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Abstract

Background: Movement pattern variations are reflective of behavioural switches, likely associated with different life
history traits in response to the animals’ abiotic and biotic environment. Detecting these can provide rich information
on the underlying processes driving animal movement patterns. However, extracting these signals from movement
time series, requires tools that objectively extract, describe and quantify these behaviours. The inference of behavioural
modes from movement patterns has been mainly addressed through hidden Markov models. Until now, the metrics
implemented in these models did not allow to characterize cyclic patterns directly from the raw time series. To address
these challenges, we developed an approach to i) extract new metrics of cyclic behaviours and activity levels from a
time-frequency analysis of movement time series, ii) implement the spectral signatures of these cyclic patterns and
activity levels into a HMM framework to identify and classify latent behavioural states.

Results: To illustrate our approach, we applied it to 40 high-resolution European sea bass depth time series. Our results
showed that the fish had different activity regimes, which were also associated (or not) with the spectral signature of
different environmental cycles. Tidal rhythms were observed when animals tended to be less active and dived shallower.
Conversely, animals exhibited a diurnal behaviour when more active and deeper in the water column. The different
behaviours were well defined and occurred at similar periods throughout the annual cycle amongst individuals,
suggesting these behaviours are likely related to seasonal functional behaviours (e.g. feeding, migrating and spawning).

Conclusions: The innovative aspects of our method lie within the combined use of powerful, but generic, mathematical
tools (spectral analysis and hidden Markov Models) to extract complex behaviours from 1-D movement time series. It is
fully automated which makes it suitable for analyzing large datasets. HMMs also offer the flexibility to include any
additional variable in the segmentation process (e.g. environmental features, location coordinates). Thus, our method
could be widely applied in the bio-logging community and contribute to prime issues in movement ecology (e.g. habitat
requirements and selection, site fidelity and dispersal) that are crucial to inform mitigation, management and
conservation strategies.
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Background
Animals exhibit a wide range of behaviours that have been
learned and/or evolved to maximize fitness and reflect dif-
ferent activities such as resting, reproduction, migration,
predation avoidance and foraging. These different beha-
viours/activities are adopted in suitable habitat (e.g. re-
source availabilities, physiologically suitable) that will
ultimately result in an animal’s survival and successful
reproduction [1]. However, wild animals can rarely be ob-
served for more than a fraction of their daily activity. Con-
sequently, our attempts to quantify behavioural patterns
for modeling ecological processes often exclude cryptic,
yet important behavioural events [2].
Over the last few decades, advances in bio-logging

technologies have provided new insights into marine
and terrestrial animals’ ecology by recording high reso-
lution data for long periods of time, including their
movements, physiology and reproductive biology, as well
as concurrent environmental conditions [3]. Along with
these technological advances, the field of movement
ecology exploded because changes in movement patterns
are the likely result of altered animal functional behav-
iour [2–4]. For instance, vertical movement patterns of
marine pelagic species can be highly complex and reflect
behaviours such as foraging, thermoregulatory excursions
and spawning [5]. Movement ecology studies already pro-
vided crucial data (e.g. migration paths, foraging hotspots,
site fidelity and dispersal, interactions with human activ-
ities) across taxa and realms to inform mitigation, man-
agement and conservation strategies [6–9]. However,
optimizing the knowledge we can gain from animal move-
ments on their biology and ecology requires quantitative
tools to analyze these complex time series.
State-space models, especially hidden Markov models

(HMM), have proven to be efficient in quantitatively de-
tecting, segmenting and predicting behavioural patterns
from movement data [4, 10–12]. They rely on the as-
sumption that hidden behavioural modes correspond to
different movement characteristics. For instance, HMM
have been used: to distinguish between traveling versus
foraging activities based on movement speed and sinuos-
ity [10]; to detect spawning events from shovelnose stur-
geon’s vertical movements [13]; to model flying activity
of soaring raptor from acceleration data [11]. In most
studies, the HMM applies directly to the raw movement
data or simple descriptors such as instantaneous speed,
local variance and distances [11, 14, 15]. As a result the
model is mainly used to detect behavioural switches ra-
ther than focusing on the regularity and/or repetition of
these changes.
Nonetheless, movement time series also often inte-

grate cyclic patterns of animal’s behaviour and many
have a periodicity equal to the ones of geophysical cycles
(i.e. solar and lunar phases, season, year) they respond to

[16]. These cycles induce spatio-temporal fluctuations in
animals’ habitats by influencing their abiotic and biotic
components (e.g. resource availability, physiological suit-
ability, vulnerability to predators). In turn, animals’ dis-
tribution, activity levels and life history traits often
reflect these geophysical cycles at different spatial and
temporal scales. For instance, large marine mammals
overtake seasonal migrations over thousands of kilome-
ters between a winter reproductive site where there is
less food available but where environmental conditions
are suitable for the calf and a summer site where they
forage actively [17]. Several species of fish have lunar
and/or semi-lunar related spawning cycles both from a
behavioural and physiological point of view [18]. At a
smaller scale, zooplankton is known to conduct diel ver-
tical migrations in the water column to avoid predation;
while detecting such diurnal patterns in higher trophic
levels provided information on their prey and foraging
strategies [19, 20]. Detecting tidal and diel cycles in fish
movement time series have also provided some informa-
tion on their activity levels, position relative to the sea-
floor and spatial distribution [21, 22]. Obviously, the
synchronizations of biological and behavioural activities
with environmental cycles represent important adaptive
strategies in animals to increase their reproductive suc-
cess and resource acquisition as well as to decrease pre-
dation risks. Thus, detecting these patterns and the scale
at which they occur from movement data contribute to
our understanding on the ecology of species of interest
in relation to their environment and ecosystem.
The identification of cyclic movement patterns can be

difficult in a time series which results of a complex com-
bination of signals that may confound each other. For in-
stance, several cyclic behaviours could be simultaneously
present in the time series along with non-periodic behav-
iours, spatio-temporal noises and outliers. In most studies,
seasonal, diel, lunar and tidal rhythms were taken into
account as qualitative variables, potentially included in
statistical models, that are used to compare the observed
patterns for different levels of the considered factor
(e.g. day vs night, winter vs summer, tide levels) [7, 11, 23].
In comparison, relatively few ecological studies have investi-
gated advanced time-frequency analyses (e.g, Fourier-based
decompositions as well as wavelet analyses) to reveal cyclic
vs. non-cyclic patterns [5, 22, 24]. However, to our know-
ledge, the interpretation of the derived time-frequency met-
rics remained mainly qualitative raising the need for further
development to embed time-frequency metrics in state-of-
the-art behavioural segmentation models (e.g. state-space
and hidden Markov models, [4, 25, 26]).
In this study, we address this issue and develop a

quantitative procedure for the characterization and seg-
mentation of animal behaviour from 1-D movement
data. Our contribution is two-fold: i) a generic approach
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for the extraction of metrics of cyclic behaviours and ac-
tivity levels from a time-frequency analysis of 1-D move-
ment time series, ii) the implementation of these spectral
signatures into a HMM framework to identify and classify
latent behavioural states along the time series. Simulated
datasets were used to validate our approach which, was
then applied to vertical movement data collected from
wild European sea bass (Dicentrarchus labrax), a marine
fish known to adapt its functional behaviour to diurnal
and tidal cycles [27]. Previous studies also showed that
sea bass tend to migrate between a coastal foraging
ground in summer and a oceanic spawning ground in
winter [28, 29]. We would expect that these different sig-
nals could be segregated one from the others and associ-
ated with different activities of the fish.

Methods
All analyses were carried out using R. The code describing
the whole procedure is provided in the Additional file 1
and a training dataset is provided in Additional file 2.

Data storage tag data
Adult sea bass were internally tagged with Data Storage
Tags (DSTs, CEFAS G5 long live) following the proced-
ure described in [30]. Tagging operations were carried
out in summer 2014 at Dunkirk (north-west of France,
southern North Sea) and Saint Quay (north coast of
Brittany, western English Channel); and in autumn 2014
at La Turballe (south coast of Brittany, northern Bay of
Biscay) and Capbreton (south-west of France, southern
Bay of Biscay) (Table 1). These sites are well separated
along the French Atlantic coast and are associated with
different environmental conditions.
Depth was recorded every 90 s. Long depth records

(~ one year) for ten individuals per site were used in
this study (Table 1). Each depth-time point in the data-
set was attributed to a “day” or “night” factor for pre-
liminary detection of diel cycles, and was also used to
validate the model outputs. Having no prior knowledge
on the fish locations, we used the sunrise time in west-
ern Ireland (12.55°W, 49.65°N) and the sunset time in
eastern Denmark (7.93°E, 55.98°N) to delineate day vs
night times, covering the widest area the fish could
have gone to.

Spectral analysis
Time-frequency analysis
Cyclic patterns and activity levels of sea bass vertical
movements were first assessed using periodograms. They
can be regarded as a representation of the amount of en-
ergy in a time series as a function of frequency [31]. On
one hand, the activity level can be characterized by the
overall magnitude of the signal. On the other hand, be-
haviours associated with cyclic movement patterns result
in high-energy peaks in the periodogram; the frequency
of these peaks being the characteristic frequency of the
movement patterns (See Additional file 3: Figure S1 A
for an illustration of this spectral characterization).
When dealing with non-stationary time series, involving
time-varying cyclic characteristics (e.g. tidal, diel and
seasonnal cycles as well as different activity levels are
confounded), as expected from movement time series,
time-frequency analysis [31] resorts to the estimation of
a time-varying periodogram.
Here, we applied a Short Term Fourier Transform

(STFT, R package “e1071”, function stft, [32]) to each
depth time series (Figs. 1 and 2). The STFT is a Fourier-
based transform which provides information about the
frequency content of local sections of a signal s(t) as it
changes over time [33]:

STFT s tð Þ½ � ¼ E τ; ωð Þ
¼

Z þ∞

−∞
s tð Þχ t−τð Þe−2πiωtdt

The STFT can be regarded as the projection of the sig-
nal s(t) onto a set of base functions χ(t − τ)e−2πiωt, τ and
ω being respectively characteristic time and frequency of
base functions. Note that this equation differs from the
Fourier transform only by the presence of the window
function χ. Here we considered a Hamming window [32]
to fulfill local stationarity hypothesis. Practically, the
STFT is generated by taking the Fourier transform of
many time windows of the original signal shifted from
one window to the next by a given time increment.
The STFT allows us to examine the evolution of the

periodograms over time (Fig. 2b). It may be noted that
STFT favors the time resolution over the spectral reso-
lution. In particular, it does not resolve the spectral

Table 1 Summary of sea bass tagging locations and number of days spent at sea (mean ± standard deviation (sd))

Location Day at sea

Name Latitude Longitude Mean ± sd Min Max Total

Capbreton N = 10 43.640° N 1.449° W 350 ± 50 274 463 4005

Dunkirk N = 10 51.061 °N 2.368° E 402 ± 108 132 543 4022

La Turballe N = 10 47.346° N 2.516° W 368 ± 67 258 455 3676

Saint-Quay N = 10 48.656° N 2.826° W 350 ± 42 274 431 3502
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Fig. 1 Sketch of the methodological procedure applied to raw depth time series: 1. the depth time series are analysed in the time-frequency domain using
a Short Term Fourier Transform analysis in order to identify cyclic patterns and activity levels across time from periodograms; 2. The periodograms were
divided into two parts: (i) between 6 and 72 h (S6-72 h); (ii) between half an hour and 6 h (S0.5-6 h); 3. For each STFT time window (i.e. one day) (a) the
information contained in the 26 frequency bandwidths of S6-72 h was summarized by nine factors using a Non Negative Matrix Factorization (NNMF, see
Additional file 3: Figure S3); (b) for the higher-frequency range S0.5-6 h, we computed an index of fine scale movement randomness by calculating the
slope of the linear relationship between the log transformed variance densities and frequencies (see Additional file 3: Figure S1b); 4. We fitted HMMs to the
time series of metrics formed by the nine-dimensional NNMF decomposition of each periodogram and the value of SLPLog-Log. Given a fitted HMM, we
derive from each depth time series a time series of behavioural states (see Figs. 5 and 6)

Fig. 2 Example of a a raw depth time series (in grey) and associated daily median depth (in red) and depth variance (in blue) and b STFT-based
(Short Term Fourier Transform) time-frequency analysis of the depth time series for an individual tagged at La Turballe (Tag # A11325)
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analysis for frequencies greater than the width of the
considered window. In order to handle both fine scale
vertical movements, as well as diurnal and tidal cycles,
we applied a STFT with a 7 days window shifting by
one-day increments (i.e. days 1 to 6, 2 to 7, 3 to 8, etc)
(Figs. 1 and 2b). These settings are also consistent with
the segmentation of behavioural patterns at a daily
resolution.

Segregation of the STFT periodogram according to
movement pattern scales
The resulting STFT periodograms (Fig. 2b) displayed
strong modes and higher energies between 72 and 6 h
(lower frequencies; e.g. daily movements, tidal and diel cy-
cles) while it was more homogeneous and associated to
lower values between 6 and 0.5 h (highest frequencies; i.e.
fine-scale and random movements). We expect these two
frequency ranges to potentially relate to different behav-
ioural and environmental processes, which may explain
the differences in the exhibited energy levels. To avoid
hiding small scale movements (high-frequency compo-
nent) by the daily scale movements (low-frequency com-
ponent), we isolated the two frequency ranges: (1)
between half an hour and 6 h (S0.5-6 h, 309 frequency
bandwidths); (2) between 6 and 72 h (S6-72 h, 26 fre-
quency bandwidths) (Fig. 1, Additional file 3: Figure S1).

Dimension reduction: Calculation of an index of
randomness and non negative matrix factorization
In order to ensure a balanced analysis between the two
frequency ranges and to decrease the number of variables
included in our classification scheme, we applied a dimen-
sion reduction strategy to each frequency range as follows.
For fine scale behaviours, S0.5-6 h, we calculated the

slope of the log-log relationship between the energies and
frequencies (hereafter “SlpLog-log”, Fig. 1 and Additional
file 3: Figure S1B):

log E τ ¼ t;ωð Þð Þ ¼ At log ωð Þ þ Bt

The slope is a good indicator of activity levels and ran-
domness of the movements. While uncorrelated noise
processes (i.e. random movements) correspond to a
slope of 0; correlated random processes are associated
with a negative slope (i.e. directed vertical movements in
the water column) [34], with greater slope (more nega-
tive) corresponding to longer-scale dependencies. These
relationships are features of Matèrn processes, a family
of classical Gaussian processes whose spectral density is
asymptotically described by power laws. For example, an
asymptotic slope of −1 corresponds to a one-
dimensional Ornstein-Uhlenbeck process, a first-order
auto-regressive model characterized by an exponential
covariance [21].

Daily movement patterns and cycles (S6-72 h), were
still represented by spectral energies for 26 frequencies
per time window (on average 3735 ± 126 time windows
per site). First, these spectral values were normalized for
each frequency of the periodogram for all the individuals
and sites pooled together (i.e. each column of the whole
S6-72 h matrix, 26 × 14,939). This ensures variance
homogeneity among frequency bandwidths, sites and in-
dividuals. We then applied a dimension reduction
method to S6-72 h (Fig. 1). Rather than the classical
Principal Component Analysis, we apply a Non Negative
Matrix Factorization (NNMF) analysis. The NNMF ana-
lysis is commonly used in signal processing (e.g. image
compression, image and sound recognition, text classifi-
cation; [35, 36]) and is more appropriate for datasets
with only positive values, such as spectral energies. More
specifically, here, the extracted basis factors (equivalent
to the principal components of the PCA) can truly be
interpreted as spectral patterns with non-negative values.
NNMF factorizes a matrix A (n time windows (τ) x n
frequency bandwidths (ω)) into two rank-k matrices
W(τ × k) and H(k × ω), such that A is the most accurately
approximated by WH and k is inferior to rank(A) ([36]
and references therein).
We applied a NNMF analysis (R package “NMF”, func-

tion nmf, [36]) to S6-72 h for all individuals and sites
pooled together, such that the whole dataset is summarized
by the same NNMF factors before classification (Fig. 1).
More specifically, we used the Alternating Least Square
(ALS) algorithm as it was computationally faster than other
approaches [37] for similar results. To determine the opti-
mal number of factorization ranks (k) we ran the NNMF
from two to 20 factors and computed quality measures of
the results ([36] and references therein). Several quality and
performance measures (e.g. cophenetic coefficients and
RSS (Residual Sum of Squares)) have been proposed to
choose the optimal k value. As suggested by [38, 39] we
chose the k value for which, the cophenetic correlation co-
efficients (which indicate the dispersion of the consensus
matrix) decreased afterward and for which the RSS (Re-
sidual Sum of Squares) curve presented an inflexion point
(Additional file 3: Figure S2). Accordingly, the best approxi-
mation of S6-72 h was obtained with nine NNMF factors
(Additional file 3: Figure S2 and S3). Each factor is associ-
ated with different frequency peaks (Additional file 3:
Figure S3 #a) and their corresponding occurrence along the
time series (Additional file 3: Figure S3 #b).

Segmentation of latent behavioural states using hidden
Markov models
Hidden Markov models (HMM) are widely acknowledged
as powerful tools for modelling and classifying animal be-
haviours, while simultaneously dealing with inherent
auto-correlation and noise of movement time series
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[4, 11]. Detailed mathematical descriptions of HMMs
and broader state-space models may be found in pre-
vious publications (e.g. [25, 26]). We only outline the
general framework hereafter.
A HMM is a stochastic time series involving two layers:

an observable state-dependent process and an unobserv-
able state process. In the context of animal behaviour, a
HMM assumes that an observation O at a particular time
step (e.g. location, distance travelled, speed) results from a
distribution (also called observation distribution) associ-
ated with a behavioural state S. The time series of these
hidden behavioural states is modelled as a first-order
Markov chain. Along that chain, the probabilities of
switching from one state to the others are determined by
a transition matrix. The probability of a behavioural state j
at time t only depends on the state at time t-1, and the
transition probabilities to state j at time t [4, 11].

HMM parameterization and implementation
Let us denote by S = {St} the latent behavioural states series
to be inferred at a daily resolution, and O = {Ot} = {Wt, At}
the observation series of the coefficients of the nine
retained NNMF factors (Wt, Additional file 3: Figure S3 #b)
and the SLPLog-Log slope values (At, Additional file 3: Figure
S1 B). The latent variables S1 ,…ST represent the hidden
states of some underlying mechanism that generated the
observed data. For St = s, we assume that the distribution
P(Ot| St = s) follows a multivariate Gaussian distribution
with a diagonal covariance structure to make model infer-
ence easier and numerically more stable. Experiments were
carried out to test different distributions (R package “dep-
mixS4”, functions “depmix” and “fit”, [40]), the multivariate
Gaussian being the most adequate for our dataset.
Regarding the transition probabilities, we used individ-

uals as a covariate on the transition matrix to consider
individual heterogeneity in switching dynamics. Let us
denote by zt the covariates representing the individual at
time t. The transition probability is then parameterized
using a multinomial logit model as follows:

P Stþ1 ¼ jjSt ¼ i; ztð Þ ¼ pðtÞij ztð Þ

¼ e
βO

ijð ÞþZtβ1
ijð Þ

� �

ΣM
k¼1e

β
O
ikð Þþztβ1

ikð Þ
� �; for i; j ¼ 1;… M states

Each row of the transition matrix is parameterized by
a baseline category logistic multinomial, meaning that
the parameter for the base category is fixed at zero. The
default baseline category is the first state. This means
that all individuals share the same observation models
but involves individual-specific transition matrices
(e.g. pij

tð Þ zt ¼ A10639ð Þ for individual A10639). For a

given number of behavioural states, HMM calibration was

carried out according to a Maximum Likelihood criterion
using an expectation-maximization algorithm (EM) (R
package “depmixS4”, functions “depmix” and “fit”, [40]). It
resorts to the concatenation of all individual time series
into a single time series with the associated covariate time
series. Given the estimated HMM parameters, we pro-
ceeded with the analysis of individual movement patterns
and used the Viterbi algorithm to compute the most likely
sequence of behavioural states [40].

Model selection
Choosing the optimal number of states in a HMM is a
critical issue [4, 11]. This is particularly true in behav-
ioural ecology when no prior knowledge on quantitative
metrics to describe animal behaviours are available [11].
The use of information criteria (e.g. Akaike Information
Criterion, AIC; Bayesian Information Criterion, BIC)
solely for model selection is controversial. For instance,
the use of AIC only in HMM selection tends to favour
overly complex models which can make ecological inter-
pretations of estimated states difficult [11]. Besides, the
use of the Integrated Completed Likelihood (ICL), which
is a variant to the BIC, has proven to be efficient in
HMM selection ([41] and references therein). Model se-
lection based on the BIC minimization is a common ap-
proach as it includes both model estimation negative
log-likelihood and penalties on its complexity (See BIC
equations in [42]). The ICL index is equal to the BIC pe-
nalized by the mean entropy of the posterior probabil-
ities of the estimated model (See equations in [40]). This
entropy penalizes clustering configurations exhibiting
overlapping states. It means that models with lower en-
tropy are associated with better separated states and will
be favoured. Thus, due to the extra penalization term,
the ICL tends to be less prone to discriminate overlap-
ping states, essentially becoming an efficient model-
based criterion that can be used to outline the clustering
structure in the data [41]. Finally, we chose the optimal
number of states (between 3 and 10, see Additional file 3:
Figure S4) for our dataset by retrieving the best comprom-
ise between the ICL, entropy and the least complex model
in order to facilitate ecological interpretations (Additional
file 3: Figure S5).

Simulation-based validation of the approach
To assess the performance of our approach, we designed a
ground truthed simulation-based experiment as follow. The
simulated dataset involves three depth time series with a
90-s resolution over 366 days. Three behavioural states
were included in these simulations. In addition, we repro-
duced individual variability, by considering different transi-
tion matrices for each state time-series. For each individual,
the states time series were sampled from the individual
transition matrix. Then, the simulation of the depth D over
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time t was conditional to behavioral states S, and was made
of two components: an autoregressive process AR and a
periodic signal SW (Eq. 1), the parameters of which are
detailed in Additional file 3: Tables S1 and S2.

D tjS ¼ ið Þ ¼ αiAR t; θARi
� �þ βi

� �
þ γ iSW t; θSWi

� �þ δi
� � ð1Þ

For state 1 and 2, the movement followed a cyclic pat-
tern of 24 h and 12.8 h respectively (Additional file 3:
Table S1), associated with a Gaussian random walk with
an autoregressive process (Additional file 3: Table S2).
For state 3, the movement was characterized by a log-
normal random walk with an autoregressive process (to
mimic sea bass deeper dives, Additional file 3: Table S2).
Additional file 3: Figure S6 A, C, E illustrate these simu-
lated state time-series. We then, applied the whole pro-
cedure to these datasets, including model selection using
the ICL index and cross-validated the estimated states to
the simulated ones using confusion matrices.

Results
Simulation study
The mean normalized periodogram of each behavioural
state for the three-state HMM showed that behavioural
states from our simulation-based experiment were dis-
criminated according to their activity levels and spectral
signatures (State 1: peaks at 24 and 8 h (harmonic of the
characteristic frequency), State 2: peaks at 12.8 h, State 3:
no peak) within 6 to 72 h (Additional file 3: Figure S7).
The proposed HMM succeeded in correctly estimating
the mean characteristics of the behavioural states and
reached an overall mean accuracy of 94% for the seg-
mentation of the hidden states from the depth series
(Additional file 3: Table S3).

General features
The procedure we developed (Fig. 1) was applied to the
DST depth time series of 10 sea bass per four independent
sites along the French Atlantic coast. For each individual,
depth was recorded every 90 s for a year (on average) pro-
viding a total of 3502 to 4022 days at sea at each site for
our analyses (Table 1). The similarity in dataset sizes be-
tween sites ensures that the analyses are homogeneously
driven by all sites.

Detection of rhythmicity from spectral analysis
The STFT analysis (performed on each time series)
highlighted, over time, the strongest changes in an indi-
vidual’s activity levels in the water column (e.g. highest
depth variations on 16/01/15, Fig. 2). In addition, the
STFT analysis identified patterns within the low and
high-frequency bandwidths of the periodogram, which
were not indicated by changes in the median depth and/or

depth variance (Fig. 2). Firstly, the mean periodogram cal-
culated from the STFT for the low frequencies bandwidths
(S6-72 h) displayed strong peaks at 24, 12.8, 12 and 8 h
highlighting the occurrence of cyclic patterns in indivi-
duals’daily behaviour (Additional file 3: Figure S1A). These
peaks correspond to the spectral signatures of two
geophysical cycles: the diurnal cycle (peaks at 24, 12 and
8 h, with the second and third ones being harmonics [i.e.
echoes] of the 24 h peak) and the tidal cycle (peak at
12.8 – semi-diurnal tide component). Secondly, for
the high-frequency range (S0.5-6 h), the SlpLog-log
values indicate that individuals’ small scale move-
ments are directed as they depict a clear autocorrel-
ation (Additional file 3: Figure S1B, −0.7 ± 0.2 for all
individuals and day pooled together).

Behavioural classification
Model outputs
HMMs were fitted using the coefficients of the nine
NNMF factors and the SLPLog-Log values as daily observa-
tions, and individuals as covariates for the transition
matrix. Different number of states were tested from 3 to
10 (Additional file 3: Figure S4). According to the ICL cri-
terion, the optimal number of states was seven (Additional
file 3: Figure S5). However, in order to facilitate ecological
interpretation, a less complex model characterized by five
states was retained. Indeed, the seven states-model only
differ from the five states-model by doubling the two
states corresponding to the fish being the least active
(Additional file 3: Figure S4C and E).
Then, the behavioural state associated with daily obser-

vations was re-assigned to the periodogram and SlpLog-log
matrix and to the time series for all individuals according
to the corresponding date. The activity level can be char-
acterized by the overall magnitude of the signal. In
addition, behaviours associated with cyclic movement pat-
terns result in high-energy peaks in the periodogram; the
frequency of these peaks being the characteristic fre-
quency of the movement patterns.
The mean normalized periodogram of each behav-

ioural state for the retained HMM showed that behav-
ioural states were discriminated according to their
activity levels and spectral signature (i.e. the occurrence
of peaks) within 6 to 72 h (Fig. 3a). Despite, the SlpLog-
log values showing that fine scale movements (between
0.5 and 6 h) were directed (Additional file 3: Table S5),
they did not seem to account for much in discriminating
behavioural states (Fig. 3b). Behavioural state one (St1),
two (St2) and five (St5) occurred in relatively similar
proportions among sites (Fig. 3c). Conversely, the pro-
portions of behavioural state three (St3) and four (St4)
varied more between sites, and St3 was almost not
adopted by individuals from Capbreton (Fig. 3c). This
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likely reflects different behavioural adaptations according
to regional differences in abiotic and biotic conditions.

Activity levels and spectral signature of the different
behavioural classes
Fish were the least active while displaying behavioural
state one (St1, 0.22 ± 0.17 m2/Hz), followed by St2
(St1, 0.43 ± 0.32 m2/Hz), St3 (0.77 ± 0.55 m2/Hz),
St4 (St4, 1 ± 0.60 m2/Hz) and St5 (St2, 2 ± 0.61 m2/
Hz) (Figs. 3a and 4). St1 was also characterized by a
strong tide signal, while St2 mean energy density was
generally homogeneous across frequency bandwidths
(Fig. 3a). The same patterns were observed among
sites, although the magnitude of the tide signal varied
between sites and was also present in St2 at Dunkirk
(Fig. 4b) and La Turballe (Fig. 4c). Fish displayed a
strong diurnal behaviour in St3 and this pattern was
consistent among sites even though the magnitude of
the diurnal peaks varied between them (Figs. 3a and 4).

The spectral signature of St4 was homogeneous among
frequency bandwidth, showing that fish did not adopt
strong cyclic movement patterns in this behavioural state
(Fig. 3a). The patterns observed for St3 and St4 were con-
sistent among sites (Fig. 4), except at La Turballe where
there was also a tidal signal (Fig. 4c). For St5, the energy
was minimal at 24, 12.8, 12 and 8 h, revealing no cyclic
pattern and/or an inverted diurnal pattern (Fig. 3a). In
addition, the stronger variability of spectral features asso-
ciated with St5 among sites compared to the other behav-
ioural states (Fig. 4), suggested that St5 corresponds to
fish adopting more complex behaviours.

Depth specific periodic behaviour: Diurnal and tidal
rhythms
In order to confirm the tidal and diurnal spectral signatures
observed in the mean normalized periodograms we looked
at the depth series of the corresponding behavioural states.
As such, the tide signal clearly exhibited by St1

Fig. 3 Mean normalized periodogram of each behavioural state for the low-frequency range (6 to 72 h) (a); box-plot of SLPLog-Log values (median
is indicated in bold) for each behavioural state (b); and relative occurrence frequencies of the behavioural states at each site (c), discriminated
from the fitted five-state HMM. In (a) and (b), results are presented for all sites and individuals pooled together. CB: Cap Breton, DK: Dunkirk, LT:
La Turballe, SQ: Saint-Quay

Heerah et al. Movement Ecology  (2017) 5:20 Page 8 of 15



periodogram was also observable in the time series (see
Fig. 5b). Similarly, St3 and St5 were associated with the
highest differences in depth ranges and variations between
day and night (Fig. 5c-d, Additional file 3: Table S4). More
specifically, it seems that St3 corresponded to periods when
the individuals displayed a directed diurnal activity such as
diving deeper during the day but being equally active dur-
ing the day or at night. In contrast, St5 corresponded to less
clear patterns in day or night depth occupancies, and more
variable activity levels between day and night (Fig. 5c-d,
Additional file 3: Table S4). Conversely, St1 and St2 were
generally associated with the lowest differences in depth
ranges and variations between day and night (Fig. 5d-e,
Additional file 3: Table S4).

Depth series and behavioural classes
Similar to activity levels and diurnal patterns, St1 and
St2 were generally associated with the shallower depth
ranges and variations, followed by St4; St3 and St5 which
corresponded to the deepest positions in the water

column and largest depth variations (Figs. 5 and 6, Add-
itional file 3: Table S4). However, there were inter-site dif-
ferences between depth ranges and variations associated
with each behavioural state. In addition, not all individuals
always displayed all the behavioural states during their
time at sea (Fig. 6).
The occurrences of the different behavioural states

were temporally well-defined and appeared at similar
times throughout the annual cycle (Fig. 6). At Capbre-
ton, Dunkirk and Saint-Quay (Fig. 6e–h), the fish were
the least active in summer during the feeding season
(main occurrence of St1 and st2) while they were the
most active in winter during the breeding season (main
occurrence of St5). At these sites the fish mainly adopted
St4 (intermediate activity level, no cyclic behaviours)
from September–October to April–May. At Dunkirk
and Saint-Quay, diurnal movements (St3) mainly oc-
curred from September to January just before and at the
beginning of St5 occurrence. At La Turballe, behaviours
occurred at similar times, but the patterns were less

Fig. 4 Spectral signature and activity levels associated to each behavioural states of the fitted five-state HMM for all individuals pooled together at
each site. The orange and blue dotted lines indicate the diurnal and tidal periodicities, respectively. a Capbreton. b Dunkirk. c La Turballe. d Saint-Quay
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pronounced than at the other sites which likely result
from a larger proportion of fish being residents in that
area (data not presented).

Discussion
Movement pattern variations are reflective of behav-
ioural switches, and are likely associated with different
life history traits in response to the animals’ abiotic and
biotic environment. Detecting these different behaviours,
the scale and periodicities at which they occur and their
switches can provide rich information on the underlying
processes driving these movement patterns. The extrac-
tion of such information from movement time series re-
quires tools that objectively describe and quantify these
behaviours. The innovative aspects of our method lie
within the combined use of powerful mathematical tools
(spectral analysis and hidden Markov models) to identify
and then classify behavioural states. We were able to dis-
criminate between these behaviours by deciphering move-
ment cyclic patterns and activity levels from a 1-D
movement time series. In the current trend, where bio-
logging technologies (and thus movement ecology studies)
are increasing rapidly, our method could be widely applied
to any species and customized to answer a broad range of
ecological questions.

Methodological discussion
Our method combines the use of a time-frequency ana-
lysis (STFT) and a dimension reduction analysis (NNMF).
These techniques accurately extracted and summarized

the key metrics of different movement patterns (i.e. cyclic
behaviour and activity levels) contained within the time
series. These metrics were then implemented in a Mar-
kovian model framework, used as a classification tool, to
identify sea bass vertical behaviours. The whole procedure
is fully automated which makes it applicable to large high-
resolution datasets.
Time-frequency analyses in ecology have been mainly

used for analyzing acoustic signals (e.g. [43, 44]). None-
theless, a few studies applied time-frequency techniques
to detect cyclic behaviours in terrestrial and marine ver-
tebrate such as diurnal, tidal, as well as semi-lunar and
lunar cycles [5, 22, 24, 45, 46]. These analyses are well
suited to analyzing and extracting complex information
confounded in long-term high-resolution datasets such
as those from archival tagging studies. Periodic, non-
periodic behaviours and different activity regimes can be
extracted directly from animal movements without re-
quiring other indices (e.g. variance as an index of activ-
ity, time of day, seasons) or additional environmental
metrics (e.g. day vs night for diel patterns, [23, 47]; ebb
and flood for tidal ones, [11]). This is particularly useful
for 1-D time series, when neither measures of in situ
light levels, nor animals’ position, are recorded by the
tags. Conversely, more classical approaches (i.e. [48])
using depth mean or median (indicative of fish distribu-
tion in the water column) and variance (indicative of fish
activity regime) did not allow to segregate states associ-
ated with the same level activity but associated with dif-
ferent behavioural cycles (figure not presented; see also

Fig. 5 The different behavioural states inferred with the fitted five-state HMM are represented along the depth time series (a). The tidal signature
associated to state St1 (b) and diurnal rythms (c-d) associated to state St3 and St5 are also represented. The differences in daily mean depth (c)
and variability (d) between day and night are representative of diurnal changes in the position in the water column and activity levels, respectively.
St2 and St4 represent intermediate activity levels and are not characterized by a tidal signature nor a clear diurnal rhythm, respectively. The behavioural
analysis is reported for one individual tagged at Saint-Quay (Tag # A10639)
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[49]). For instance, when the fish were intermediately ac-
tive, we distinguished two states, with and without diur-
nal cycles whereas using classical metrics only identify
one state. In addition, using the raw depth series and/or
descriptive metrics of fish position in the water column
result into a classification biased toward depth values.
Furthermore, a statistical analysis combining dive met-
rics and direct use of diel, tidal state covariates or time
of day, would implicitly assume predefined priors on the
timing of the behavioural states as well as their spectral
characteristics (i.e. cyclic patterns), which may hardly be
defined if not misleading or inaccurate. Polansky et al.
[24] also illustrated the strength of using time-frequency
analyses in combination with correlated random walk
models to detect the periodicity and scales at which
spatial movements and activities occur [24].
Identifying the timing and extent of behavioural pat-

terns along a movement time series is not feasible with
classical Fourier transform or autocorrelation function.

For instance, in Shepard et al. [5] and Scott et al. [22],
the authors identified the overall occurrences of periodic
patterns, but had no automated processes for isolating
them along the time series. They had to perform su-
pplementary analyses and subsample the times-series
(e.g. every month in [5] or day in [22]) to extract this in-
formation over time. In order to overcome this limitation,
we used a time-frequency analysis, namely the STFT,
which allowed us to analyze potential time-varying vertical
movement patterns. Our setting (Hamming window,
seven days by one day increments) enabled us to identify
cyclic patterns that repeat over a week. However, the
simulation experiments showed that the HMM was less
accurate in inferring the appropriate state at the transition
between two states. This is likely due to a loss of time
resolution inherent to the STFT window we chose. In
addition, our setting does not permit the extraction of lar-
ger periodic patterns, such as seasonal ones. For instance,
Scott et al. [22] identified putative spawning behaviour of

Fig. 6 Segmented behavioural states represented along the depth time series of one individual at each site (a, b, c, d). The segmentation
exploited the retained fitted five-state HMM; as a result, all states are not necessarily displayed by all individuals. The monthly percentage of the
behavioural state occurrences are also represented for each site (e, f, g, h)
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Pacific Halibut at a scale of 6–10 days as well as lunar and
semi-lunar periodic behaviour over several weeks. This
said, any frequency range could be examined depending
of the process one wants to highlight, and the users need
to adapt the size of the STFT window according to their
study question. Obviously, the lower the considered fre-
quency ranges are, the lower the time resolution of de-
tected behavioural shifts will be.
Identifying and quantifying behavioural switches using

the outputs of time-frequency analyses is another issue.
As discussed in Polansky et al. (2010) [24], ecological in-
terpretation in the time-frequency domain is not always
straightforward. They may also result in numerous vari-
ables (here, the number of frequency bandwidths, e.g. 335
in our study) which may be difficult to directly use in a
classification framework. The practitioner could focus on
pre-defined frequency ranges of interest if behavioural
patterns are known a priori. However, this precludes from
discovering new patterns of individuals’ movements.
With this in mind, we optimized the classification

process by summarizing the information (i.e. dimension
reduction) of the STFT analysis by using a NNMF. It
provided a lower-dimensional representation of the peri-
odograms while still accounting for significant move-
ment information. While we finally retain the optimal
number of NNMF factors (i.e. according to the RSS and
cophenetic coefficients), supplementary experiments re-
vealed that increasing or decreasing (from 3 to 20) the
number of NNMF factors implemented in the HMMs
did not change significantly the behavioural states dis-
criminated. It shows that our approach is not sensitive
to the NNMF, which nonetheless seems to be important
to speed up the inference and avoid numerical pitfalls
(i.e. which occurred when considering the raw STFT
data for the entire datasets).
Hidden Markov models are particularly well suited for

analyzing an animal’s movement time series because
they directly account for the fact that any corresponding
information will be driven by the underlying behavioural
state or general activity level of the animal [4, 11]. In
addition, HMMs deal with the strong auto-correlation
inherent to any time series in a mechanistic way, by
allowing states to be persistent over time rather than
omitting the feature completely (e.g. cluster analyses,
[50]) or including it in an error term (e.g. Generalized
Mixed Effect Models, [51]). This feature is also crucial in
our procedure as Fourier-based descriptors involve long-
term (low-frequency) and short-term (high-frequency)
correlations.
In behavioural ecology, HMMs can be used in a super-

vised approach to identify pre-defined behavioural states
of interest ([52]; e.g. [53]), or in a unsupervised approach
(e.g. the one we described). While the unsupervised ap-
proach offers the opportunity to learn about unknown

behaviours of an animal [4, 11], it also have some limita-
tions. Within an unsupervised framework, the determin-
ation of the number of states results from some trade-off
between model complexity, likelihood and behavioural
plausibility [4, 11]. The ecological interpretation of the la-
tent behaviours relies on expert knowledge of the biology
and ecology of the species of interest and is made a pos-
teriori [11, 54]. For instance, in this study, given that ac-
tual fish behaviours at sea cannot be observed, direct
behavioural state validation, from an ecological point of
view, (e.g. [53, 55]) could not be performed. Nevertheless,
simulated non-stationary time series with periodic pat-
terns and our results revealed the efficiency of HMMs,
combined with a time-frequency analysis, in discriminat-
ing behavioural shifts. In our application to sea bass depth
time series, behavioural states were well-defined and per-
sistent over time, also providing support for the proposed
framework. The inter-site similarity in energy levels and
spectral signatures associated with the different states
stressed the robustness of our method in characterizing
and segmenting similar patterns in animals’ behaviour
along movement time series.

Behavioural mode inferences
By applying our approach to European sea bass depth
time series data, we showed that these animals occupy dif-
ferent parts of the water column, adopt different activity
regimes and their vertical movements could be associated
with environmental cycles. In addition, the timing of the
different behaviours throughout the annual cycle amongst
individuals suggest these behaviours are likely related to
seasonal functional behaviours such as feeding, migrating
and spawning (Fig. 6). However, little is known about the
species ecology in its natural environment or its role in
the marine ecosystems [27–29] and as such, the behav-
ioural inference we can make are limited and must be
taken cautiously.
The tidal signature associated with St1 and St2 is ob-

served as a consequence of the fish being the least active
in these states and likely corresponds to the water height
above fish varying with tide. Consequently, the presence/
absence of a tidal signal could provide information on
the vertical and spatial location of the fish [21, 22]. For
instance, the presence of a tide signal, in combination
with an inactive behaviour, likely corresponds to the fish
remaining inactive close to the seafloor. Alternatively, its
absence could be linked to the spatial location of the fish
(e.g. La Turballe: strong tidal signal, vs Capbreton: low
tidal signal), or indicate that the fish are active horizon-
tally, rather than vertically, and behaved in response to
sea surface, rather than seafloor conditions [5, 22]. The
fact that these behaviours mainly occurred during sum-
mer (i.e. seabass feeding season, [27]) may suggest that
St1 and St2 could be related to foraging activities (i.e.
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feeding, digestion, “sit and wait” hunting strategy). Fish
most active behaviours (St3 and St5) were also associ-
ated with diurnal and diurnal-inverted signals and
mostly occurred in winter (i.e. seabass spawning season,
[27]). Such behaviours could be adopted to favour repro-
ductive success in response to their environment, such
as predator avoidance, and physiological constraints, but
also food uptake before energetically demanding spawn-
ing events and/or thermoregulatory excursions. As for
St4, it could be described as a non-periodic behaviour
with intermediate activity levels, and could correspond
to the fish travelling between areas [22, 27].
In this study, individuals and sites were pooled together

in order to extract a set of behaviours that would be over-
all representative of the population as well as comparable
between sites and individuals. Inter-individual variations
and transition matrices were not investigated in this study
and would deserve a study on its own. In theory, one
could choose to fit the HMM per individual and perform
some post-fitting analyses to study inter-individual/site
variations. While it would increase the overall complexity
of the model, it would also decrease the amount of data
available for the inference of the HMM parameters, with
potential overfitting risks. Furthermore, it might results in
behavioural states that would not be comparable between
individuals, especially if working on a large number of
them. Thus, we recommend to apply procedures that are
as integrative as possible, such as the approach proposed
here or hierarchical modelling (e.g. [12]). The application
of our method to a larger dataset (i.e. more individuals at
multiple sites over a longer time frame), as well as the
thorough examination of state transitions statistics, would
provide useful insights into the seasonal movement pat-
terns of sea bass and their underlying drivers, such as
temperature [27].

Method applications and perspectives
Experts in bio-logging technologies and movement ecol-
ogy, in concert with conservation agencies, have identified
key questions and goals that are applicable to terrestrial
and marine species [3]. In this framework, the method we
developed should contribute to the understanding of ani-
mal habitat requirements and selection, and their interac-
tions with the ecosystem.
First, while GPS and Argos locations are available for

air-breathing marine animals (e.g. reptiles, marine mam-
mals, birds), geolocations from animals that remain below
the surface (i.e. fish) are achieved by an animal-borne log-
ger, and later used to reconstruct animal movement. In
several geolocation models light, temperature, depth and
tidal signals have been used to locate a posteriori the ani-
mals [21, 30]. Our analysis strongly suggested that some
behavioural states (St1 & St2) relate to tide signals, which
in turn could be used as tide-driven cues for geolocation

issues (e.g. [21]). Furthermore, our model provided infor-
mation on the vertical position of the fish in the water col-
umn and their level of activity. This may offer key
information that help disentangle functional behaviours
and its links with the three-dimensional movement of
animals (e.g. [15, 56]). Such behaviour-driven complemen-
tary cues could be integrated in geolocation models to
constraint displacement parameters and refine locations’
estimation (see [21, 30]).
Second, assessing how environmental features shape

animal movement is essential for two main reasons: (i)
provide insights into the drivers of behavioural changes,
thus improving our knowledge of species biology and
ecology; and (ii) a better understanding of species habi-
tat requirements. Both are crucial for assessing how
climate change and anthropogenic activities will impact
individuals and populations. HMMs have great poten-
tial for investigating the links between animal behav-
iour and their environment by using an integrative
approach (e.g. [11, 57]). In particular, HMMs offer the flexi-
bility to include (1) several observation variables, such as a
set of behavioural observations as well as combined behav-
ioural and environmental variables; and (2) any covariates
that could influence the probability of behavioural switches
(e.g. environment, individual variability; [4, 11, 15, 58]).

Conclusions
Despite improved bio-logging technologies and the prolif-
eration of movement ecology studies, there remains a
need for generic quantitative tools for extracting informa-
tion from increasingly large bio-logging datasets. The
method we present here successfully enabled to identify
and classify individual behaviours, taking into account, in
an integrative and quantitative manner, both movement
activity levels and cyclic patterns, directly from a 1-
dimensional movement time series. This method relies on
powerful, but generic, mathematical tools that can be cus-
tomized to any type of time series dataset and species.
This broadens its applicability to animal movement stud-
ies that aim to investigate major ecological questions.
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