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A guide for studying among-individual ®
behavioral variation from movement data
in the wild
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Abstract

Animal tracking and biologging devices record large amounts of data on individual movement behaviors in natural
environments. In these data, movement ecologists often view unexplained variation around the mean as “noise”
when studying patterns at the population level. In the field of behavioral ecology, however, focus has shifted from
population means to the biological underpinnings of variation around means. Specifically, behavioral ecologists use
repeated measures of individual behavior to partition behavioral variability into intrinsic among-individual variation
and reversible behavioral plasticity and to quantify: a) individual variation in behavioral types (i.e. different average
behavioral expression), b) individual variation in behavioral plasticity (i.e. different responsiveness of individuals to
environmental gradients), ¢) individual variation in behavioral predictability (i.e. different residual within-individual
variability of behavior around the mean), and d) correlations among these components and correlations in suites of
behaviors, called ‘behavioral syndromes’. We here suggest that partitioning behavioral variability in animal
movements will further the integration of movement ecology with other fields of behavioral ecology. We provide a
literature review illustrating that individual differences in movement behaviors are insightful for wildlife and
conservation studies and give recommendations regarding the data required for addressing such questions. In the
accompanying R tutorial we provide a guide to the statistical approaches quantifying the different aspects of
among-individual variation. We use movement data from 35 African elephants and show that elephants differ in a)
their average behavior for three common movement behaviors, b) the rate at which they adjusted movement over
a temporal gradient, and c) their behavioral predictability (ranging from more to less predictable individuals). Finally,
two of the three movement behaviors were correlated into a behavioral syndrome (d), with farther moving
individuals having shorter mean residence times. Though not explicitly tested here, individual differences in
movement and predictability can affect an individual’s risk to be hunted or poached and could therefore open new
avenues for conservation biologists to assess population viability. We hope that this review, tutorial, and worked
example will encourage movement ecologists to examine the biology of individual variation in animal movements
hidden behind the population mean.
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Glossary

Animal personality

Among-individual variation in average behavioral ex-
pression measured as the variance of a random intercept
in a mixed -effects model. The existence and extent of
among-individual variation is commonly quantified as

repeatability (R).

Behavioral type

An individual’s average behavioral expression, measured
as an individual’s value of the random intercept of its re-
action norm and respectively the individual’s position on
the behavioral spectrum.

Behavioral plasticity

Reversible changes in behavior in response to biotic and
abiotic environmental conditions within the same
individual.

Behavioral syndrome

Correlation between an individual’s average expression
of one behavior with its average expression of other be-
haviors in repeated measures data.

Predictability

Among-individual differences in residual within-individual
behavioral variability after controlling for variation in
average behavior (behavioral type) and in individual
plasticity.

Reaction norm

Range of behavioral phenotypes that a single individ-
ual produces under different environmental conditions
measured as the random intercept and slope of a ran-
dom regression model. Behavioral plasticity exists
when the reaction norm slope is non-zero. Individual
variation in reversible behavioral plasticity (individual
plasticity) exists when the reaction norm slope differs
among individual.

Introduction

Identifying the causes of individual variation in move-
ment has been a key topic in movement ecology over
the past decades [1]. Apart from variation due to life
stage or sex, movement ecologists often examine indi-
vidual variation in movement caused by external fac-
tors such as differences in the social and non-social
environment, or variation in internal state such as
hunger level or motivation to find a mating partner
[2]. Animal behavior research suggests however that
among-individual variation in behavior can not only
be driven by external factors or internal state, i.e. re-
versible variation, but also by non-reversible intrinsic
variation among individuals including differences in
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genetic make-up or developmental history (i.e. the so-
cial and non-social conditions experiences in the
past), owing to research in a sub-field of behavioral
ecology focusing on “animal personality” [3-5]. Such
intrinsic individual differences in the mean expression
of a behavior (ie., animal personality) can have im-
portant ecological consequences, affecting predator-
prey interactions [6, 7], population dynamics [8], dis-
persal [9] and survival [10]. Outside of movement
ecology, animal personalities are studied in particular
in the fields of ethology, animal behavior, behavioral
ecology, and evolutionary ecology.

Animal personality and the “two-step approach”

Animal personality is formally defined as repeatable in-
dividual differences in behavior across time and context
[5, 11, 12]. In a seminal paper, Réale et al. [5] proposed
a coherent terminology to study personality as five major
behavioral traits — activity, exploration, boldness, aggres-
siveness and sociability. A huge body of literature has
since used various experimental tests in the lab (e.g.
open field tests) or built-in settings in the wild (e.g. flight
initiation distance, novel object tests) to quantify individ-
ual variation in these behavioral traits [5, 13]. Experi-
mental approaches have the big advantage of reducing
bias of environmental variables which themselves create
variation in behavior. In a second step individual vari-
ation in the experimental test is then linked to variation
in natural behavior in the wild, including space use and
movement behavior [14-20]. For example, “aggressive-
ness” in sleepy lizards (Tiliqua rugosa) affected space
use, in particular under limited food availability [15].
This so called “two-step approach” is common even
though it comes with some potential problems [21]. For
one, to date there is little consensus how to unambigu-
ously interpret behaviors measured using experimental
tests [13, 22, 23]. More so, it has been questioned what
inferences can be drawn from an artificial test situation
when related to behavior in the wild [13, 21, 24].
Specifically, the “two-step approach” relies on the as-
sumption that behavior expressed during the test situ-
ation correlates with behavior in the wild [21]. If the
experiment is well designed to reflect the behavioral
trait in question given the ecology of the species
(reviewed in [13]), the insight gained from an experi-
ment can serve as a valuable baseline to relate space-
use in the natural environment to [15]. However, the
behavior in a potentially stressful artificial context,
such as during capture, handling or testing in a novel
environment, may not always reflect or appropriately
correlate with behavior in the wild [25, 26]. Finally
and importantly, experimental approaches may be lo-
gistically or ethically impractical to apply with larger,
elusive, or endangered wildlife [18, 27].
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Using variance partitioning to study individual variation
in movement

An alternative approach to the study of animal personal-
ity, particularly pertinent in behavioral ecology and evo-
lutionary biology, is that over repeated measures taken
in different biological contexts and over some portion of
an animal’s lifetime, individuals can differ in their aver-
age expression of any kind of behavior [28, 29]. This ap-
proach is purely based on statistical partitioning of
behavioral variation into its environmental, among-, and
within-individual sources [30] and is neither semantic-
ally nor methodologically constrained to the five major
behavioral traits. By “focusing on observable patterns per
se” [28] this approach can distinguish intrinsic individual
variation from reversible behavioral plasticity but avoids
confusion over the proximate causes of individual vari-
ation (e.g. genetics, developmental, social). As an
addition to this approach, personality (i.e. among-
individual variation) in multiple observable behaviors
can be underpinned by a common latent (i.e. unobserv-
able) variable such as aggressiveness or boldness [31].
However such latent variables can only be identified
through appropriate statistical estimation of a correl-
ation matrix at the among-individual level, which is then
taken forward in Structural Equation Models (SEM, [31,
32]). This is, however, beyond the scope of our present
work. This paper adopts the definition of animal person-
ality as statistical partitioning of behavioral variation,
and focuses on providing a framework where individual
variation in space-use and activity behaviors can be stud-
ied directly from movement data. Biologging, accelerom-
eter, and tracking data used in movement ecology are
exceptionally suitable to study variation in behavior at
the individual level: automated tracking devices produce
large, continuous datasets of individual-based measure-
ments which code for behaviors like habitat use, move-
ment, (diel) activity, or detailed behaviors of animals
over meaningful time scales [33-35].

Aim and scope

The first aim of this paper is to provide a literature re-
view of studies that used variance partitioning to study
different aspects of individual variation in movement be-
haviors. Indeed, variance partitioning has already been
used to study individual variation in foraging behavior of
marine mammals and birds [36-38], in fish activity and
movements [39-42], in movement and habitat selection
of terrestrial mammals [27, 43—46], and in partial migra-
tion strategies of bats, birds, fish, and mammals [47-50].
Despite this growing body of literature, research concen-
trating on individual variation from movement data has
developed quite isolated within the different animal taxa
and with this systematic review we hope to facilitate a
synthesis of existing efforts.
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Our second aim is to introduce the concepts, termin-
ology, and statistical approaches used in behavioral ecol-
ogy to describe individual variation at different
hierarchical levels. Last, we aim to demonstrate in a
hands-on R tutorial [51] and with example data, how
movement ecologists can use statistical tools adopted by
behavioral ecologists to partition variation in movement
data into environmental, among-individual, and within-
individual sources. We believe that this approach is
widely applicable and could open new avenues to study
biological variation in movement across all kinds of
movement forms and animal taxa.

Evidence for among-individual variation in
movement behaviors in the wild

Movement ecologists often seek to find patterns in ani-
mal behavior owing to differences among individuals in
e.g. life stage, sex, age, the social or non-social environ-
ment or reversible internal states (reviewed in 1). Yet,
among-individual differences in movement behavior be-
yond such effects are common [1, 52]. We here review
the evidence for among-individual variation in move-
ment patterns within populations spanning movement
of avian, aquatic, and terrestrial taxa.

If individuals differ in their movement and space use
behavior over a significant portion of their lifetime, then
the behavioral niche occupied by single individuals is
much smaller than the population niche: a case of be-
havioral specialization [53]. Most examples of movement
behavior specialization study among-individual variation
and within-individual consistency of foraging strategies
in marine mammals and birds (e.g. [36, 37, 54, 55]). In
central place foragers, where individuals return to a fixed
location between foraging trips [56], each foraging trip
can be described using variables such as trip duration,
distance, duration of diving, departure angle, and the
longitude and latitude of the endpoint of the trip [36—
38]. Single individuals thereby show remarkable
specialization in how and where they forage across re-
peated trips but differ in their foraging strategy from
each other [36-38]. Additionally, some populations har-
bor a mix of foraging specialists and foraging generalists
[38, 57, 58]. Foraging site fidelity is a metric that has
been used to capture an individual’s degree of foraging
specialization, where individuals either use always the
same site for foraging or are variable in where they for-
age [38, 59]. Indeed, differences in the degree of foraging
site fidelity have been linked to age or sex differences
[60, 61], differences in flight response to human encoun-
ters [62], and may have consequences for individual for-
aging efficiency and mass gain under varying climate
conditions [54]. In marine and pelagic fish, advances in
acoustic telemetry systems have led to a number of stud-
ies demonstrating repeatable individual variation in e.g.
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home range size, daily movement distance, diel vertical
migration, site fidelity, and dispersal of fish [39-42]. A
few recent studies in terrestrial mammals show that in-
dividuals within populations differ in movement pat-
terns, diel activity, and habitat selection preferences [27,
44-46, 63] and in their behavioral plasticity along re-
source gradients [46]. Differences in behavior in relation
to risk-benefit trade-offs and the thereof resulting conse-
quences for individual fecundity and survival have re-
ceived particular attention. For example, for ungulates,
more open habitats increase the risk of detection by
predators, including human hunters, but may at the
same time provide good foraging opportunities, a trade-
off that some individuals are more likely to accept than
others [43, 64, 65]. As a consequence these individuals
may experience higher fecundity [17] but also higher
mortality because their behavior increases their preda-
tion likelihood [64, 66]. Increases in predation pressure,
for example when hunting quotas are increased, may
disproportionally increase the removal of individuals dis-
playing risk-enhancing behaviors [67]. If individuals dis-
tinctly differ in their habitat selection, movement, and
activity patterns this leads to spatial structuring of popu-
lations [68]. Such spatial structuring has even been ob-
served in species which traditionally have synchronized
long distance migrations. In elk (Cervus canadensis), so-
cially dominant and habituated individuals have been
shown to switch their migratory strategy and become
resident in the vicinity of urban areas, as opposed to
their less habituated conspecifics [50]. This demon-
strated that individuals with movement and habitat se-
lection strategies contingent with habituation may adapt
better to anthropogenically altered landscapes [69].

The non-random distribution and local clustering of
behavioral types in space has numerous other important
consequences for ecology and evolution (see [70] for an
extended review) which could be explicitly studied using
movement data in the wild. For example differential
habitat specialization may lead to habitat specific differ-
ential susceptibility to encounter conspecifics, disease
vectors, or prey [70, 71]. Ultimately, individual variation
and specialization in behavior, habitat, and resource use
are expected to decrease competition and increase popu-
lation productivity and carrying capacity [72].

Key concepts in behavioral ecology research
focusing on individual differences

Behavioral ecologists focusing on individual differences
in behavioral expression seek to quantify sources of vari-
ation in behaviors and to study the ecological and evolu-
tionary causes and consequences of such variation [3, 4,
70, 73-75]. There are three principal ways in which be-
havior can vary among individuals. Individual variation
in average behavior over repeated observations
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(“personality”), and individual variation in degree of be-
havioral plasticity towards changing environmental con-
ditions (“individual plasticity”) can be jointly quantified
by adopting a reaction norm framework [29, 76]. A reac-
tion norm is formally defined as the range of behavioral
phenotypes that a single individual produces along a
given environmental gradient [29]. The individual’s “be-
havioral type” is its intercept of the reaction norm and
the slope is its individual “plastic” response to changes
in the environment. Thirdly, there can be individual
variation in residual within-individual variance (“behav-
ioral predictability”), ie. the “deviation” from this reac-
tion norm [77]. Finally, among-individual correlations
between all three variance components can exist. For ex-
ample, behavioral syndromes represent between-
individual correlations of two or more distinct behaviors
in repeated measures data [78, 79].

Behavioral type

When individuals differ over repeated measures of a be-
havior from each other, then each individual only ex-
presses (at least most of the time) a limited range of the
behavioral expression present in the population and var-
ies in its average behavioral expression, i.e. its “behav-
ioral type”, from other individuals in the population
(Fig. 1a, 5). The extent of individual variation in a popu-
lation is commonly quantified as ‘repeatability’ (R),
where among-individual variance is standardized by the
total phenotypic variance, ranging from 0 to 1. Repeat-
ability indicates the proportion of phenotypic behavioral
variance in a population that can be attributed to indi-
vidual differences in behavioral expression [80]. Across
animal taxa and behaviors (both in the laboratory and
the wild), differences between individuals account on
average for approximately 40% of the total behavioral
variance [80, 81]. However, repeatability cannot gener-
ally be compared across groups of animals to make in-
terpretations about whether those groups differ in the
expression of among - individual variation because re-
peatability also varies as a function of the within-
individual variation [82]. Instead the coefficient of vari-
ation for among-individual variance (i.e. CV)), allows for
comparisons of degree of among-individual variation
across populations (or any other groups of animals) [81,
83]. CV; is calculated as the among-individual variance
standardized by the trait mean [81]. Both repeatability
and CV; are population-level parameter estimates of the
degree of individual variation. On the individual level, an
individual’s ‘behavioral type’ (the random intercept of
the reaction norm) indicates its relative position on the
behavioral spectrum of the population (Fig. 1a) and can
be visualized by extracting the individual’s best linear
unbiased predictor (BLUP) or posterior distribution
from a mixed effects model [84]. Using movement data,
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Fig. 1 Concepts in animal personality research: a Behavioral types: Among-individual differences in mean behavioral expression over repeated
measures. b Linear reaction norm plot: individuals differ in their behavioral plasticity (slope) along an environmental gradient and there is a
positive correlation between an individual's behavioral type (intercept) and its plasticity (slope). ¢ Predictability: individuals differ in within-
individual behavioral variability from more predictable individuals (red ribbon) to less predictable individuals (purple ribbon). d Behavioral
syndrome: there is a positive among-individual correlation for two distinct behaviors: Behavior X and Behavior Y. Individuals with on average
higher average expressions of Behavior X also have higher average expressions of Behavior Y

among-individual differences in behavioral types have
been demonstrated for example for swimming activity,
diel vertical migration, horizontal movement, activity
level, home range size, site fidelity, and dispersal of fish
[39-41]. In the terrestrial literature, a few studies have
demonstrated that individual variation and hence
specialization in habitat selection can be significant and
mask selection patterns on the population level [44, 63,
85, 86]. Movement data can also be used to quantify diel
activity patterns and recent studies have demonstrated
significant individual variation in diel activity strategies
within populations suggesting intra-specific temporal
niche partitioning [87, 88].

Individual behavioral plasticity

In addition to the ‘behavioral type’, behavior may also be
context-dependent and change with life history stage,
environmental conditions, or over time. In behavioral

ecology this type of plasticity is referred to as reversible
‘behavioral plasticity. How animals adjust movement
along environmental gradients or over time is of general
interest in movement ecology but individual variation in
the degree of adjustment (i.e. individual plasticity) is
rarely evaluated explicitly (but see [46]). Limited behav-
ioral plasticity may thereby be indicative of behavioral
specialization. A few studies have demonstrated the ex-
istence of individual variation in reversible behavioral
plasticity (the random slope of the reaction norm) in re-
sponse to environmental gradients (Fig. 1b), in move-
ment behaviors [40, 46]. Perch, for example, increased
swimming activity in response to increasing water
temperature but individuals differed in their degree of
behavioral plasticity leading to increased individual dif-
ferences in swimming activity at higher temperatures
[40]. Individual variation in plasticity is best studied
using random regression models on repeated behavioral
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measures across environmental conditions or time [30,
89]. These models allow the simultaneous estimation of
1) the individual variation in the average behavioral ex-
pression (i.e. behavioral type; intercept of the reaction
norm) and 2) the individual variation in the change of
behavior over environmental gradients (i.e. individual
plasticity, reaction norm slopes).

Behavioral predictability

In addition to variation in behavioral plasticity, individ-
uals may differ in their degree of residual within-
individual behavioral variability [90], also termed pre-
dictability [91]. This kind of variation represents the un-
explained variance of repeated behavioral measures after
controlling for individual variation in average behavior
and in individual plasticity (Fig. 1c). Unpredictable indi-
viduals are characterized by high variability around their
average behavioral type and reaction norm slope. Pre-
dictable individuals on the other hand have little residual
variance around their behavioral type and reaction norm
slope. Among-individual variation in predictability can
statistically arise due to incomplete or erroneous model
specification where we fail to account for plastic re-
sponses towards environmental covariates [77]. How-
ever, individual variation in predictability may also be
evolutionarily adaptive, e.g. diversification in bed-
hedging [92] or food intake rates [93]. Certain condi-
tions may therefore favor the coexistence of more and
less predictable individuals (see [77] for an extended re-
view). When important social- and nonsocial environ-
mental covariates are controlled for, predictability can
be interpreted as a measure of an individual’'s degree of
behavioral specialization relative to other individuals
with predictable individuals being more specialized on a
certain behavioral expression. Both, behavioral plasticity
and behavioral predictability can thereby constitute dif-
ferent drivers of behavioral specialization. Some move-
ment behaviors, the degree of foraging site fidelity for
example, could be considered as inherently coding for
intra-population variation in within-individual variability
[54, 58, 62]. In these examples, more site-faithful indi-
viduals feature low within-individual variability in space
use, i.e. they repeatedly visit the same locations for for-
aging, whereas less site-faithful individuals have high
within-individual variability in space use and can switch
foraging sites [58]. Alternatively, recent advancements of
classical mixed effects models to double-hierarchical
generalized linear models (DHGLM’s) allow for infer-
ences about statistical predictability in any kind of be-
havior, by simultaneously estimating both the variation
in the individual mean and the variation in the residual
variance around the individual mean within the same
model [94]. For example, variation in predictability has
been shown for activity rates in guppies (Poecilia
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reticulate [95]) and exploration of open habitat in stick-
lebacks (Gasterosteus aculeatus [96]) but has not been
evaluated in movement data from the wild.

Correlations among variance components and behavioral

syndromes

Correlations between all three variance components de-
scribed above are possible. Correlations between behavioral
type and individual plasticity (i.e. intercept-slope correl-
ation, [29, 97, 98]) for example can give insights whether in-
dividuals of a higher average behavioral expression adjust
their behavior more (or less) strongly as compared to indi-
viduals with a lower average behavioral expression and
whether among-individual variance and repeatability
change over the environmental gradient (Fig. 1b). Caribou
(Rangifer tarandus) for example show behavioral type-
dependent plasticity, where fast moving individuals in an
average environment decreased movement speed more
strongly with increasing resource aggregation than individ-
uals that moved more slowly [46]. In the same manner,
both the behavioral type and the behavioral plasticity can
also be correlated with behavioral predictability, where indi-
viduals at one end of the behavioral spectrum and/or ones
with limited (increased) behavioral plasticity are also more
or less predictable [96]. To our knowledge such correlations
have so far only been shown for movement traits measured
under laboratory conditions [96]. Finally, the individual’s
average expression of one behavior can be correlated with
the average expression of other behaviors, termed ‘behav-
ioral syndrome’ (4, Fig. 1d). Traditionally, behavioral syn-
dromes are defined as the correlation of behaviors at the
individual level measured in different contexts, for example
the behavior in a novel object and the behavior in an open
field test [4]. In empirical, non-experimental, movement
data the context is often not defined and behavioral syn-
dromes estimated from these data possibly present the
average behavior over a number of contexts (foraging, rou-
tine movements, predator escape) rather than from differ-
ent contexts. Movement behaviors of wild burbot (Lota
lota) for example correlated in a behavioral syndrome ran-
ging from resident individuals with small home ranges, low
movement activity and high site fidelity, to mobile individ-
uals with large home ranges, much movement and low site
fidelity [41]. Because there is strong support that movement
behaviors are heritable [99, 100], with increasing evidence
for heritability of natural movements in the wild [101, 102],
correlations of distinct movement behaviors thus also have
a genetic basis [103]. Correlated behaviors or traits can en-
hance or restrict a population’s capacity to adapt to chan-
ging conditions [70, 104]. Among-individual correlations
are not restricted to behavior but can also include correla-
tions with morphology [105] or with life history traits,
termed ‘pace of life syndrome’ (POLS, [75, 106]).
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How to disentangle intrinsic individual variation
from reversible behavioral plasticity

An inherent problem in studies that record behavior in the
wild is that individuals always experience at least subtly dif-
ferent environments precluding the option to measure
them under identical conditions [52]. This poses difficulties
for attributing observed behavioral differences to differ-
ences in genes and developmental history (i.e. intrinsic vari-
ation) or to prevailing environmental conditions. If the
differences in the environment under which the animals’
behavior is assayed cause individual differences in behavior
(via reversible behavioral plasticity towards the environ-
ment) and we fail to control for this, we might conflate in-
dividual and environmental variation (Fig. 2a&d, [26]). The
key to account for the effect of environmental heterogeneity
on individual variation is to repeatedly measure behavior of
the same individuals over a range of environmental
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conditions. Ideally one can measure the behavior of individ-
uals along similar environmental gradients to disentangle
true from pseudo-repeatability (Fig. 2b&c, [26, 108]). Essay-
ing movement behavior along environmental gradients
such as habitat type or human disturbance may be easier
for nomadic or migratory animals that move along such
gradients (Fig. 2a-c), although this may not be true for co-
variates driving migration, such as climate or vegetation
phenology [109]. For animals that maintain stable home
ranges, environmental gradients may occur within their
home range or manifest over time (Fig. 2d-f). However, in
range resident species, individuals may match settlement
choices to their behavioral type and hence only occur in
certain environments (Fig. 2e&f, [9, 16, 110]). A way to dis-
entangle intrinsic from environmentally induced behavioral
variation is to include repeated measures of the environ-
mental conditions (e.g. habitat availability, composition,
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Fig. 2 Possible relationships between behavioral types (among-individual variation in intercepts) and behavioral plasticity (non-zero slopes) along
environmental gradients for mobile (a, b, €) and stationary (d, e, f) species. Mobile species may be exposed to a wider gradient of environmental
conditions than range resident species, allowing to disentangle behavioral plasticity and behavioral types more easily. Individuals may adjust their
behavior plastically to the local environment while not differing in behavioral type (a & d). Behavioral differences exist when individuals are not
observed over the same environmental gradient (d). Alternatively, individual differences may fully account for behavioral differences with no
behavioral plasticity to environmental conditions (b & e). In stationary species this may lead to non-random distribution of behavioral types when
individuals choose habitats which match their behavior (e). Most likely, individual differences and behavioral plasticity to environmental
conditions jointly contribute to observed behavioral differences (c & f). This figure has been adapted from Sprau and Dingemanse [107] and
Niemeld and Dingemanse [26]
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structure, or temperature) at the time and location where
behavior is measured or identity of the environment (e.g.
territory), as fixed [107] or random [26] effects in mixed-
effects models, respectively. One can then statistically dis-
tinguish plastic responses to the environmental gradient
from patterns of non-random distributions of behavioral
types (Fig. 2¢) even if individuals have not been measured
over the full environmental gradient (Fig. 2f [107, 111-
113]). For example, individuals may adjust their behavior in
response to changing local conditions but beyond that still
differ markedly in their behavioral type (Fig. 2c&f).

While the techniques above may account for import-
ant environmental variability, we usually do not possess
information about all aspects of the social or non-social
environment. This is especially the case for high-
resolution tracking data where environmental variables
are rarely recorded at the same spatial and temporal
scale as the movement behavior. To help gauge whether
it is likely that some important covariates have been left
out, for example when spatial heterogeneity in the envir-
onment is expected but not explicitly mapped, one can
test whether behavioral tactics are spatially autocorre-
lated, i.e. whether behavioral measures taken close in
space are more similar than behavioral measures taken
at a distance [66, 86]. Spatial segregation of behavioral
tactics may thereby be informative in its own right [86].
On a similar note, movement data are inherently tem-
porally autocorrelated, meaning that the behavior of an
individual on a given day is likely to be more similar to
its behavior on the previous day than to its behavior
three weeks ago. Ignoring temporal autocorrelation can
bias estimates of individual variation upwards even after
controlling for temporal trends [114]. Using auto-
regression structure one can calculate the correlation be-
tween residuals of behavioral measures taken at succes-
sive points in time (e.g. days, [115]). Temporal
autocorrelation can be avoided when repeated behavioral
measures are taken spaced out in time, and including a
sequential effect of time (e.g. month, season) in the
model should sufficiently control for temporal effects.
Testing for different temporal scales of repeatability, i.e.
long-term and short-term scale, can elucidate whether
individual differences are short lived and hence poten-
tially driven by the environment or long lived and hence
more likely to be intrinsic to the individual [98]. Add-
itionally to the non-social environment, demographic or
social dependencies are another example how experi-
enced environments may differ among individuals and
may generate individual differences in behavior [116].
Social interactions may either promote [117] or dampen
[118] behavioral variation, in either way individuals be-
longing to the same social group may be non-
independent from other members of the group [119].
When social groups are dynamic, for example in fission-
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fusion societies, measuring behavior repeatedly over long
time scales may facilitate teasing apart behavioral adjust-
ments towards conspecifics and individual behavioral
consistency [120]. Even solitary animals may still adjust
their behavior in relation to local conspecific density (or
to their respective predator or prey density) to facilitate
temporal or spatial niche partitioning [19, 87]. Demo-
graphic traits such as sex, age, and reproductive status,
or life history stage may all drive individual differences
in behavioral expression and should therefore be con-
trolled for [60]. In some cases, one may concentrate on
a homogenous group of individuals (e.g. only adult fe-
males) to exclude known sources of behavioral variability
or to study the extent of variation within specific age or
life history classes [121]. Further, individuals may differ in
a whole variety of other stable or labile “internal states” in-
cluding for example hunger level, parasite load, or energy
reserves [122] which can affect their motivation or cap-
ability to move [2]. It is virtually impossible to control for
all internal and external aspects affecting behavior, even
under laboratory conditions [123]. Taking repeated behav-
ioral measures across multiple ecologically important con-
texts, across environmental conditions, and over long time
periods facilitates disentangling individual effects from be-
havioral plasticity and reduces the effect of environmental
noise [26, 124]. Tracking data thereby offer unique oppor-
tunities to obtain such long-term monitoring of behavior
with virtually hundreds of repeated behavioral measures
per individual.

Ultimately, the relative contribution of genetic versus
permanent environmental effects on among-individual
variation can only be assessed by quantifying heritability
of movement behaviors [99, 101, 125]. We here gave
recommendations how empiricists can disentangle indi-
vidual variation from reversible behavioral plasticity [26].
We want to stress that results from studies that cannot
control for all important co-variates that cause reversible
behavioral plasticity are still meaningful as long as pos-
sible limitations on study conclusions are appropriately
addressed.

Data requirements to measure individual
variation in movement behavior
While data requirements are always question and system
specific, we here provide a few examples and general
recommendations on the type of data needed to esti-
mate individual variation in movement using variance
partitioning.

Three prerequisites and challenges to the study of in-
dividual behavioral differences from movement data are
that:

1) The temporal resolution of the movement data
needs to be adequate to detect the focal behavior
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and comparable across all individuals. Many
behaviors are short term and thus require high
temporal resolution (short GPS fix interval) to be
measured with movement data, e.g. area restricted
foraging [36].

2) The behavioral measures need to happen with
sufficient amount of repeats [82] but repeated
measures can stretch out over a long time frame
relative to the life span of the individual and hence
require long monitoring durations. Ideally behaviors
are observed across a significant portion of an
individual’s lifetime or are spaced apart sufficiently
to avoid pseudoreplication.

3) A sufficient sample of individuals from the same
population are measured. The more individuals are
followed the easier it is to statistically estimate
individual level patterns.

While data with a high resolution and long duration
over many individuals in a population become increas-
ingly available, this traditionally tends to present a major
financial and ethical challenge for movement ecologists.
However, not in all cases all conditions (long duration,
high resolution, many individuals) need to be met. For
example, questions related to annual breeding dispersal
distance and breeding site fidelity, or migration patterns
require multiannual time series allowing to model indi-
vidual level variation in behavior over long time spans
(Table 1). Estimating individual differences of such
broad scale movement patterns on the other hand only
requires long GPS fix intervals at the scale of days or
even months. At the other extreme we may need short
GPS fix intervals to quantify individual variation in the
degree of area restricted search behavior (ARS), the
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duration an animal keeps searching for food in a food
patch before giving up and leaving the patch, in particu-
lar when habitat patches are small relative to the move-
ment capacity of the species (Table 1). Individuals can
vary in their behavioral type from exploratory ones with
low ARS to less exploratory ones with high ARS [52]. To
study such individual variation in ARS, every foraging
patch encounter which results in ARS could be classified
as a repeated measure and individual variation in ARS
could be already assessed after a few days of data collec-
tion (depending on how many patches are encountered
per day). When it comes to analyzing whether individ-
uals differ in their plasticity towards the environment
(Fig. 1b), the monitoring duration needed is obviously
dependent on the temporal scales over which environ-
mental conditions change. Importantly, the behavior of
every individual should be measured repeatedly in each
context (or over the environmental gradient) in order to
account for individual variation in plasticity [98]. For ex-
ample, variation in diel plasticity of lake depth use warrant
repeated dive depth measures at day and night over several
days for every individual [42], whereas questions related to
e.g. seasonal variation in diel depth use warrant longer
monitoring times, respectively [42]. Finally, if we are asking
questions whether individuals differ in their behavioral de-
velopment over age, or whether they differentially use (ex-
periential or social) learning, (spatiall memory [127],
exploration, and behavioral innovation [54, 127, 128, 133]
to navigate in space we need long durations of monitoring,
ideally over the entire lifespan of the animal.

Last, movement data are often collected at different
sampling rates across individuals and data may be col-
lected from a mix of older and newer GPS tag models
leading to differences in precision and error rates.

Table 1 Examples of movement behaviors which have been shown to feature intra-population individual variation and temporal
scales needed in order to quantify the behavior for analysis of between-individual repeatability. We roughly consider temporal
resolutions of less than 1 fix per day to be “low”, one to three daily fixes to be medium, and bi-hourly or hourly fixes to be “high”.
“Low” temporal resolution of movement data may also be achieved with visual resightings or DNA recaptures of individuals instead

of biologging devices

Duration of monitoring Temporal resolution Example behavior References
Long term low - breeding or stopover site selection and fidelity [126]
(mult-annual, lifelong) - migration probability, distance, and site fidelity [50]
medium - high - movement and habitat selection in relation to age, [127-129]
memory, learning, behavioral innovation
Medium term low - natal dispersal probability and distance [130, 131]
(annual, seasonal) medium - foraging site fidelity [38]
high - resource selection [44, 85, 86]
Short term (weeks, days) low - home range size [52]
medium - daily net squared displacement [132]
high - area restricted search behavior [54, 58, 62]

- diel activity [27]
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Especially when tracing individual differences in move-
ment, a careful cleaning of the data is indispensable to
avoid the erroneous detection of individual differences
caused by measurement error.

In addition to the practical requirements allowing us
to measure behavior at the right temporal scale, there
are important statistical considerations to be kept in
mind. These primarily concern the number of individ-
uals measured and the number of repeated behavioral
measures per individual obtained. A meta-analysis has
shown that the repeatability of behavioral traits, i.e. the
proportion of total phenotypic variation in behavior ex-
plained by individual’s identity, is commonly relatively
low (0.1-0.3 [80]). Simulations show well that reaching
sufficient statistical power to estimate individual differ-
ences with high precision can be difficult when repeat-
ability is low [134]. There are two ways in which the
precision can be increased: either by increasing the num-
ber of individuals measured or by increasing the number
of repeated measures per individual (see recommenda-
tions and supplementary material in [134]). The former
may be limited by the costs per tracking unit, the diffi-
culty to capture elusive species, and in case of threat-
ened species ethical concerns with equipping many
individuals with tracking devices, whereas the number of
repeated measures is mainly limited by the battery life-
time of tracking devices. Most of the studies cited in this
manuscript used 25-50 tracked individuals to assess in-
dividual variation.

Worked example

Here, we provide an example of how repeatability, be-
havioral types, behavioral reaction norms, predictability,
and behavioral syndromes can be estimated from move-
ment data. In the Supplementary Material, we provide a
full R tutorial and code through the statistical analysis of
our worked example [51].

Movement behavior of African elephants

We use open access data (Movebank Data Repository
[135, 136]) from 35 African elephants (Loxodonta africa-
nus, Fig. 3a) which were monitored for at least 12
months (Fig. 3b). The data were previously published in
Abrahms et al. [132] and Tsalyuk et al. [137]. Individual
differences in movement behaviors were demonstrated
for these elephants using a single measure per individual
over its entire monitoring period [135]. Our methodo-
logical approach goes beyond that by repeatedly quanti-
fying movement metrics for all individuals within
discrete time steps, thereby allowing us to decompose
variance into its among- and within-individual compo-
nents, ie. to estimate behavioral types and reversible
plasticity, respectively, in trait expression. The detailed

Page 10 of 18

description of how the data was collected can be found
in Tsalyuk et al. [137].

GPS fix intervals varied between 20 and 30 min and
were resampled to 30 min for all individuals. From the
movement tracks we calculated three common move-
ment metrics on a weekly basis — mean daily movement
distance, mean turn angle correlation, and mean resi-
dence time (Fig. 3c). Daily movement distance was cal-
culated as the sum of 30-min displacement distances
within 24 h. From this, mean daily movement distance
was calculated as the mean of daily distances within one
week. Longer mean daily movement distances are indi-
cative of more active individuals which are travelling at
faster speed, as compared to shorter mean daily move-
ment distances. Turn angle autocorrelation was calcu-
lated as the inverse of angular autocorrelation [132],
where angular autocorrelation was the sum of squares of
chord distances between N successive turn angles within
one week (ideally 336 steps) [138]. Individual variation
in turn angle correlation could therefore be indicative of
whether an individual’s movement is more or less ex-
ploratory [132]. Residence time was calculated as the
number of hours an individual spent inside a circle of
the radius of its mean step length centered on its GPS
fix location [139]. We calculate the mean residence time
over all locations within one week (ideally 336). Under
spatial heterogeneity of resource availability, a higher
mean residence time could be indicative of higher re-
source availability in this given area as compared to an
area occupied by an individual with a lower mean resi-
dence time. If spatial heterogeneity is controlled for (see
section “How to disentangle intrinsic individual variation
from reversible behavioral plasticity” above) then indi-
vidual variation in mean residence time could be inter-
preted as variation in exploration behavior. Turn angle
correlation and residence time were calculated with code
published in Abrahms et al. [132]. We obtained between
54 and 245 weekly behavioral measures for each ele-
phant (Fig. 3b). Our worked example represents an ex-
ample where we quantify individual variation in tracking
data with a medium long monitoring with fairly high
temporal resolution (see Table 1).

Statistical methods

Generalized linear mixed model (GLMMs) provide a
powerful tool to decompose observed behavioral vari-
ation into environmental fixed effects and within- and
between-individual components [30].

First, normal mixed effects models, with a random
intercept for individual, allow to estimate whether indi-
viduals differ in their behavioral type for a behavior (the
individual level predictors of the random intercept, Fig.
la) by quantifying repeatability. We fit mixed effects
models separately for weekly means of daily movement
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Fig. 3 (See legend on next page.)

(a)

(b)

ElephantID

(c)

228

204

2009 2010 2011 2012 2013
Monitoring time

mean daily distance = 20.6 km
mean RT =2.3 hrs
TAC=0.7

Lo
residence time e
2hrs >
&
radius@ . o oot
431m s et o
o /
W o
e o
X

245

2014 2015

daily distance
22 km




Hertel et al. Movement Ecology (2020) 8:30

Page 12 of 18
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Fig. 3 Sampling design used to study individual variation in African elephants (Loxodonta africanus, a) in Etosha Nationalpark. b Movement data
were collected for 35 elephants between 2008 and 2015. Movement metrics were calculated on a weekly basis yielding 54-245 repeated
measures per individual. ¢ We divided the movement path of each elephant into weekly segments and calculated weekly means for three
common movement metrics: daily movement distance, residence time (RT) in a circle of the individual's average step length and turn angle
correlation (TAC). We here show the movement path of one individual during a week in January

distance, turn angle correlation and residence time. We
controlled for sex differences (two-level factor) and
accounted for population level shifts in behavior over
the course of the year (using month as a continuous co-
variate with a second order polynomial). We also in-
cluded a random intercept for month nested in year to
account for measures taken within a given month of a
given year being more similar to each other. Finally, we
included a random intercept for the individual.

Second, random regression models allow to estimate
reaction norm components (i.e. the individual level ran-
dom intercept, the random slope over an environmental
gradient, and their correlation), giving insights into a)
whether individuals differ in behavioral type (the ran-
dom intercept), b) whether individuals differ in behav-
ioral plasticity along environmental gradients (the
random slope) and, c) whether plasticity depends on the
behavioral type (intercept and slope correlation, Fig. 1b).
We here fit a random regression model for mean daily
movement distance to uncover individual variation in
movement plasticity towards seasonal variation in the
environment using month of the year as a surrogate
variable [137]. Additionally to the random intercept for
the individual we therefore also included non-linear ran-
dom slopes for study month. We fitted mixed models
within a Bayesian approach using brms [140] and com-
pared model fit using the widely applicable information
criterion (WAIC, [141]).

Third, extending random regression models to a
double-hierarchical model (DHGLM) allows us to simul-
taneously model individual variation in intercept (behav-
ioral type), slope (behavioral plasticity), residual variance
(predictability), and their correlations [94—96]. High re-
sidual variance is indicative of low predictability, whereas
low residual variance indicates high predictability (Fig.
1c). Additionally to the variance structure on the re-
sponse variable mean daily distance, we also imposed a
variance structure on the residual variance, partitioning
this residual variance per individual. For modelling pur-
poses, individual variation in within-individual variance
is estimated on the log scale, for biological interpretation
we backtransformed individual values to the original
km scale. We calculated the coefficient of variation in
predictability (CVp) [94].

Finally, multivariate mixed effects models allow to esti-
mate whether two (or more) behaviors are correlated
strictly at the among-individual level of variation (i.e.

correlation of the mean trait values; behavioral syn-
dromes) or within-individual level of variation (i.e. corre-
lated plasticity) (Fig. 1d, [30, 84]). Using brms [140], we
fit a multivariate mixed effects model with mean daily
distance, residence time, and turn angle correlation as
response variables. We controlled for a non-linear effect
of month and for sex as fixed effects and for random in-
tercepts for the individual. The model produces the
among-individual correlations among the three behaviors.

Components of individual variation in the movement of
African elephants

In our worked example we indeed found that, over the
course of 1-4.5years, elephants differed in three basic
parameters of their movement strategy. While control-
ling for simple seasonal changes in behavior and sex dif-
ferences, 22% of the variation in daily movement
distance and 17 and 30% of the variation in residence
time and turn angle correlation, respectively, could be
attributed to individual differences [posterior mean +
95% credible interval RpyeanpailyDistance = 0.22 [0.18, 0.27],
RieanrT = 0.17 [0.13, 0.22], Rrac=0.3 [0.26, 0.35]). Be-
havioral types for e.g. daily movement distance ranged
from elephants which moved on average 9.5 km a day to
elephants which moved on average 19 km (Fig. 4a). It is
important to keep in mind that other factors that were
not include in this worked example, such as differences
in the habitat experienced by individual elephants, differ-
ences in age, or in social group composition may explain
parts of these individual differences. The intention of
this example is to be a “how to” guide for ecologists. For
a research example that attempts to draw actual conclu-
sions on individual variation in elephant behavior one
would need to include more covariates. Elephants also
differed in how they changed their behavior over the
temporal gradient month of the year, which captured
seasonal variation in temperature, rain, and forage avail-
ability (Fig. 4b). Compared to the random intercept
model (WAIC =21,749), the random intercept and slope
model (WAIC =21,224) produced a better fit for the
data (AWAIC =524). While most elephants reduced
their movement distance during June to October (the
drier months of the year e.g. blue and purple reaction
norm lines in Fig. 4b), the magnitude of movement de-
crease varied among individuals and some elephants did
not reduce movement at all (green line) or even in-
creased movement (red line) during June to October.
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Fig. 4 Individual variation in the movement behavior of 35 African elephants. We highlight five individuals (elephant 4, 8, 17, 20, 36) to facilitate
the interpretation of individual differences across hierarchical levels: a) Elephants differed in their average behavioral type for daily movement
distance from individuals with a daily movement distance of 10 km (elephant 4) to 20 km (elephant 8) in January. Shaded areas indicate the
posterior 95% credible interval of the population level daily movement distance for male (blue) and female (red) elephants, respectively. 22% of
the variation in daily movement distance was due to differences among individuals. Individual variation in behavioral shifts over time are
unaccounted for (inset) (b) Elephants however differed in how they adjusted their movement behavior over month of the year. Most elephant
decreased movement from the beginning of the year (wet season) towards the middle of the year (dry season) and then increased movement
again towards the end of the year. Some elephants however did not adjust movement (elephant 36) or increased movement (elephant 17)
during the middle of the year. c Elephants differed in within-individual variance from less predictable individuals (e.g. elephant 17) with high
variance around their behavioral mean to more predictable individuals (e.g. elephant 36) with low variance around their behavioral mean. The
posterior 95% credible interval of the population level residual variance (yo) is shown in gray. Note, we here show exponentiated model estimates
to facilitate biological interpretation on the km scale. d Elephants with on average longer daily movement distances also had on average shorter
residence times. The among-individual correlation between the two behaviors was — 04. Because distance (km) and residence time (hrs) are on
different scales, behaviors were scaled to a mean of 0 and standard deviation of 1 prior to model fitting. Figures are based on bayesian

model results

After controlling for individual variation in movement the amount of their unexplained behavioral variance
type and in seasonal adjustments of movement, ele- (CVp.meanDailyDistance = 0.27 [0.2, 0.35]). Within-individual
phants still differed in within-individual variability, i.e. in  variance ranged from 2.25 to 6.7 km (Fig. 4c), indicating
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that some individuals were much more predictable in
their behavior than other elephants in the population. In
addition, we found among-individual correlations be-
tween some variance components. First of all we did not
find a correlation between behavioral type and behav-
joral plasticity (corincmonth = — 0.02 [-0.36, 0.34], coryy,.-
month> = 0.26 [-0.07, 0.56]), i.e. elephants with a higher
average daily movement distance did not systematically
change their behavior more (or less) strongly over
month of the year than elephants with a lower average
daily movement distance (Fig. 3b). However, behavioral
type was correlated with within-individual variability
(cor=0.5 [0.15, 0.74]) such that elephants that moved
over longer daily distances were also less predictable.
Last, we found a behavioral syndrome where individuals
that moved on average over shorter daily distances also
had on average longer residence times (cor = -0.41 [-
0.68, —0.1], Fig. 4d), whilst turn angle correlation was
uncorrelated with these movement traits at the individ-
ual level.

We here present an example on how repeated mea-
sures of movement metrics can be used to analyze indi-
vidual variation in the average, plasticity, and
predictability of such movement metrics and their corre-
lations among individuals. Tsalyuk et al. [137] previously
demonstrated for this population that individuals dif-
fered in their movement directedness (analogous to
TAC in our analysis) and movement speed (analogues to
movement distance in our analysis). Our analysis com-
plements these earlier findings by demonstrating long-
lasting individual differences in the average expression
of these behaviors. More importantly our approach
shows that individual elephants differ in how they adjust
movement over the course of the year and in how pre-
dictable they are in their movement tactics. Male ele-
phants generally moved over shorter daily distances and
were less predictable in their daily movement distance
than female elephants. Two of our movement metrics —
movement distance and residence time — were corre-
lated into a movement behavioral syndrome. While one
might argue that these movement traits are not inde-
pendent and do not reflect functionally distinct move-
ment behaviors, evaluating the stability of such
syndromes along environmental gradients may be par-
ticularly interesting [46]. Using a different statistical ap-
proach, Bastille-Rousseau and Wittemyer [86] recently
demonstrated, for a population of African elephants in
Kenya, that individuals showed long-term consistency
for nine distinct habitat selection tactics. Similar to be-
havioral syndromes, these tactics combined selection for
several spatial characteristics, like landcover, water or
poaching risk. Tactics were spatially segregated, indicat-
ing that habitat composition may be an important driver
for the emergence of different selection tactics. All the
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more surprising, elephants that were closely related and
spent a significant amount of time together (ie. in the
same herd) showed distinctly different selection tactics, a
convincing case that intrinsic individual differences
caused by non-genetic factors, such as experiential learn-
ing, also contribute to the emergence of these different
tactics. As a concluding remark we would like to high-
light that elephants have a remarkable movement cap-
acity and indeed range over large areas in Etosha NP, as
a worked example to demonstrate a conceptual frame-
work we did not control for the effects of local vegeta-
tion and habitat composition on movement types and
their plasticity. Future empirical studies could use a vari-
ance partitioning approach to test how individual ele-
phant behavioral types change movement in relation to
human infrastructure or agriculture or whether certain
behavioral types are particularly vulnerable to selection
by poachers (similar to [86]).

Discussion and outlook

We showed how variance partitioning approaches devel-
oped in behavioral ecology can be brought to movement
ecology and applied to movement data to study not only
reversible but also intrinsic variation among individuals.
We highlighted the three different forms of among-
individual variation formulated in behavioral ecology
and their covariance and reviewed the current evidence
for such variation in movement behavior. We also dis-
cussed ways to disentangle intrinsic individual variation
from behavioral plasticity and the inherent limitations to
control for all relevant aspects of the environment in the
wild. Studying among-individual variation in movement
can facilitate ecologically and evolutionary meaningful
research. For example the POLS hypothesis (see para-
graph on behavioral syndromes) predicts that individuals
within populations differ in suites of traits along a fast-
slow continuum where fast individuals exhibit faster
growth rates and invest in early reproduction at the cost
of lower survival as compared to slow individuals [106].
The lower survival of individuals investing into early
reproduction is assumed to be mediated by the expres-
sion of risk enhancing behaviors which facilitate re-
source acquisition at the expense of survival [106, 142,
143]. Individual variation in movement may therefore
translate into individual variation in resource acquisition,
body mass, reproductive output per attempt, and sur-
vival [143]. Another example concerns how animal pop-
ulations will be able to adapt to landscape change. On a
global scale, landscape fragmentation and anthropogenic
features have recently been shown to restrict animal
movements (on a population level) across terrestrial
mammals [144]. However, behavioral ecologists predict
that individuals may differ in their ability to cope with
landscape change and hence how they move through
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these landscapes; some individuals are expected to move
more easily through our modernized landscape [69].
They may for example be quicker to use anthropogenic
features developed to aid connectivity, like road crossing
structures [145-147]. Variation is the key ingredient for
selection and evolution and recent evidence for the her-
itability of movement traits [101] suggests that behavior-
ally diverse animal populations have the potential to
adapt to the challenges of the Anthropocene within a
few generations. Movement data is ideal for testing such
predictions in elusive wildlife by adopting the theory and
statistical tools (i.e. variance partitioning) from behav-
joral ecology and quantitative genetics [148, 149]. This
would bind movement ecology more tightly into an evo-
lutionary ecological framework.

Scientists may find valuable biological meaning in pat-
terns of individual variation. In other cases, scanning
data for the presence or absence of individual variation
may merely be a step of data exploration either for valid-
ation of statistical assumptions, for supporting model
simplification, or for corroborating population level
mean effect conclusions. We recommend that estimating
and studying individual differences in movement behav-
ior should be an integral part of data analysis in move-
ment studies.

Increasing amounts of movement data from various
taxa and species are being collected and deposited into
standardized databases, like the Movebank Data Reposi-
tory (https://www.movebank.org/) or EUROMAMMALS
(http://www.euromammals.org) to promote collaborative
science examining general patterns beyond local popula-
tions. This offers unique opportunities to study the ex-
tent of individual variation in movement behavior across
ecosystems and species. Recognizing individuals with
specific movement patters, and how sensitive they are to
environmental variation, might further be valuable, for
example, when making decisions related to animal con-
servation. Certain behavioral types may for example be
better suited for animal translocations, or cope better
with landscape fragmentation and urbanization.

Conclusions

We here show that movement data are a promising data
source to reveal individual differences in the behavior of
wildlife. To date this individual variation is however
rarely systematically analyzed or even considered as bio-
logically interesting phenomenon. Using statistical tools
from the modern behavioral ecology literature we dem-
onstrate how partitioning behavioral variance into its
among- and within-individual sources can give new in-
sights about the biology hidden behind the population
mean trait expression. Individual differences in move-
ment are important because it means that individuals
differ in how they move through the landscape and their
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likelihood to encounter conspecifics, prey or landscape
features. These may have important consequences for
ecology and evolution of movement behaviors. Ignoring
individual differences in movement, while solely inter-
preting population level effects, may in the worst case
misrepresent true underlying mechanisms in how ani-
mals move.
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