gene
have subsequently been detected in many insect popula-
tions and species [123–125]. Its close association with
flight performance rendered pgi the ideal candidate gene
to study the genetic underpinnings of dispersal ability
[123, 126, 127], as for instance in the Glanville fritillary
(Melitaea cinxia) metapopulation on the Åland island
group [128–131]. Currently, a body of work (see review
in [132]) identifies PGI and other central metabolic en-
zymes as prime targets of natural selection via traits re-
lated to metabolic rate but also the ability of these
enzymes to act as signaling molecules. Collectively, this
strongly indicates that a diverse set of central metabolic
enzymes determine body condition dependent move-
ment [132].
The central role of a cGMP-activated protein kinase

(PKG) in foraging behavior, adult dispersal and percep-
tion of nutrient stress in a wide diversity of insect spe-
cies was initially discovered in the fruit fly Drosophila
melanogaster where differences in food searching behav-
ior of larvae were mapped to a locus on chromosome-2
called the foraging (for) gene [133–139]. It explains the
genetic coupling between foraging and conditional dis-
persal. Since its discovery, homologs of the for gene have
been studied as a potential causal factor in behavioral
transitions in the nematode Caenorhabditis elegans,
honeybee Apis mellifera, and two ant species [140–143].
For instance, upon manipulating the expression of Amfor
and egl-f, orthologs in honeybees and C. elegans, respect-
ively, food dependent movement is significantly altered
in both species [140, 144].
Clock genes are involved in the timing and onset of

migration in birds, fish and butterflies [145–147]. Allelic
differences in clock genes like OtsClock1b and Adcyap1
are not only associated with differences in timing and
distance of migration but also affect morphology, hor-
mone production and timing of reproduction [146, 148,
149]. Recent work showed that migratory and non-
migratory butterflies (Danaus plexippus) differ in the
Collagen IV alpha-1 gene, which participates in muscle
development, metabolism and circadian rhythm path-
ways [150, 151]. This indicates that a limited number of
genes regulate multidimensional traits associated with
condition-dependent migration.

The transcriptomic signature of movement
Although these candidate genes seem to be key regula-
tors for movement behavior, they fail to provide us with
a complete insight into the often complex genetic archi-
tecture of common traits underlying movement. To
overcome this limitation, more pathway-oriented and
genome-wide methodologies are now being applied in
movement ecology. Advances in –omics technologies
not only provide biologists with knowledge concerning
the genome-wide gene content of many non-model spe-
cies, but also the unbiased quantification of transcription
by transcriptomics.
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Using a transcriptomic approach, Somervuo et al. [152]
found a large difference in gene expression profiles between
populations of the Glanville fritillary (Melitaea cinxia) that
inhabit either fragmented or continuous landscapes. These
different expression profiles may indicate selection for cer-
tain variants in genetic pathways that are involved in suc-
cessful dispersal in fragmented landscapes [152]. Notably,
they found a strong up-regulation in the immune response
and down-regulation in the hypoxia response in more dis-
persive butterflies. The authors attributed this latter tran-
scriptonal shift in dispersive butterflies to a lower sensitivity
to changes in oxygen levels, allowing for higher peak meta-
bolic performance during flight before the hypoxia response
sets in [152]. Other transcriptomic studies on lepidopterans
show similar adaptations to long distance flight on a
physiological level, including mobilization of energy, coping
with stress (hypoxia) and hormonal control [153]. Tran-
scriptome analysis on adult D. melanogaster showed that
the for gene at least partially operates through the insulin/
Tor signaling pathways, which are regulatory pathways that
control animal growth, metabolism, and differentiation
[137, 154]. In line with the different movement strategies,
individual D. melanogaster larvae with a long movement
path (called rovers) store energy reserves mainly as lipids
while individuals with shorter movement paths (sitters)
store energy as carbohydrates [136, 137]. In other dipterans
with variation in their flight capacity, differential gene ex-
pression analysis revealed that the insulin signaling path-
way, lipid metabolism, and JH signaling regulate energy
during flight [155]. While JH-mediated signaling appears to
be an important regulator for migratory behavior in Mon-
arch butterflies (Danaus plexippus), no differential expres-
sion of the for gene was observed [147].
In birds and mammals, transcriptomics offers a new

approach to study migration and dispersal by extracting
blood from individuals before and after the movement
type of interest and comparing RNA profiles. Although
this analysis likely excludes important signals from other
organs such as the liver and brain, it can offer key in-
sights into molecular mechanisms related to the behav-
ioral decision making of movement. In blackbirds
(Turdus merula) it was shown that, prior to departure,
many genes rapidly change their transcription and these
genes are predicted to participate in cholesterol trans-
port and lipid metabolism [156]. In marmots (Marmota
flaviventris), transcriptomic data shows that the differ-
ences between dispersers and resident individuals lie in
the upregulation of the metabolism and immunity [157].

Using metabolomics and gene-editing to find and
validate key regulators of movement
Transcriptomic analyses hold great promise to find common
underlying molecular pathways that relate to certain types of
movement behaviors, but it remains difficult to connect
different transcriptomic profiles to the exact levels of metab-
olite production [158]. In plant-feeding spider mites (Tetra-
nychus urticae) that show genetic variation in dispersal along
a latitudinal gradient, metabolomic profiling indicated that
an allocation of energy could be linked to a dispersal-
foraging trade-off, with more dispersive mites evolving to
cope with lower essential amino acid concentrations thereby
allowing them to survive with lower amounts of food [159,
160]. This finding is consistent with the theory that indi-
viduals of a population that forage on the same resources
can differ on the genetic level in how these resources are
metabolized and that these differences influence their
movement behavior [137]. In Drosophila that were artifi-
cially selected for increased dispersal, higher amounts of
octopamine and serotonin were detected [161]. These
neurotransmitters are associated with an elevated explora-
tory behavior in animals, while octopamine is also known
to be important when energy reserves have to be mobi-
lized [162, 163]. Octapamine regulates the activation of
catabolic enzymes, such as lipases and is the functional
equivalent of mammalian norepinephrine [163–165].
No individual genes or single pathway clearly stand out

from these metabolomics and transcriptomics studies. To
causally link genes to movement, novel gene-editing tech-
niques such as CRISPR/Cas9 technology has now made it
possible to modify specific loci within the genomes of
many organisms in a stable manner [166]. Gene-editing is
not commonly used in ecological research because meth-
odologies are currently time-consuming and highly im-
practical, especially for complex traits such as movement
behavior [167]. Recently, pioneering work of Markert
et al. [168] succeeded to efficiently generate and screen
heritable clock gene knockout lines in monarch butterflies
(Danaus plexippus) and recorded changes in migration
behavior. Future work needs to incorporate similar gene-
editing approaches to advance our understanding of the
genetic architecture underlying movement behavior [168].

Closing the loop
Environmental change imposes physiological changes, but
as these determine movement and hence suceptability to
these environmental stressors, emerging feedbacks are ex-
pected at different levels of biological organisation. First,
our synthesis made clear that carry-over effects between
the movement modes (CAMs) are very likely. Environ-
mental conditions constraining local foraging will eventu-
ally impose physiological changes that limit the efficiency
of dispersal and migration events, and reciprocally, any ex-
cessive energy expenditure or exposure to additional
stressors (if translated into endocrinal reactions) during
these long-distance journeys can carry over to foraging
movements in the subsequent resident stages [169].
As these physiological changes are anticipated to be

correlated with demographic traits and behaviours,



Goossens et al. Movement Ecology             (2020) 8:5 Page 7 of 13
hence forming behavioural syndromes [26, 81, 170] they
can eventually impact equilibrium population sizes and
their fluctuations [171], as mediated by costs during
movement and changes in local growth rates (e.g., [172,
173]). Such feedbacks can even be lagged if physiological re-
sponses are mediated through maternal effects, as for instance
the case by induced hormonal effects [33]. Ultimately, the
physiological capacity will determine population dynamic con-
sequences associated with climate change and the persistence
of species in an altered environment [91], as for instance dem-
onstrated in the Glanville fritillary [174, 175]. Here, feedbacks
between colonisation, extinction and the PGI-related dispersal
phenotypes maintained (genetically based) physiological het-
erogeneity in a metapopulation but since the different geno-
types perform differently under different temperatures, gene-
flow and metapopulation viability were shown to be vulner-
able under climate change [176, 177]. In dendritic systems,
body-condition dependent dispersal of a salamander (Gyrino-
philus porphyriticus) was found to maintain positive growth in
putative sinks, hence, contributing to form of self-organisation
in these linear habitats [178].
The impact of body-condition dependent movement on

community structure has been mainly studied from a co-
dispersal perspective, i.e., when hosts in a specific physio-
logical state are moving symbionts. The best-documented
consequences of such physiological-induced individual
differences are related to the quantity and quality of endo-
zoochorously dispersed seeds by vertebrates [179]. At the
other extreme, parasitic symbionts are able to directly
modify their host’s physiological state [180] in such a way
to manipulate their own spread. Gut bacteria have in this
respect been found to steer elementary cell-physiological
and hormonal processes along the gut-brain axis that dir-
ectly modify animal behaviours [181]. Such behavioural
modifications are, however, not restricted to gut micro-
biomes. Presumed commensal Ricketsia endosymbionts
are for instance found to constrain spider dispersal behav-
iour [182], while the dispersal limitation in Borellia-
infected ticks has been linked to physiological changes
that eventually facilitate host transmission of their Lyme-
causing bacterial symbiont [183].

A critical end-reflection
Our understanding of the relative importance of
movement-physiology feedbacks in population and com-
munity dynamics is still developing. It is nevertheless
clear from our review that human-induced rapid envir-
onmental changes will affect this eco-physiological
nexus, and that the integration of multiple theoretical
frameworks may be required to explain the observed
variation in movements in nature [184]. Understanding
and predicting the responses of animals to environmen-
tal change and the potential for solving diverse conserva-
tion problems using physiological knowledge is key to
the field of conservation physiology [185]. While an ex-
tended discussion and speculation on how different an-
thropogenic pressures affect movement by directly
impacting physiological processes is beyond the scope of
this review (but see [186] for an excellent contribution
with focus on vertebrate migration), we see direct links
between spatiotemporal changes in resource quantity
and quality, diseases and microbiomes, pollution, inva-
sive species and habitat fragmentation affecting all
movement strategies by their impact on body conditions
and physiological state. The development of accurate
forecasting models is one of the most urgent tasks to
guide the effective conservation of biodiversity in the
light of global changes. To date, however, models do not
provide sufficiently accurate predictions because of an
inherent lack of key biological processes, such as physi-
ology and dispersal. We here show that the movement-
physiological nexus is such a neglected important mech-
anism because the direct feedbacks impact connectivity
and hence the persistence of metapopulation [187] and
the potential for invasions [188].
Unbiased genome-wide transcriptomics using RNA-

seq has become very popular in the last couple of years
to study movement phenomena [147, 152, 157, 189–
191]. In the near future, Next Generation Sequencing
(NGS) will allow advanced comparisons of differentially
expressed genes across species, movement type, and
conditions [192–194]. It is in this respect not unlikely
that a new generation of molecular techniques will even-
tually put the classical classification of dispersal, for-
aging, and migration aside, while providing a more
condition and energy-dependent classification of move-
ment with possible generic molecular responses that
unify many types of movement. With the rise of novel
molecular tools that allow gene editing [167, 195] and
those allowing non-invasive monitoring in wild popula-
tions [196], it can also be anticipated that the physiology
of movement will be studied at an unprecedented level
of detail, especially given the central role of all move-
ment types in species conservation [185].
We obviously applaud this direction as it will advance

our understanding of spatial population dynamics sub-
stantially from an individual, mechanistic perspective.
However, an open question, remains to what extent such
highly detailed studies of the physiology of movement
are needed or desirable to transform the field of move-
ment ecology towards a more predictive science. It is
clear from our review that physiological control mecha-
nisms constrain and dictate variation in how animals
with different movement strategies respond to its sur-
rounding environment. The physiological control of
movement should therefore be treated as a reaction
norm, and as for models including feedbacks between
evolution and ecology [197], we expect a realistic but
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simplified consideration of feedbacks between environ-
mental cues, resources and physiological processes to
improve the predictive power of the available models.
The integration of simple allometric and metabolic rules
offers in this respect promising avenues [171, 198–201],
as do dynamic energy budget models [202–204]. It is
less obvious to which degree any hormonal feedbacks
need to be integrated. There is some evidence that endo-
crine processes impact direct costs of movement which
will potentially impact connectivity at rates that cannot
be predicted from metabolic processes alone. Independ-
ent of the empirical progress made in understanding the
physiological coupling of movement and environmental
change, theory is only marginally following this direc-
tion. We argue that such a parallel theoretical develop-
ment is constrained by the added level of complexity,
but to date, this has not even been put on the research
agenda. Since the few available theoretical studies dem-
onstrated that even the addition of simple movement re-
action norms or metabolic rules, can largely change the
emerging ecological dynamics, we advocate that a more
mechanistic based movement theory is needed more
than ever in light of generating synthesis in species re-
sponses to global change.
Whether such a theory needs to extend into the mo-

lecular pathways underlying the physiology of move-
ment, is more questionable. While this perspective has
been recently brought forward within the framework of
a predictive ecology in response to climate change [205],
our review showed that the needed insights into the
principal physiological and genetic drivers of movement
are largely lacking. Hence, no theory can be developed
without an advanced empirical research agenda.
Modelling approaches that explicitly account for

metabolic costs associated with movement and costs
associated with risk-taking might already provide
general insights on how feedbacks between the en-
vironment and physiology eventually shape move-
ment strategies and their coexistence across and
within populations (see e.g .[171, 206, 207]). One
key area where further insights would benefit eco-
logical forecasting is the study of the putative key-
hormones and -genes that are central to the eco-
physiological molecular network. If detected, such
hormones or genes may serve as master-traits in
predictive modelling and improve the accuracy and
robustness of mechanistic models by restricting the
number of free parameters. We additionally propose
theory to integrate movement at lifetime scales, and
to focus primarily on behavioural switches between
routine movements, dispersal and migration in re-
sponse to local demographic conditions, body condi-
tion and general physiological states (see e.g .[208])
as linkers between local and regional demography.
New generations of statistical tools now allow the
detection of such discontinuities in movement trajec-
tories [209] and therefore open avenues to use in-
verse modelling approaches [210] to test the
relevance and importance of detailed physiological
feedbacks for large-scale individual movement pat-
terns and their impact on population-level processes
in a wide array of animals in nature.
Conclusion
Environments are spatiotemporally heterogeneous, ei-
ther because of external abiotic drivers or because of
internal biotic dynamics. As organisms need to
maximise fitness, their movement behaviour should
be optimised. Failing to do so might lead to physio-
logical states that constrain such adaptive shifts. Our
review demonstrates the central importance of body
condition or energetic state as a driver of move-
ments at different spatiotemporal scales, from for-
aging to dispersal and migration. Overall, as body
condition is determined by carry-over effects from
early life, we show the importance of these early
conditions for physiology and subsequent movement
decision making. Negative relationships between
movement and body condition become more com-
mon with increasing costs of movement. As a
decision-making process, the onset of movement at
these different spatiotemporal scales is associated
with hormonal and gene-expression changes as well.
These insights are merely derived from classical
model systems and allow a profound insight into
the physiological pathways, and the putative corre-
lated responses on other traits and performance. It
is, however, clear that much more work is needed
to achieve sufficient progress in the field to develop
a unifying synthesis on the link between environ-
mental change, physiology and the resulting feed-
backs on ecological dynamics. We encourage
endeavours in this direction and are hopeful be-
cause of the accelerating rate at which new meth-
odologies are developed. However, given the infancy
of a physiological movement ecology and the ur-
gency to develop a predictive model of biodiversity
in response to environmental change, we advocate a
cost-based modelling approach that considers move-
ment decision thresholds in relation to basic
physiological states as an important step forward.
Ideally, such modelling approaches are centred on
physiological dynamics caused by key-molecular
pathways, that link environmental change to the
condition-dependency of movement across the rele-
vant spatiotemporal scales.
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Synthesis of the outstanding questions
Knowledge caveats hinder the development of a
movement ecology that integrates detailed physio-
logical feedbacks in terms of the underlying mo-
lecular networks. It remains to be investigated
whether and how much the integration of first prin-
ciples that underlie physiological changes of move-
ment, as to be developed by the next generation of
theory, improve the predictive power of ecological
forecasting models. Here we summarise the out-
standing questions related to the main topics that
are discussed in this paper.

1. Questions related to movement-decisions that de-
pend on body condition.

a. How variable are body-condition dependent

thresholds across contexts and environments,
and to which degree do they underlie het-
erogeneity in movement strategies within and
across populations?

b. What is the impact of these threshold
responses on population dynamics and vice-
versa?

c. When are these body-condition dependent
movements overruled by hormonal processes
(e.g., related to predation pressure, fear, so-
cial status and other stressors that are mech-
anistically decoupled from energetic
condition)?

d. As metabolic processes and movement
allometrically scale to body size, are
condition-dependent strategies variable
among species of different size, or even
trophic levels (e.g. see [205])?
2. Questions related to movement syndromes

a. How are physiological processes that are central

in life history and behavior at the basis of
movement syndromes, i.e. how do movement
strategies correlate with life histories and other
behaviour?

b. How are these correlations shaped by the inter-
and intraspecific interactions?

c. To what extent can microbial symbionts
influence and shape these correlations and
movement strategies?
3. Questions related to genes underlying movement-
decisions

a. Are there generic molecular pathways that

underly many different movement strategies and
are they regulated by the same genes and
hormones in different species?

b. Is there a common genetic background for
movement syndromes, and strategies across
all life stages?
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