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Abstract

Background: Characterizing the movement patterns of animals is an important step in understanding their
ecology. Various methods have been developed for classifying animal movement at both coarse (e.g., migratory vs.
sedentary behavior) and fine (e.g., resting vs. foraging) scales. A popular approach for classifying movements at
coarse resolutions involves fitting time series of net-squared displacement (NSD) to models representing different
conceptualizations of coarse movement strategies (i.e., migration, nomadism, sedentarism, etc.). However, the
performance of this method in classifying actual (as opposed to simulated) animal movements has been mixed.
Here, we develop a more flexible method that uses the same NSD input, but relies on an underlying discrete latent
state model. Using simulated data, we first assess how well patterns in the number of transitions between modes
of movement and the duration of time spent in a mode classify movement strategies. We then apply our approach
to elucidate variability in the movement strategies of eight giant tortoises (Chelonoidis sp.) using a multi-year (2009–
2014) GPS dataset from three different Galapagos Islands.

Results: With respect to patterns of time spent and the number of transitions between modes, our approach out-
performed previous efforts to distinguish among migration, dispersal, and sedentary behavior. We documented
marked inter-individual variation in giant tortoise movement strategies, with behaviors indicating migration, dispersal,
nomadism and sedentarism, as well as hybrid behaviors such as “exploratory residence”.

Conclusions: Distilling complex animal movement into discrete modes remains a fundamental challenge in movement
ecology, a problem made more complex by the ever-longer duration, ever-finer resolution, and gap-ridden trajectories
recorded by GPS devices. By clustering into modes, we derived information on the time spent within one mode and the
number of transitions between modes which enabled finer differentiation of movement strategies over previous
methods. Ultimately, the techniques developed here address limitations of previous approaches and provide greater
insights with respect to characterization of movement strategies across scales by more fully utilizing long-term GPS
telemetry datasets.
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Background
Understanding the drivers and implications of an organ-
ism’s movement remains a fundamental challenge in
ecology [1]. Movement has important repercussions for
an individual’s fitness and can influence the structure
and function of populations, communities and ecosys-
tems [1]. Movement can be classified at multiple tem-
poral and spatial scales [2]. For example, movement
patterns at coarse temporal scales (e.g., annual) can be
classified in terms of broad strategies (e.g., migration,
dispersal, residency, or nomadism; hereafter referred to
as “movement strategies”), while variation at finer
temporal scales is frequently thought of in terms of la-
tent or behavioral modes (e.g., “encamped” vs. “explora-
tory” [3, 4]; hereafter referred to as “modes”). Movement
strategies at even finer temporal scales can be envisioned
when animals transition among different behavioral
states (e.g., resting, moving, foraging, hereafter referred
to as “states”). Recent studies have shown that broad-
scale movement strategies vary substantially among and
within species, and even among individuals within a
population [5–8].
The benefits of different strategies and the rates of

transitions between behavioral modes can differ depend-
ing on the spatial and temporal structuring of resources
[5, 9, 10]. Linking dynamic resource distributions to
movement patterns at different spatial and temporal reso-
lutions remains a critical step toward understanding the
drivers of movement decisions. Thus, classifying move-
ment strategies is a logical first step in the analysis of ani-
mal movement [1]. While much research has focused on
quantifying patterns of animal movement at the scales of
movement strategies, modes, or states independently, to
date few analytical approaches have applied methods ori-
ented toward a specific movement scale to understanding
movement at other scales. [11, 12]. For example, ap-
proaches for identifying strategies have generally relied on
relatively rigid parametric models in comparison to ap-
proaches for identifying movement modes or behavioral
state (e.g., [7, 13, 14]). As a result, our understanding of
the drivers of movement patterns remains limited in part
by the lack of flexible approaches to quantify large-scale
animal movement strategies.
A popular approach to identifying movement strat-

egies focuses on the net squared displacement (NSD) of
individuals over time (but see also [15]) – part of a fam-
ily of metrics known as “synthetic statistics” that capture
key properties of animal movement [16, 17]. NSD mea-
sures the square of the Euclidean distance between the
starting location of a movement path and each subse-
quent location. Time-series of NSD values are character-
istic of individual movement trajectories. When averaged
over time, NSD time-series can be summarized as the
mean squared displacement. Mean squared displacement

is used to quantify the diffusive spread of particles, or
animals, over time and space. Distinct patterns in NSD
time-series are theoretically expected from specific
movement strategies, and parametric models have been
suggested to help elucidate those patterns (e.g., a
double-sigmoid curve represents migration; Fig. 1, first
row).
Efforts to classify movement strategies are typically or-

ganized around the concepts of sedentarism, dispersal,
nomadism, and migration [7, 13, 14]. Bunnefeld et al.
[14] fit alternative models to NSD time-series from an
individual, with models corresponding to idealized
movement strategies (double-sigmoid =migration, sig-
moid = dispersal, linear = nomadism, asymptotic = seden-
tarism; grey lines in Fig. 1), and used an information
criterion (e.g., AIC; [18]) to assign the most likely move-
ment strategy. Expanding on that approach, Börger &
Fryxell [13] fit non-linear mixed models to account for
non-independence in the time-series of animal locations,
and “borrowed” strength by model fitting pooled ani-
mals. While these approaches have performed well in
specific instances [7, 13, 14], empirical animal trajector-
ies often defy classification, showing greater variability
than the anticipated stereotypical ideal. Some applica-
tions of the Bunnefeld et al. [14] approach have pro-
duced high classification error in classifying movement
strategies or aberrant results based on visual validation
[6, 8, 15, 19, 20]. NSD approaches also suffer from inher-
ent statistical problems related to temporal autocorrel-
ation (which we develop in the Discussion below), that
limit their applicability. Lastly, they rely on fragmenting
the data into independent subsets of homogenous dur-
ation (e.g., 1 year of data) that correspond to model ex-
pectations, rather than being flexible enough to handle a
variety of monitoring durations from multiple years of
data and the complexity of trajectories from long-lived
species.
Here, we integrate the NSD statistic with latent,

discrete-state models (a type of hidden Markov
model) to improve the flexibility and accuracy of clas-
sification of large-scale movement strategies [2, 3].
Latent state models define states in terms of distribu-
tions of one or more measured characteristics of a
movement path (e.g., step length and turning angles,
or in our case NSD) [3, 4]. In addition to quantifying
NSD moments for each state, with the number of
states defined by the model structure, latent state
models also estimate the probability that an animal is
in any of the possible states at each point in time. In
the simplest versions, the state for each observation
(i.e., GPS location) is dependent only on the associ-
ated movement characteristics (i.e., the step length
and turning angle at that time). However, additional
information is available from the temporal
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dependency of states by modelling transitions between
states assuming a first-order Markovian process
(switch models sensu Morales et al. [3]). Similar in
logic to continuous-time movement models [4, 21, 22], we
propose to look at patterns in the time spent within differ-
ent modes, as well as transitions between modes, to refine
classification of broad-scale movement strategies.

We focused on models of movement involving three
modes, two corresponding to different areas of concen-
trated movement (equivalent to two encamped move-
ment modes) and a third allowing for movement outside
and between these areas (equivalent to an exploratory
mode). We first investigated the model’s applicability
using simulated data following four stereotypical

Fig. 1 Depiction of four movement strategies: Migration, dispersal, nomadism, and sedentarism. Legend: Spatial locations in the X-Y plane are
shown along with the temporal pattern in net squared displacement (NSD, thin line) and theoretical expectation (grey thick line) and the
frequency distribution of NSD values for four given movement strategies: migration (first row), dispersal (second row), nomadism (third row), and
sedentarism (fourth row)
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movement strategies (migration, dispersal, nomadism,
and sedentarism). We then applied our approach to a
sample of GPS-tagged Galapagos tortoises (Chelonoidis
sp.), with 8 individuals drawn from four species across
three islands. Lastly, we introduced extensions of our ap-
proach that would allow for the addition of site-specific
variables and enable assessment of classification robust-
ness based on a bootstrap approach.

Methods
Model formulation and estimation
Net squared displacement is obtained from a series of
locations by calculating the square of the Euclidean dis-
tance between a given location and the putative origin of
a movement path. This distance is the straight line dis-
tance between the first location and each subsequent lo-
cation along the time series [17]. We analyzed individual
time series of NSD using a mixture-model including two
normal and one uniform distribution. A normal distribu-
tion can be associated with areas of intensive and recur-
rent space-use (encamped mode), whereas the uniform
distribution is related to sporadic use of an area while
travelling (exploratory mode). Initially we were unsure if
some movement types (e.g., home ranging or nomadic
movement) might be well fit by a single normal and uni-
form mixture. Preliminary analysis suggested that a
model with two normal distributions and a uniform dis-
tribution better fit simulated data from all movement
strategies we considered. For a migrating animal, we ex-
pected the frequency distribution of NSD values (Fig. 1,
first row) to be best described by a mixture of two nor-
mal distributions each associated with encamped move-
ment within a seasonal range and having a uniform
distribution representing the transition period between
the two ranges. For a dispersing animal, we would ex-
pect a similar pattern in frequency (Fig. 1, second row),
which would be distinguishable from migratory behavior
if the animal does not transition back to the first
encamped movement mode. Nomadic and sedentary be-
havior could be captured by a similar structure with
multiple transitions between each mode (Fig. 1, third
and fourth rows). In this case, we predict that sedentar-
ism will involve numerous transitions between the two
encamped modes while nomadic behavior will have
fewer transitions.
A mixture-model can be formulated as a latent vari-

able model where each observation, NSDt (t = 1, …, T),
is associated with an unobserved (latent) mode indicator
variable It = i, i ∈ {1, …, M} where M is the number of
different clusters and defined explicitly by the model
structure. Starting with a simple case for a given vector
of modes I, the likelihood function for a mixture of nor-
mal distributions for a set of observations y
= {NSD1,…,NSDT} of NSD values is:

L y μ; σ; Ij Þ ¼
YT

t¼1
N NSDt μItσ Itj Þð

�
ð1Þ

where N NSDt jμIt ; σ It
� �

is the value at time t of the
probability density function of a normal distribution
with mean μI and standard deviation σI. Since our
framework requires the addition of a uniform distri-
bution, we need to include this into eqn 1. It is com-
putationally efficient and mathematically simple to
approximate the model as a mixture of three normal
distributions where one normal distribution replicates
a uniform distribution (hereafter referred as pseudo-
uniform). This is done by holding μ and σ fixed for I
= 3 in order to obtain a relatively flat distribution
over the range of observed values for the third distri-
bution. Hence, in eqn 1, μIt and σ It are each esti-
mated by the model for the first two modes, and
fixed for the third mode.
Implicitly, eqn 1 assumes that the NSD at time t is

independent of the NSD at time t-1, given the vector
of modes, I. Temporal autocorrelation in NSD values
is likely to be common for all movement strategies,
but especially for dispersal and migratory strategies
[23]. To better accommodate the temporal autocorrel-
ation present in NSD time-series, we added parame-
ters to describe the probability of switching from one
mode to another in order to explicitly model the
Markovian switch. At each time step, an individual
changes from a current mode to another with fixed
probability. For our model based on a mixture of two
normal and pseudo-uniform distributions, we used a
3 × 3 matrix Q to define the probability, qij, of being
in mode i at time t + 1 given that the individual is in
mode j at time t. One advantage of this approach is
that even when data are unavailable, the matrix of
switching probabilities can assign a mode to every
time step, therefore allowing straightforward model-
ling of missing data. The likelihood of this model is
obtained by multiplying eqn 1 by the matrix Q (we
present the full expression of the likelihood in Add-
itional file 1). A Bayesian approach using Monte
Carlo Markov-Chain (MCMC) techniques is the most
common method used for estimating parameters
when dealing with latent-state models. We developed
the model in JAGS 3.4.0 [24] and created a series of
functions for movement analysis in R (R Core Team
2015) available at https://github.com/BastilleRousseau/
lsmnsd. To simplify the integration of priors, we
range-standardized the NSD values across all values,
such that values ranged from zero to one for each in-
dividual. Model structures are presented in Additional
file 2. Unless otherwise specified, we conducted all
analyses in R v 3.1.2 (R Core Team 2015).
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Simulated movement study
To test the proposed approach, we applied it to
movement paths simulated from random walk data.
We simulated movement associated with four strat-
egies (nomadism, sedentarism, dispersal, and migra-
tion) for 365 time steps (i.e., 1 year of data with one
location per day). Our simulated dataset is similar to
that of Bunnefeld et al. [14], but we allowed move-
ment parameters to vary to a greater degree to repre-
sent a wider range of movement trajectories. We used
functions implemented in the R package adehabitatLT
to simulate movement [25] and we provide a more
in-depth description and associated scripts in Add-
itional file 3. For each movement type, we generated
1000 simulated datasets, for a total of 4000 move-
ment trajectories, each consisting of 365 time steps.
We applied the clustering algorithm on each of the

simulated trajectories. We first tested for convergence
using uninformative priors with three chains and
5000 iterations. For scenarios that did not converge,
we reran with 20,000 iterations. Convergence was as-
sumed when the Gelman-Rubin convergence statistic
R̂ð Þ < 1.1 for parameters related to deviance, mean
and standard deviation of each mode, and switching
probabilities. This statistic compares the within-chain
variance of a parameter to the between-chain vari-
ance. We extracted the matrix of switching probabil-
ities and also associated each location to its most
probable mode based on the MCMC iterations. We
then estimated the number of transitions between one
mode and another. We used these summary statistics to
determine criteria best suited to differentiating among
each movement strategy. We used half of our simulated
datasets to generate a set of simple rules that formed
the basis of a classification system, and we deter-
mined the accuracy of these classification rules using
the second half of the simulated datasets.
We also tested whether our approach outperformed

other approaches by applying Bunnefeld et al.’s [14]
method to our simulated movement trajectories. For
each simulated time-series, we fitted a double sigmoid
curve (migration), a sigmoid curve (dispersal), a linear
model (nomadism), and a constant model (sedentar-
ism) using non-linear modelling. We associated each
trajectory to a strategy by looking at the top model
based on AIC (see Bunnefeld et al. [14] for further de-
tails of the approach). Lastly, we calculated a kappa statistic
[26] for each approach to assess overall agreement. We did
not compare our approach with the approach suggested by
Börger & Fryxell [15] since we were unable to obtain con-
vergence of the double-sigmoid model in a mixed-effects
framework because of the variability in our simulations (i.e.
Börger & Fryxell [15] did not apply their approach to

migration). We contend that this is a limitation of the
Börger & Fryxell [15] approach – mixed-effects models
may be hard to estimate in population with highly variable
movement strategies.

Application to giant tortoises
Giant tortoises occur across six different islands
throughout the Galapagos archipelago. We sampled tor-
toises movements in four species [27] across three
islands including two tortoise morphotypes–“saddle-
backs” (with elevated frontal portions of the carapace,
which occur on arid low-lying islands) and “domes”
(with carapaces that extend low over the head, which
occur on islands with humid highlands; [26]). We at-
tached custom-made GPS tags (e-obs, Munich,
Germany) to 70 adult tortoises, and collected GPS loca-
tions from these tags between 2009 and 2014. This sam-
ple was comprised of 18 individuals (9 F, 9 M) on the
relatively flat and arid Espanola Island, 11 individuals
(6 F, 5 M) on Isabela Island, and 54 individuals on Santa
Cruz Island, with 14 (7 F, 7 M) in the “Cerro Fatal”
population and 40 (20 F, 20 M) in the “La Reserva” spe-
cies (Fig. 2 [8]).
We attached custom-made GPS tags (e-obs, Munich,

Germany) to 70 adult tortoises, and collected GPS loca-
tions from these tags between 2009 and 2014. Tortoises
are largely immobile at night, so we programmed GPS
units to record locations every hour during the day
(5 AM – 7 PM) to maximize battery life. For our study,
this resulted in a total of 911,018 locations (ranging from
78 to 26,788 locations per individual). We measured the
size (curved carapace length) and sex of the individual
when attaching tags. All animal handling procedures
followed the guidelines of the Galapagos National Park,
the Max Planck Institute of Ornithology, and IACUC
protocol #121202 of the State University of New York,
College of Environmental Science and Forestry.

Analyzing tortoise movement
We applied our modelling approach to the multi-year
movement data of eight giant tortoises. First, we simplified
each individual trajectory by averaging the hourly loca-
tions for each day. This was necessary because we did not
have continuous monitoring at night. This also improved
analysis speed (analysis of a movement path with 25,000
iterations and 1500 locations was generally performed in
less than 30 min on a 3.60 Ghz processor). Problems with
some of the GPS tags led to the presence of gaps in the
time series of NSD values. In a model based on a Markov
process, the statistical state can still be assigned for days
without NSD data (with associated uncertainty) based on
the NSD values in surrounding days and the estimated
transition matrix (see Additional file 3 for model
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structure). We ran the model using 3 chains and 25,000 it-
erations and confirmed convergence by R̂ < 1.1. When
convergence was not achieved (n = 10), we reran these
models using 250,000 iterations and with different starting
values. In a few cases (n = 3), it was also necessary to
tighten the priors to facilitate convergence. Specifically,
we tightened the range of the minimum and maximum
values for the uniform distribution specified as the prior
for σ which resulted in convergence for all scenarios.
Lastly, we extracted the matrix of switching probabilities
and the number of transitions between each mode. As the
extent of monitoring was different among individuals, we
scaled the total time spent in each mode and number of
transitions between modes over the duration of a uniform
period of 365 days.

Model extensions
We present the details of two extensions to our ap-
proach. First, we examined whether using other statistics
in addition to NSD improved our results (i.e., we

extended our model in which latent state are inferred
from a univariate statistics for a multivariate case). Sec-
ond, we developed an approach (similar to a bootstrap)
that tested how sensitive classification was to the start-
ing point of a NSD time-series. We present the meth-
odological details and results in Additional files 4 and 5,
respectively.

Results
Simulated movement
Models fitted to simulated nomadic movement con-
verged within 5000 iterations for 88 % of simulated data-
sets compared to >95 % of datasets for the other
simulated strategies. Increasing the number of iterations
to 20,000 resulted in >95 % convergence of analyses
based on nomadic datasets and >99 % for other
strategies.
We compared model characteristics that could poten-

tially differentiate movement strategies. These included
the matrix of switching probability and the number of
transition between modes (Table 1 and Fig. 3). Simulated

Fig. 2 Population ranges of 83 giant tortoises of four different taxa inhabiting the Galapagos islands, 2009–2014. a The Galapagos Archipelago,
illustrating vegetation zones, b Santa Cruz Island, including tortoise tracks and the Cerro Fatal and La Reserva regions, c Tortoise tracks on
Espanola Island, d Tortoise tracks on Alcedo Volcano
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migration and dispersal movements had a very low fre-
quency of switching between modes, as indicated from
high probabilities along the matrix diagonal (Table 1);
but were indistinguishable solely based on their matrix
of switching probabilities. Sedentarism simulations were

characterized by frequent transitions among modes as
indicated from the low probabilities along the matrix di-
agonal (Table 1). Nomadism movement had intermedi-
ate probabilities of switching, particularly for the
probability of staying within the uniform mode (q33)

Table 1 Matrix of switching probabilities (qij) based on latent-state modelling estimated from simulated movement (n = 500) associated
to four strategies (dispersal, migration, nomadic, and sedentarism)

j = 1 j = 2 j = 3

Dispersal

i = 1 0.981 (0.965, 0.988) 0.006 (0.004, 0.012) 0.013 (0.008, 0.024)

2 0.006 (0.004, 0.012) 0.987 (0.976, 0.992) 0.006 (0.004, 0.012)

3 0.024 (0.015, 0.064) 0.044 (0.031, 0.079) 0.931 (0.866, 0.953)

Migration

i = 1 0.98 (0.966, 0.987) 0.006 (0.004, 0.012) 0.013 (0.008, 0.023)

2 0.008 (0.005, 0.015) 0.977 (0.954, 0.985) 0.015 (0.01, 0.031)

3 0.026 (0.016, 0.057) 0.025 (0.016, 0.047) 0.948 (0.895, 0.968)

Nomadic

i = 1 0.982 (0.952, 0.991) 0.012 (0.004, 0.041) 0.005 (0.004, 0.012)

2 0.014 (0.004, 0.049) 0.972 (0.927, 0.99) 0.012 (0.005, 0.028)

3 0.235 (0.028, 0.362) 0.323 (0.04, 0.396) 0.407 (0.304, 0.925)

Sedentarism

i = 1 0.799 (0.502, 0.941) 0.191 (0.055, 0.477) 0.007 (0.003, 0.027)

2 0.522 (0.122, 0.831) 0.445 (0.141, 0.846) 0.03 (0.01, 0.068)

3 0.281 (0.077, 0.685) 0.423 (0.171, 0.684) 0.217 (0.094, 0.636)

Median probabilities with 95 % confidence intervals are provided. Switching probabilities are estimated based on a latent-state model including three movement
modes, two associated to encamped movement (1 and 2) based on a normal distribution and a third exploratory mode (3) based on a pseudo-uniform distribution

Fig. 3 Number of transitions between encamped modes for simulated movement strategies. Legend: For each strategies and transitions, average
and 95 % confidence intervals are presented. Note the broken y-axis. Strategies represented are dispersal, migration, nomadism, and sedentarism
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which was lower than for dispersal and migration
(Table 1). The frequency of transitions between each
mode was also a strong indicator of specific movement
strategies. All simulated dispersal movement resulted in
one observed transition from the first encamped mode
to the second encamped mode and no transitions from
the second to the first (Fig. 3). For simulated migratory
movements, all observations followed the pattern of one
transition from the first encamped mode to the second
and one from the second encamped mode back to the
first (Fig. 3). Nomadic movement simulations showed
more frequent transitions in both directions; but gener-
ally < 10 (Fig. 3). Finally, sedentary simulations showed
the number of transitions in both directions to be an
order of magnitude higher than the other strategies
(Fig. 3).

Potential rules for classification and comparison to
alternative approaches
Using the matrix of switching probability as the basis for
classification is overall preferable given that the metrics
related to patterns in time spent and transitions between
modes ignored location classification uncertainty. Yet,
distinguishing between dispersal and migration also re-
quires estimating if the individual stayed in or left the
second mode. A series of simple rules are emerging from
the variation observed in the matrix of switching prob-
abilities (based on the estimated credible intervals,
Table 1). Complementing these cut-offs with the pres-
ence of transition back from the second encamped mode
allows correct classification of each movement strategies
(Table 2). We classified movement as dispersal when
q11 > 0.95, q22 > 0.95 and q33 > 0.85 and the simulated in-
dividual did not leave the second mode (M2, Table 2).
We classified movement as migration when q11 > 0.95,
q22 > 0.95 and q33 > 0.85 and the simulated individual left

the second mode at least once. Movement was classified
as nomadic when q11 > 0.95, q22 > 0.90 and q33 < =0.85
and sedentary when q22 < =0.90 and q33 < =0.90. Given
the uncertainty inherent to classifying nomadic individ-
ual, we used conservative cut-off for this strategy, and
characterized any simulation that did not fit the above
criteria as “uncertain”, which would require secondary
examination. Using only these criteria (Table 2) as the
basis for classification outperformed the nonlinear mod-
elling approach proposed by Bunnefeld et al. [14] for
each strategy (kappa statistic = 0.93 vs 0.71).

Application to giant tortoises
Our analysis revealed marked variation among individ-
uals in their movement strategies (Fig. 4). For brevity,
we focused the presentation of movement strategies on
a subset of eight individuals (two from each species) that
were representative of the larger dataset (Fig. 4). Four in-
dividuals analyzed showed patterns of transition between
two movement modes indicative of migratory behavior
(p11 > 0.95, p22 > 0.95, and p33 > 0.85). In these instances,
individuals moved between two core areas, transitioning
from one mode to the second and back an average of
once per year (e.g., Tag ID 1388, 1392 and 1397 in Fig. 4).
These individuals normally spent a substantial amount
of time in the second mode. Among the migratory indi-
viduals, there was variability in the frequency and timing
of migration among years, some individuals even
remained in one range an entire year (e.g., Tag ID 1402
and 1397 in Fig. 4). One individual (e.g., Tag ID = 765 in
Fig. 4) did not transition back to its original mode, this
was indicative of dispersal behavior.
We found two individuals with patterns of

transition indicative of a sedentarism strategy (e.g.,
Tag ID 1378 and 1390 in Fig. 4). This strategy was
characterized by values of q22 < 0.90 and q33 < 0.90.

Table 2 Proportion of simulated movement types classified into each movement based on simple set of rules

Predicted Criteria Dispersal Migration Nomadic Home-ranging

P(qij) M2-M1–3

Dispersal q11 > 0.95
q22 > 0.95
q33 > 0.85

=0 0.98 (0.88) 0.00 (0.06) 0.06 (0.58) 0.00 (0.12)

Migration q11 > 0.95
q22 > 0.95
q33 > 0.85

>0 0.00 (0.11) 0.99 (0.94) 0.07 (0.18) 0.00 (0.03)

Nomadic q11 > 0.95
q22 > 0.90
q33 < =0.85

0.02 (0.01) 0.00 (0.00) 0.83 (0.20) 0.00 (0.00)

Home- ranging q22 < =0.90
q33 < =0.90

0.00 (0.00) 0.00 (0.00) 0.01 (0.04) 1.00 (0.85)

Uncertain Else 0.00 0.00 0.02 0.00

Criteria are based on the matrix of switching probability (representing the probability q of switching from mode i to j) and whether an individual departed the second
encamped mode (M2). Numbers in parentheses reflect predicted strategies based on the non-linear modelling approach proposed by Bunnefeld et al. [14] applied to
our simulated movement trajectories
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Interestingly, Tag 1378, had an annual average num-
ber of transitions similar to a migratory pattern, but
spent a very short time in the second mode relative
to the first one. In such instances, a pattern label
akin to an “exploratory resident” strategy might be
more appropriate. Finally, one individual displayed no-
madic behavior (q11 > 0.95, q22 > 0.90 and q33 < =0.85, Tag
ID 2190 in Fig. 4).

A multivariate version of the model took more iter-
ations to converge and yielded similar results to the
univariate version based solely on NSD in the classifi-
cation of individual (Additional file 4), however this
approach may be useful in certain applications. The
classification of movement strategies in giant tortoises
was weakly influenced by the starting date of the
time-series of NSD; but overall; most classifications

Fig. 4 Examples of movement paths of 8 giant tortoises from four different species inhabiting the Galapagos islands, 2009–2014. Legend: For
each tortoise, movement in the x-y plane and the corresponding pattern in NSD are presented. Relocations are color and shape associated with a
specific mode. The first two individuals are from the Alcedo taxon, the second row is from the Cerro Fatal taxon, the third row are individuals in
the Espanola taxon and the last row represents individuals from La Reserva. Switching probabilities q11, q22, and q33 are also presented to assist in
classification of movement strategies
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were insensitive to a change in starting date
(Additional file 5).

Discussion
Both our simulations and empirical analysis showed that
switching probabilities estimated from a latent-state
model can form the basis of a simple system for the as-
signment of movement strategies to individual animal
trajectories. Our classification approach performed ex-
tremely well for simulated migration, dispersal, and
sedentary movement, and greatly improved over past
methods with respect to nomadic movement. The accur-
acy of our method in classifying each strategy was higher
than classification accuracy reported by Bunnefeld et al.
[14] and Börger & Fryxell [13] for their NSD approaches
and our approach also directly outperformed the Bunnefeld
et al. [14] approach when applied to our simulated move-
ment. Our increase in classification accuracy is particularly
noteworthy given that we used a wider range of parameters
to initiate our simulations, and therefore generated paths
with greater overlap in movement parameters compared to
previous studies.
Instead of fitting idealized curves to how we expect

animals to move between discrete regions of space (i.e.,
seasonal ranges), our approach expected those regions
to manifest in concentrated movements punctuated by
more or less frequent transitions for different strategies.
Our approach greatly improved the classification of
movement strategies for giant tortoises compared to pre-
vious analyses based on curve-fitting approaches. A past
study focused on two species of tortoises found on Santa
Cruz Island [8]. Here, we analyzed longer time-series
and additional individuals from these species and added
movement data from two other species found on Espa-
nola Island and the Alcedo volcano on Isabela Island re-
spectively (Fig. 2). Consistent with previous findings, we
observed marked inter-individual variation in movement
strategies of giant tortoises and found strong evidence of
annual migrations on Santa Cruz Island [8]. Many indi-
viduals on the Alcedo volcano on Isabela Island also
underwent an annual migration, while we found no evi-
dence of migration on Espanola Island – the only island
lacking substantial spatial variation in environmental
conditions and vegetative communities.
Many tortoises, including the majority of tortoises on

Espanola, were categorized as sedentary. In these cases,
tortoises had an area associated with one movement
mode with short expeditions (<15 days) outside of this
area. Our analysis revealed variation in the frequency
and duration of these “extra-home-range” expeditions.
Some individuals made a few short trips outside their
core ranges, a strategy we termed exploratory resident.
Others made numerous shorter trips (>10 per year), a
strategy more likely exhibited by individuals using a

central-place foraging strategy [28]. By providing infor-
mation related to residency time and frequency of tran-
sitions among different areas, our approach revealed
complex patterns of movement strategies, even within
the group of tortoises normally considered as non-
migratory.

Methodological improvement over previous
alternatives
Our approach applied an established statistical frame-
work, discrete latent-state modelling, to improve classifi-
cation of movement strategies using NSD. We used
NSD, instead of turning angles or step length [3], as the
metrics at the basis of the movement classification.
While step length and turning angles are accurate de-
scriptors of fine-scale movement patterns, NSD has been
shown as the statistic that best captures broad-scale pat-
terns [16]. In a migration context, using NSD offers an
objective way to spatially and temporally delineate
modes corresponding to core range use as well as the
mode associated to the migratory journey.
Our approach offers a number of advantages over al-

ternative approaches previously used. Firstly, our ap-
proach account for temporal autocorrelation in NSD
time-series, whereas past approaches did not account for
this important feature of the data. Adding a matrix of
switching probability to our approach addressed this
concern. Secondly, while the use of the concordance cri-
terion as suggested by Börger & Fryxell [13] may be best
suited to assess fit for non-linear models [29], this criter-
ion does not include a penalty term for the number of
parameters and, as a result, increases the likelihood that
more complex models (e.g., models indicating migration
and dispersal) will be retained. In addition, the concord-
ance criterion is similar to the R2, in that it converges
toward zero (indicating lower fit) when assessing an
intercept only model (which is often used to represent
sedentarism behavior; [6, 14]). These two elements could
have driven Singh et al. [7] to only classify 2 % of moose
as residents while previous studies have found this strat-
egy to be more common [30].
Our approach is also flexible regarding the data inputs

and movement strategies it can characterize. For ex-
ample, we made fewer assumptions about the seasonality
of migration and we did not restrict migratory move-
ments to an annual or even a regular basis. This made
our approach extremely well suited for long-term data-
sets where individuals are monitored for multiple years,
accommodating typical variation in the extent of individ-
ual monitoring, and revealing partial migratory tenden-
cies. This flexibility does come at a cost in that our
approach is not as automatic as that suggested by Bun-
nefeld et al. [14]. Our rules for classification are also best
suited for daily locations, not resampling movement
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trajectories at the daily scale may requires small adjust-
ment to the cut-offs used. In order to simplify the esti-
mation process by having to manually set the priors, we
also used range-standardized NSD time-series, which
limits the comparison and interpretation of the outputs
produced by the functions, especially among individuals.
It is, however, possible to obtain other information by
associating actual GPS locations with their correspond-
ing mode a posteriori, making it possible to quantify dis-
tance travelled and timing of migration at the scale of
the individual locations [15]. It is also possible to apply
the inverse of the range-standardization to posterior dis-
tribution of NSD values in each mode. Assigning GPS
relocations to modes also might improve subsequent
analyses investigating potential differences in movement
attributes or resource selection patterns [3]. Nonethe-
less, for many species and research questions, the large
quantity of information our analysis provides outweighs
the simplicity of previous approaches, and also avoids
becoming a “black box” approach.

Conclusions
Advances in our ability to track animal movement
coupled with greater availability and resolution of envir-
onmental data offers new opportunities for movement
ecologists [31, 32]. However, the spatial and temporal
complexity of environmental data and the variability of
animal movements make defining movement strategies
and identifying their causes and consequences compli-
cated. Following the movement ecology paradigm pro-
posed by Nathan et al. [1], a fundamental first step in
studying animal movement is to identify different move-
ment strategies (e.g., distinguishing between stable range
use and migratory or dispersing events; [33]). However,
the movement patterns of individual animals are often diffi-
cult to objectively classify into particular strategies. Here,
we expanded on previous approaches that used NSD to dis-
tinguish between several movement strategies including mi-
gration, dispersal, nomadism and sedentarism [7, 13, 14] by
using a latent-state modelling. Whereas visual assessments
of the NSD time series may be subjectively used to classify
movement strategies, our approach based on mixture-
modelling provides a rigorous framework that can be ap-
plied across different sampling schemes, and by extension
can offer greater comparability of classified movement
strategies.

Availability of supporting data
The data supporting the results of this article are
available and freely available on Movebank (Galapagos
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