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Abstract

Background: Acquiring high resolution quantitative behavioural data underwater often involves installation of
costly infrastructure, or capture and manipulation of animals. Aquatic movement ecology can therefore be limited in
taxonomic range and ecological coverage.

Methods: Here we present a novel deep-learning based, multi-individual tracking approach, which incorporates
Structure-from-Motion in order to determine the 3D location, body position and the visual environment of every
recorded individual. The application is based on low-cost cameras and does not require the animals to be confined,
manipulated, or handled in any way.

Results: Using this approach, single individuals, small heterospecific groups and schools of fish were tracked in
freshwater and marine environments of varying complexity. Positional tracking errors as low as 1.09 ± 0.47 cm (RSME)
in underwater areas up to 500 m2 were recorded.

Conclusions: This cost-effective and open-source framework allows the analysis of animal behaviour in aquatic
systems at an unprecedented resolution. Implementing this versatile approach, quantitative behavioural analysis can
be employed in a wide range of natural contexts, vastly expanding our potential for examining non-model systems
and species.

Keywords: 3D tracking, Collective behaviour, Aquatic ecosystems, Computer vision, Structure from motion, Machine
learning

Background
Understanding the movement and behaviour of animals
in their natural habitats is the ultimate goal of behavioural
andmovement ecology. By situating our studies in the nat-
ural world, we have the potential to uncover processes
of selection acting on behaviour in natural populations.
The ongoing advance of animal tracking and biologging
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brings the opportunity to revolutionize not only the scale
of data collected from wild systems, but also the types
of questions that can subsequently be answered. Incor-
porating geographical data has already given insights, for
example, into the homing behaviour of reef fish, migratory
patterns of birds, or the breeding site specificity of sea tur-
tles [1–3]. Great advances in systems biology have further
been made through the study of movement ecology, for
example understanding the decision-making processes at
play within primate groups manoeuvring through difficult
terrain or the collective sensing of birds traversing their
physical environment [4, 5]. Unravelling these aspects of
animal movement can vastly improve management strate-
gies [6, 7], for example in the creation of protected areas
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that incorporate bird migratory routes [8] or by reduc-
ing by-catch with dynamic habitat usage models of marine
turtles [9].
Yet the application of techniques that meet the chal-

lenges of working in naturally complex environments is
not straightforward, with practical, financial, and analyti-
cal issues often limiting the resolution or coverage of data
gathered. This is especially true in aquatic ecosystems,
where approaches such as Global Positioning System
(GPS) tags allow only sparse positioning of animals that
surface intermittently, or Pop-up Satellite Archival Tags
(PSATs) which integrate surface positions with logged
gyroscope and accelerometer data to estimate movement
of larger aquatic animals [10, 11]. Not only does the spatial
resolution of respective tracking systems, e.g. currently
4.9 m for GPS, limit the possibilities of behavioural anal-
yses on a fine scale, but also excludes almost all animals
below a certain size class [12]. These methods also require
animals to be captured and equipped with tags that should
not exceed 5% of the animals weight [13], further limit-
ing current generation GPS and PSATs to larger animals.
This is problematic because in aquatic ecosystems, as
in terrestrial systems, life is numerically dominated by
small animals [14]. In contrast, ultrasonic acoustic teleme-
try is one methodology useful for underwater tracking
of smaller animals and those in larger groups [11, 15].
This approach is limited to a stationary site through the
positioning of the acoustic receivers, and the costs, main-
tenance, and installation of these systems preclude their
effective use in themajority of systems and formany users.
While acoustic tags are small enough for injection, even
for smaller animals such as fish, the increased handling
time associated with these invasive measures can lead to
additional stress for the animals, whereas the tag itself
may disturb the animals’ natural behaviour [16]. Further,
acoustic telemetry systems also face accuracy problems,
with average positional errors in the range of multiple
meters, and highly depend on the environment (such as
low ambient noise or sufficient water depth) in which
these systems are deployed in [17, 18]. Hence, approaches
that facilitate collection of behavioural data in smaller ani-
mals, those in large groups, and those in varied aquatic
habitats, are still lacking.
A lack of data becomes a fundamental problem if cer-

tain ecosystems, species, or habitat types are underrep-
resented in terms of adequate research, management, or
discovery. Although the oceans constitute up to 90% of
habitable ecosystems worldwide, as little as 5% have been
explored [19–21].Within the oceans, coastal inshore areas
have the greatest species diversity, with approximately
80% of fish species (the most speciose group of verte-
brates) inhabiting the shallow waters of the littoral zone
[22], and providing over 75% of commercial seafood land-
ings [23]. Coastal regions in both marine and freshwater

environments are also those that are of greatest interest
for eco-tourism, community fisheries, and industry, while
simultaneously being most affected by habitat degrada-
tion, exploitation, and anthropogenic pollution [24–26].
Knowledge of the coastal regions is essential for estab-
lishing sanctuaries and sustainable concepts of ocean
preservation [27] and movement data plays a vital role
in this process, insofar as it gives detailed information
about the location, preferred habitat and temporal distri-
bution of organisms [13]. Yet for reasons of animal size,
species abundance, and habitat complexity, most avail-
able tracking methods are poorly suited to these inshore
regions.
Application of appropriate tracking and behavioural

analysis techniques in a flexible, accessible, and broadly
applicable manner would alleviate these limitations in
systems and species coverage, improving capacity for
conservation, management, and scientific understand-
ing of natural systems across scales and conditions.
In pure research terms, the application of quantitative
behavioural and movement analyses in natural settings
would also help bridge the gap between quantitative lab-
based research and often qualitative field-based research.
Recent advances in computational analysis of behaviour
[28, 29] may then be employed in field settings, vastly
improving our understanding of behaviour andmovement
in aquatic ecosystems.
Here we present an open-source, low-cost approach

based on consumer grade cameras to quantify the move-
ment and behaviour of animals of various sizes in coastal
marine and freshwater ecosystems. Our approach inte-
grates two methodologies from the field of computer
vision, object detection with deep neural networks and
Structure-from-Motion (SfM). Object detection has been
successfully employed in terrestrial systems for animal
localization, yielding high resolution movement data
through e.g. drone-based videos over broad environmen-
tal contexts [30]. While these aerial approaches may
also be used in some aquatic systems, they are lim-
ited to extremely shallow water and large animals [31].
The approach we advocate allows data to be collected
on any animal that can be visualized with cameras,
enabling application in smaller fish, invertebrates, and
other aquatic animals. In addition to providing animal
trajectories, video-based observations also incorporate
environmental data that adds the possibility to study inter-
actions of mobile animals with their natural habitat [4].
Our approach synthesizes object detection with SfM into
a coherent framework that can be deployed in a vari-
ety of systems without domain-specific expertise. SfM is
commonly used for 3D environmental reconstructions,
photogrammetry and camera tracking for visual effects
in video editing [32, 33], and here allows the recon-
struction of 3D models of the terrain through which the
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animals move and interact with. Our open-source analy-
sis pathway enables subsequent calculation of movement,
interactions, and postures of animals. Set-up costs can be
as small as two commonly available action cameras, and
the proposed method can be taken into habitats which
are otherwise explored by snorkeling, diving, or with the
use of remotely operated underwater vehicles (ROVs).
Analysis can be performed on local GPU-accelerated
machines or widely-accessible computing services (e.g.
Google Colaboratory). Overall, this method provides a
low-cost approach for measuring the movement and
behaviour of aquatic animals that can be implemented
across scales and contexts.

Methods
Three datasets of varying complexity were used to demon-
strate the versatility of the proposed method. These were
chosen to range from single animals (Conger conger) and
small heterospecific groups (Mullus surmuletus, Diplodus
vulgaris) to schools of conspecific individuals (Lamprolo-
gus callipterus) under simple and complex environmen-
tal conditions, resulting in the datasets ’single’, ’mixed’
and ’school’, respectively. Moreover, we used a dataset of
repeated trials (N = 4, ’accuracy’) to validate the accu-
racy of our tracking approach. This dataset was used to
reconstruct the trajectories of a calibration wand of 0.5 m
length and examine resulting tracking errors. The ’sin-
gle’ and ’mixed’ datasets were created while snorkeling at
the surface, using a stereo camera set-up at STARESO,
Corsica (Station de Recherche Océanographiques et sous-
marines). The remaining datasets were collected by
SCUBA diving (5–8 m) with either multi or stereo camera
set-ups in Lake Tanganyika (Tanganyika Science Lodge,
Mpulungu, Zambia), or at STARESO. While the ’single’
and ’mixed’ datasets were recorded with untagged fish,
we attached tags made of waterproof paper (8×8 mm)
anterior to the dorsal fin of the individuals for the ’school’
dataset to facilitate detection and individual identifi-
cation, although the latter was not implemented. See
Table 1 for a summary of the collected datasets and

respective environmental conditions. For a general guide-
line and comments on the practical implementation of our
method, refer to Additional file 7.

Automated animal detection and tracking
Since all data was collected in the form of videos, image-
based animal detection was required for subsequent tra-
jectory reconstruction and analyses. First, the videos from
the stereo or multi-camera set-ups were synchronized
using a convolution of the Fourier-transformed audio
signals to determine the video offsets. Second, the syn-
chronized videos were tracked independently using an
implementation of a Mask and Region based Convolu-
tion Neural Network (Mask R-CNN) for precise object
detection at a temporal resolution of either 30 Hz (’sin-
gle’, ’mixed’ and ’accuracy’) or 60 Hz (’school’) [34, 35]. To
this end, we annotated the contours of the fish (or the
tags in case of the ’accuracy’ dataset) in a small subset
of video frames to generate custom training datasets for
each of the detection tasks. These subsets needed to be
sufficiently diverse to represent the full videos for effec-
tive training and, therefore cover most of the variation in
contrast, lighting and animal poses. Our training sets con-
tained 171 (’single’), 80 (’mixed’), and 160 (’school’) labeled
images for each dataset. For the ’accuracy’ dataset, we
annotated a total of 73 images. We then trained Mask
R-CNNmodels on these training sets using transfer learn-
ing from a model that was pre-trained on the COCO
dataset (’Common Objects in Context’) with more than
200K labeled images and 80 object classes [35, 36]. Here,
transfer learning refers to a machine learning concept
in which information gained from learning one task is
applied to a different, yet related problem [37]. Therefore,
the state of Mask R-CNN, previously trained on COCO,
was fine-tuned to our specific problems of identifying fish
or tags. The original image resolutions of 2704×1520 px
(’single’ and ’school’) and 3840×2160 px (’mixed’ and
’accuracy’) were downsampled to a maximum width of
1024 px while training and predicting to achieve better
performance. After training, themodels were able to accu-

Table 1 Summary of acquired datasets

Dataset Location Approach Species Duration (m:ss) N Setup Dist. (m) Tags Pose Complexity

single STARESO snorkel Conger conger 0:20 1 stereo 0.4 no yes high

mixed STARESO snorkel Mullus surmuletus, 7:09 1, stereo 0.6 no yes low

Diplodus vulgaris 2

school Tanganyika dive Lamprologus callipterus 0:35 11 multi (12) 0.2 yes no medium

accuracy STARESO dive NA 3:14 - 5:00 NA multi (4) 0.6 NA NA varying

N lists the number of tracked individuals, Dist. the minimum camera-to-camera distance in the setups, Tags whether individual animals were tagged and Pose if animal spine
pose estimation was used during tracking. Complexity lists an estimate of overall complexity: high (single individual with complex posture, variable lighting and contrast,
motile background elements),medium (multiple individuals, high turbidity and greater depth, visible tags), low (few individuals, good lighting, homogeneous background),
varying (intentionally varied complexity). NA: not applicable
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rately detect and segment the observed animals, which
was visually confirmed with predictions on validation
datasets.
The predicted masks were either used to estimate entire

poses of the tracked animals (’single’, ’mixed’) or to cal-
culate centroids of the tags or calibration wand ends in
case of the ’school’ and ’accuracy’ datasets. Established
morphological image processing was used to skeletonize
the Mask R-CNN predictions, producing a 1 px midline
for each of the detected binary masks. A fixed number
of points was equidistantly distributed on these mid-
lines as an estimation of the animals’ spine poses. Both
the spine points and the tag centroids represent pixel
coordinates of detected animals in further data process-
ing. Partitioned trajectories were generated from detec-
tions with a simple combination of nearest-neighbors
between subsequent frames or utilizing a cost-reduction
algorithm (the Hungarian method [38]), and filtering
for linear motion over a short time window, reduc-
ing later quality control and manual track identification
for continuous trajectories to a minimum. For video
and image annotations, trajectory and pose visualiza-
tion, manual track corrections and other trajectory utility
functions, we developed a GUI based on Python and
Qt5 within the lab (’TrackUtil’, Additional file 4). The
code for Mask R-CNN training and inference, video syn-
chronization, fish pose estimation and automatic trajec-
tory assignment is also available (Additional files 5 and
6). The training and tracking details are summarized
in Table 2.

Structure frommotion
The field of computer vision has developed powerful tech-
niques that have found applications in vastly different
fields of science [39–41]. The concept of Structure-from-
Motion (SfM) is one such method that addresses the large
scale optimization problem of retrieving three dimen-
sional information from planar images [42]. This approach
relies on a static background scene, from which stationary
features can be matched by observing them from differ-
ent perspectives. This results in a set of images, in which
feature-rich key points are first detected and subsequently
used to compute a 3D reconstruction of the scene and the
corresponding view point positions. As shown in Eqs. 1
and (2), a real world 3D pointM′ (consisting of x, y, z) can
be projected to the image plane of an observing camera by
multiplying the camera’s intrinsic matrix K (consisting of
focal lengths fx, fy and principal point cx, cy), with the cam-
era’s joint rotation-translation matrix [R|t] andM′, result-
ing in the corresponding image point m′ (consisting of
pixel coordinates u, v, scaled by s) [43]. By extension, this
can be used to resolve the ray casting from a camera posi-
tion towards the actual 3D coordinates of a point given
the 2D image projection of that point with known cam-
era parameters. Due to this projective geometry, it is not
possible to infer at which depth a point is positioned on
its ray from a single perspective. SfM is able to circumvent
this problem by tracking mutually-observed image points
(m′) across images of multiple camera view points. As a
result, the points can be triangulated in 3D space (M′),
representing the optimal intersections of their respective

Table 2 Dataset parameters and accuracy metrics

Dataset Annotations Rate (Hz) Resolution (px) Coverage (%) Accuracy metrics

Metric Reconstruction (cm) Reprojection (px) Tracking (cm)

single 171 30 2.7k 97.79 median 0.30 9.65 NA

RMSE 1.28 16.30 NA

w/ sv as above 100.00 as above

mixed 80 30 4k 69.60 median 0.44 3.77 NA

RMSE 1.09 7.77 NA

school 160 60 2.7k 78.38 median 0.06 2.57 NA

RMSE 0.30 3.78 NA

w/ sv as above 94.02 as above

accuracy 73 30 4k 80.64 ±16.73 median -0.14 ±0.06 3.53 ±1.96 0.14 ±0.33

RMSE 1.34 ±0.79 8.56 ±5.21 1.09 ±0.47

w/ sv as above 97.29 ±2.20 median as above 0.28 ±0.32

RMSE 2.12 ±1.37

’w/ sv’ indicates that trajectory points were also estimated from single-view projections at an interpolated depth component. Annotations lists how many frames were
annotated for training Mask R-CNN, Rate the frames per second of each video set, i.e. the temporal tracking resolution. Resolution is video resolution, 2.7k: 2704×1520 px, 4k:
3840×2160 px. Coverage is the mean coverage off all individual trajectories of a dataset. Reconstructionmetrics refer to the deviation of reconstructed camera-to-camera
distances from the actual distance, Reprojectionmetrics to the reprojection of triangulated 3D tracks to the original video pixel coordinates and Tracking to the deviation of
the tracked calibration wand length from its actual length. In case of the ’accuracy’ dataset, the accuracy results are listed as the mean and standard deviation of the four
repeated trials. NA: not applicable
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rays pointing from the cameras positions towards them.
Byminimizing reprojection errors, which are the pixel dis-
tances between the 3D points’ reprojections to the image
planes and their original image coordinates (u, v), SfM is
also able to numerically solve the multi-view system of the
cameras relative rotation (R), translation (t) and intrinsic
(K) matrices and to retrieve the optimal camera distortion
parameters (d).

m′ = K[R|t]M′ (1)

s

⎡
⎣
u
v
1

⎤
⎦ =

⎡
⎣
fx 0 cx
0 fy cy
0 0 1

⎤
⎦

⎡
⎣
r11 r21 r13 t1
r12 r22 r23 t2
r13 r23 r33 t3

⎤
⎦

⎡
⎢⎢⎣
x
y
z
1

⎤
⎥⎥⎦ (2)

Here, SfM was incorporated into data processing in
order to gain information about exact camera positions,
which was done using the general-purpose and open-
source pipeline COLMAP [44, 45]. The synchronized
videos were resampled as image sequences with a rate
of 3 Hz. In case of the ’mixed’ dataset, we removed
frames that were recorded when the cameras were sta-
tionary. The resulting image sequences served as input
into the reconstruction process during which the cameras
were calibrated (K, d) and relative extrinsic parameters
(R, t) computed, so that all camera projections relate to a
shared coordinate system. Every input image resulted in a
corresponding position along the reconstructed, 3D cam-
era path of the recording, where the number of images
determined the temporal resolution of resolved camera
motion. Since only a subset of all video frames were
used for the reconstructions, SfM optimized a smaller
number of parameters, resulting in a reduced computa-
tional load. Additionally, this could improve reconstruc-
tion accuracy, as the images still had sufficient visual
overlap, but increased angles between view points. Finally,
the retrieved camera parameters were interpolated (the
translations t linearly, rotations R using Slerp, spherical
linear interpolation [46]) to match the acquisition rate of
animal tracking, assuring that reference camera parame-
ters are given for each recorded data point by simulating a
continuous camera path.

Reconstruction of animal trajectories
It is necessary to resolve the camera motion when track-
ing moving animals with non-stationary cameras, since
the camera motion will also be represented in the pixel
coordinate trajectories of the animals. With camera infor-
mation (K, d) and relative perspective transformations (R,
t) for entire camera paths retrieved from SfM, as well
as multi-view animal trajectories from the Mask R-CNN
detection pipeline available, a triangulation approach sim-
ilar to SfM can be used to compute 3D animal trajectories.

Here, an animal’s pixel coordinates represent m′ (consist-
ing of u and v) observed from more than one known view
point (R, t), and the animals 3D positions M′ (x, y, z) can
be triangulated. Positions of animals observed in exactly
two cameras were triangulated using an OpenCV imple-
mentation of the direct linear transformation algorithm,
while positions of animals observed in more than two
cameras were triangulated using singular value decom-
position following an OpenCV implementation [39, 43].
Additionally, positions of animals temporarily observed
in only one camera were projected to the world coor-
dinate frame by estimating the depth component as an
interpolation of previous triangulation results. Through
the recovered camera positions, the camera motion is
nullified in the resulting 3D trajectories. Thus, they pro-
vide the same information as trajectories recorded with
a fixed camera setup (Fig. 1). Animal trajectories and
the corresponding reconstructions were scaled, so that
the distances between the reconstructed camera locations
equal the actual distances within the multi-view cam-
era setup. As a result, all observations are represented
on a real world scale. The code for trajectory triangula-
tion, camera path interpolation and visualizations is bun-
dled in a Python module (’multiviewtracks’), accessible on
GitHub [47].

Accuracy estimation
Given that the proposed method incorporates out-of-
domain and novel approaches from computer vision, reli-
able accuracymeasures are required. Therefore, a ground-
truth experiment (’accuracy’ dataset) was conducted in
which two points of fixed distance to each other, the col-
ored end points of a clear, rigid calibration wand (0.5 m),
were filmed underwater over various backgrounds using
four cameras. In total, four repeated trials were incorpo-
rated for the accuracy estimation, varying in environmen-
tal complexity (such as Poseidonia sea grass beds, large
rock formations or sand), depth and lighting conditions.
The trajectories of both calibration wand end points were
reconstructed throughout the four trials, which enabled
the calculation of a per-frame tracking error. The ground-
truth distance (d̂) between the two 3D positions is known
from the wand length for each frame, hence the difference
of the reconstructed distance of these two 3D positions (d)
from the actual distance (d̂) can be calculated as this track-
ing error. Additionally, since the cameras were arranged
in a fixed, multi-view setup, the same calculation can
be performed on the known camera-to-camera distances
(d̂) within the array and their reconstructed 3D positions
(and respective distances d) to assess errors of the SfM
reconstructions. A third measure of accuracy can be cal-
culated as the reprojection error of triangulated trajectory
points. Here, the 3D points are projected back to the
image planes of their respective view points, resulting in
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Fig. 1 Schematic workflow. Data processing starts with the acquisition of synchronized, multi-view videos, which serve as input to the SfM
reconstruction pipeline to recover camera positions and movement. In addition, Mask R-CNN predictions, after training the detection model on a
subset of images, result in segmented masks for each video frame, from which animal poses can be estimated. These serve as locations of
multi-view animals trajectories in the pixel coordinate system. Subsequently, trajectories can be triangulated using known camera parameters and
positions from the SfM pipeline, yielding 3D animal trajectories and poses. Integrating the environmental information from the scene
reconstruction, these data can be used for in depth downstream analyses

pixel coordinates for each 3D point and observing cam-
era. The distance of these pixel coordinates to the tracked
pixel coordinates m′ (consisting of u and v) is the repro-
jection error. This is the error which is used by SfM for
numeric optimization of the multi-view system, the cam-
era parameters and the scene’s 3D point cloud, and can
be similarly used to estimate the precision of the acquired
trajectories. We calculated the median errors and the
standard deviations of the errors, i.e. the root-mean-
square errors (RMSEs, equation 3) for all datasets and
for each of the three accuracy metrics when applicable.
In case of the ’accuracy’ dataset, we calculated the mean
and standard deviation of the accuracy metrics for the
four trials.

RMSE = 1
N

√√√√ N∑
N=1

(d̂ − dN )2 (3)

Results
Here we combined Mask R-CNN aided animal detection
and tracking with SfM scene reconstruction and triangu-
lation of 3D animal trajectories to obtain high resolution
data directly from videos taken while snorkeling or diving
in the field. Using this method, we were able to track freely
moving, aquatic animals in their natural habitats without
installation of infrastructure.
In order to ground truth our method, we performed

an accuracy estimation for the four trials of the ’accu-
racy’ dataset. Using our approach, we were able to retrieve
both the 3D positions of the tracked calibration wand and
the 3D trajectories of the cameras throughout the trials

(Fig. 2). The mean trajectory coverage was 80.64 ±16.73%
when only multiple-view triangulation was used, or
97.3 ±2.2%, when also projections from single views were
used to estimate trajectory positions at an interpolated
depth component. This resulted in a total of 19482 frames
in which both wand ends were detected (or 26562 with the
additional single-view projections). The known camera-
to-camera distances within the camera array (0.6 m) and
the known length of the calibration wand (0.5 m) allowed
the calculation of respective per-frame reconstruction
and tracking errors. The resulting RMSE for the camera-
to-camera distances was 1.34 ±0.79 cm (median error
-0.14 ±0.06 cm). The errors for the calibration wand
length differed when calculated for only multi-view trian-
gulated trajectories (RMSE 1.09 ±0.47 cm, median error
0.14 ±0.33 cm) or for trajectories with single-view projec-
tions (RMSE 2.12±1.37 cm, median error 0.28±0.32 cm).
Further, we projected the triangulated 3D positions back
to the original videos and computed the reprojection error
as a RMSE of 8.56 ±5.21 px (median error 3.53 ±1.96 px).
This was only done for the multi-view triangulations,
since the reprojection of a point that was projected from
a single view is, by definition, the same point (with a
potentially misleading error of 0 px).
Trajectories were successfully obtained from large

groups (’school’), small groups (’mixed’) and single indi-
viduals (’single’). Due to the specific design of Mask
R-CNN for instance segmentation, the network architec-
ture was able to distinguish given object classes from
the background and solved partial occlusions. However,
differences in data acquisition remained across these
datasets. For example, this resulted in varying track cov-
erage, 97.79%, 69.60% and 78.34% for the ’single’, ’mixed’
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Fig. 2 Accuracy validation. Top down view of one of the ’accuracy’ dataset trials with the COLMAP dense reconstruction in the background (left). A
calibration wand with a length of 0.5 m was moved through the environment to create two trajectories with known per-frame distances (visualized
as lines at a frequency of 3 Hz, the full temporal resolution of the trajectories is 30 Hz). This allowed the calculation of relative tracking errors as the
difference of the triangulated calibration wand end-to-end distance from the its known length of 0.5 m, resulting in the shown error distribution
(normalized histogram with probability density function, right). The per-frame tracking error is visualized as line color

and ’school’ datasets, respectively. When also single-view
projections were included in the animal trajectories, the
trajectory coverage increased to 100.00% (’single’) and
94.02% (’school’). Additionally, the camera positions and
corresponding environments through which the animals
were moving were reconstructed. In case of the ’sin-
gle’ and ’mixed’ datasets, the Mask R-CNN detection
results were used to estimate fish body postures in
3D space by inferring spine points from the segmented
pixel masks (Fig. 3). We computed the RMSEs of the
camera-to-camera distances (1.28 cm ’single’, 1.28 cm
’mixed’ and -0.15 cm ’school’) and reprojection errors
(20.97 px ’single’, 7.77 px ’mixed’ and 6.79 px ’school’)
to assess the overall quality of the SfM reconstruc-
tions analogously to the calculation of reconstruction
errors for the ’accuracy’ dataset. The results of the accu-
racy estimations and respective median errors are listed
in Table 2.

Discussion
Here we demonstrate a novel approach to collect highly
resolved 3D information of animal motion, including
interactions with the physical environment, in aquatic
ecosystems. Although being based on relatively advanced
computational techniques, the open-source workflow we
present requires little domain expertise and can be imple-
mented with low-cost consumer grade cameras. The

incorporation of these methods into an accessible frame-
work will allow quantitative analyses of animal behaviour
and ecology across systems, scales, and user groups,
and can even be modified for use in terrestrial systems.
Our approach allows data collection while swimming,
snorkelling, or with the aid of ROVs, making it appropriate
for general usage with minimal investment into infras-
tructure, equipment, or training. Although analyses are
computationally demanding, they can be achieved on an
average GPU or free cloud-based computing services. The
lack of high-end hardware therefore does not interfere
with any of the steps required for this method.
Many alternative techniques for tracking of small

aquatic animals do exist, however, they often have the
considerable drawback of tagging and handling the ani-
mals or high infrastructure costs. This is a major barrier
to implementation when animals are protected, difficult
to catch, or too small to carry tags. In many marine
protected areas all three of these factors apply, meaning
that many existing approaches are inappropriate. Some
of these drawbacks will be alleviated, for instance with
improvements in telemetry-based approaches [48] that
reduce tag size and increase range. Nevertheless, these
techniques cannot simultaneously measure or reconstruct
local topography and environmental factors. Although
here we do not provide any analyses of environmental
structure, this topographical information collected with
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Fig. 3 3D environments and animal trajectories. a Top down view of the ’single’ dataset result. Red lines and dots show estimated spine poses and
head positions of the tracked European eel (C. conger, visualized with one pose per second). The point cloud resulting from the COLMAP
reconstruction is shown in the background. b Trajectories ofM. surmuletus (orange) and D. vulgaris (purple/blue), and the dense point cloud
resulting from the ’mixed’ dataset. Dots highlight three positions per second, lines visualize the trajectories at full temporal resolution (30 Hz) over a
duration of seven minutes. b Reconstruction results and trajectories of the ’school’ dataset, visualizing the trajectories of a small school of L.
callipterus in Lake Tanganyika. See Additional files 1, 2, 3 for high resolution images

our approach can be directly used to answer questions on
e.g. habitat segmentation and environmental complexity
[49, 50].
In highly complex social environments, encounters with

numerous con- and heterospecifics can strongly affect
behaviour and motion [51]. Using approaches that rely on
tagging will unavoidablymiss or under-sample these inter-
actions because not all individuals can ever be tagged in
wild contexts. In contrast, our approach does not require
animals to be handled or tagged, nor does specialized
equipment need to be deployed in the desired tracking
area. Moreover, because the object detection and seg-
mentation approach can take any image input, it is not
tied to one particular animal form or visual scene. Our
approach can therefore be used even in demanding condi-
tions such as high turbidity or low-light conditions, within
certain limits. While it has a lower spatial range than
telemetry, underwater filming comes as an unintrusive
alternative, with higher spatial resolution possible when
small animals are moving over small areas, or when ani-
mals are highly site-specific, for example damselfish or
cichlids living in close association with coral or rocky reef
[52, 53].
While our approach offers many benefits in terms of

applicability and data acquisition, it also suffers from some
limitations. From the accuracy tests it became apparent
that in cases where the background was composed of

moving objects, such as macrophytes or debris, the track-
ing accuracy dropped noticeably. The SfM approach relies
on the reconstructed components to be feature-rich and
static, because environmental key-points are assumed to
have the same location over time. Moving particles and
objects will result in higher reconstruction errors, ren-
dering our approach problematic e.g. when the filmed
animals occupy most of the captured images in case of
very large fish schools. Complex environments, occlu-
sions of the animals and highly variable lighting conditions
are detrimental to the detectability of animals with Mask
R-CNN. Observations at greater depths may face sim-
ilar problems due to the high absorption of red light,
although, in this case, detectability could be alleviated
through image augmentation approaches such as Sea-
Thru [54]. Similarly, water turbidity can greatly affect the
detectability in aquatic systems by absorbing light and
diffusing the scene. Therefore, although removing the
benefits frommeasuring animal behaviour non-invasively,
it can be advantageous to add clearly visible tags to the
animals in cases of high turbidity, ensuring continuous
tracking of all individuals.
Another aspect that needs consideration is that data

acquisition is confined to the area captured by the multi-
camera set-up. Animal trajectories can not be triangu-
lated if individuals leave this area, and therefore are no
longer visible from at least two camera view points. This
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circumstance is apparent in the ’school’ example, in which
one individual left and re-entered the scene, leading to a
discontinuity in its trajectory. To compensate the potential
limitation in trajectory coverage, trajectory points can also
be estimated from single-view detections by projecting
them from this view point to an interpolated depth. How-
ever, this is only possible when filmed from above and for
animals that do not drastically change the distance to the
camera (otherwise, the estimated depth component would
likely be erroneous). As a consequence, we report the low-
est trajectory coverage in the ’mixed’ dataset (69.60%), in
which we filmed the animals with a semi-stationary tripod
and isometric camera angles. Considering the temporal
resolution of 30 Hz, this still resulted in a relatively high
average detection rate of approximately 21 detections per
second. Further, we could demonstrate with the ’accuracy’
dataset, that although the single-view projections can
increase track coverage significantly (from 80.64 ±16.73%
to 97.29 ±2.20%), they also come at a moderate accu-
racy cost (calibration wand length RMSE increased from
1.09 ±0.47 to 2.12 ±1.37 cm).
The estimation of 3D animal poses strongly relies on

accurate detections and can therefore be compromised by
poorly estimated animal shapes during Mask R-CNN seg-
mentation. In these cases, a less detailed approximation
of the animals’ positions such as the mask centroids are
favorable and can still be reliably employed as showcased
with the ’school’ dataset. The errors in estimating animal
locations and poses can be partially explained by marginal
detection errors of Mask R-CNN, but also by inaccura-
cies derived from trajectory triangulation using the SfM
camera positions.
Aware of these error sources, users can incorporate

accuracy metrics such as reprojection errors or relative
camera reconstruction RMSEs into their own analytical
pathways by using our proposed method. This enables
the assessment of the overall reconstruction quality and
required fine scale resolution for the specific scientific
demands.We were able to demonstrate with the ’accuracy’
dataset, that the combination of SfM and object detection
yields highly accurate trajectories of moving objects over
large spatial scales (RMSE tracking error of 1.34±0.79 cm,
median error -0.14 ±0.06 cm, reconstructed areas up
to 500 m2) without prior manipulation of the underwa-
ter environment. Since these accuracy calculations are
based on per-frame deviations from known distances,
such as the length of a calibration wand or camera-to-
camera distances in a stereo-camera setup, they are not
suited for the assessment of large-scale SfM accuracy.
However, rigorously ground-trouthing SfM is of general
interest in the field of computer vision, and various bench-
marks showcase the high precision of 3D reconstruc-
tions that can be achieved using current SfM pipelines
[55, 56].

An additional requirement of our approach is associated
with the need to annotate images and train object detec-
tion networks. Further, manual correction of false trajec-
tory assignments and overall quality-control are required,
but can be reduced to a minimum with adequately-sized
training sets and resulting, precise Mask R-CNN predic-
tions. Reliable and automatic identification of unmarked
individuals in large animal groups recently became pos-
sible in laboratory conditions [57], and future devel-
opment and increasing robustness of similar methods
might also enable them for field observations. However,
at present, these tasks present an additional, mainly ini-
tial, time investment that is likely to be compensated
by the time subsequently saved using high-throughput
behavioural analyses on the acquired, highly-resolved ani-
mal trajectories. For example, this allows the classification
of behavioural states by quantifying the behavioural reper-
toire of the animals using unsupervised machine learning
techniques [28, 58]. The incorporation of 3D trajectory
data in motion analyses has already improved the under-
standing of the phenotype and development of animal
behaviours [59]. In addition, 3D pose estimation can now
be achieved for wild animals, enabling exact reconstruc-
tion of the entire animal [60]. There has been a shift in
how animal movement is analyzed in light of computa-
tional ethological approaches [61–63], with patterns of
motion able to be objectively disentangled, revealing the
underlying behavioural syntax to the observer. Automated
approaches based on video, or even audio, recordings
may also overcome sensory limitations of other systems,
allowing a better understanding of the sensory umwelt of
study species [64] and also facilitate novel experimental
designs [61, 65] that can tackle questions of the prox-
imate and ultimate causality of behaviour [60, 62, 63].
These methods are gaining interest and sharply contrast
with the traditional approach of trained specialists creat-
ing behavioural ethograms, but can usefully be combined
and compared to gain further insight into the structure
of animal behaviour, potentially generating a more objec-
tive and standardized approach to the field of behavioural
studies [63].
In order to incorporate these novel techniques into

more natural scenarios, we aim to present a complete
tracking pipeline, guiding the user through each step after
the initial field observation. From video synchronization,
object annotation and detection to the final triangulation
of animal trajectories, we provide a set of open-source
utilities and scripts. Although we heavily rely on other
open-source projects (COLMAP for SfM and Mask R-
CNN for object segmentation), these specific approaches
can be replaced with other implementations by solely
adopting respective in- and output data formatting for
specific needs. We found COLMAP and Mask R-CNN
to be easily employed, as they are well documented,
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performant and purpose-oriented. However, many alter-
natives exist for both SfM and object detection, and
the general approach of our pipeline is not limited to
any particular implementation, thus future-proofing this
approach as new and better methods are developed.

Conclusions
Computational approaches to analyze behaviour, includ-
ing automated tracking of animal groups, deep-learning,
supervised, and unsupervised classification of behaviour,
are areas of research that have been extensively devel-
oped in laboratory conditions over the past decade. These
techniques, in combination with sound evolutionary and
ecological theory, will characterize the next generation of
breakthroughs in behavioural and movement science, yet
are still difficult to achieve in natural contexts, and are
unobtainable for many researchers due to implementation
and infrastructure costs. Here we present a framework to
enable the utilization of these cutting-edge approaches in
aquatic ecosystems, at low-cost and for users of different
backgrounds. Our proposed tracking method is flexible in
both the conditions of use, and the study species being
examined, vastly expanding our potential for examining
non-model systems and species. In combination with the
genomic revolution, allowing sequencing in a matter of
days, state-of-the-art behavioural sequencing under field
conditions will revolutionize the field of movement ecol-
ogy and evolutionary behavioural ecology. The approach
we advocate here can further integrate the study of wild
animal behaviour with modern techniques, facilitating
an integrative understanding of movement in complex
natural systems.
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