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Abstract 

Background Studying habitat use and vertical movement patterns of individual fish over continuous time and space 
is innately challenging and has therefore largely remained elusive for a wide range of species. Amongst sharks, this 
applies particularly to smaller-bodied and less wide-ranging species such as the spurdog (Squalus acanthias Linnaeus, 
1758), which, despite its importance for fisheries, has received limited attention in biologging and biotelemetry stud-
ies, particularly in the North-East Atlantic.

Methods To investigate seasonal variations in fine-scale niche use and vertical movement patterns in female spur-
dog, we used archival data from 19 pregnant individuals that were satellite-tagged for up to 365 days in Norwegian 
fjords. We estimated the realised niche space with kernel densities and performed continuous wavelet analyses 
to identify dominant periods in vertical movement. Triaxial acceleration data were used to identify burst events 
and infer activity patterns.

Results Pregnant females frequently utilised shallow depths down to 300 m at temperatures between 8 and 14 °C. 
Oscillatory vertical moments revealed persistent diel vertical migration (DVM) patterns, with descents at dawn 
and ascents at dusk. This strict normal DVM behaviour dominated in winter and spring and was associated 
with higher levels of activity bursts, while in summer and autumn sharks predominantly selected warm waters 
above the thermocline with only sporadic dive and bursts events.

Conclusions The prevalence of normal DVM behaviour in winter months linked with elevated likely foraging-related 
activity bursts suggests this movement behaviour to be foraging-driven. With lower number of fast starts exhibited 
in warm waters during the summer and autumn months, habitat use in this season might be rather driven by behav-
ioural thermoregulation, yet other factors may also play a role. Individual and cohort-related variations indicate a com-
plex interplay of movement behaviour and habitat use with the abiotic and biotic environment. Together with ongo-
ing work investigating fine-scale horizontal movement as well as sex- and age-specific differences, this study provides 
vital information to direct the spatio-temporal distribution of a newly reopened fishery and contributes to an elevated 
understanding of the movement ecology of spurdog in the North-East Atlantic and beyond.
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Graphical Abstract

Background
Sharks display a variety of movements, which are not 
restricted to the two-dimensional plane but extend into 
the third dimension, depth. Such three-dimensional 
movements connect at times very disjunct ecosystems by 
transferring organic matter [1] and not only determine 
the fate of individuals but also shape the structure and 
dynamics of populations, communities, and ecosystems 
[2]. Recent studies have re-emphasised the importance 
of this third dimension for many sharks, rays and skates 
(elasmobranchs) as depth use and vertical mobility shape 
the ecological role of an animal and affect its survival, fit-
ness as well as exposure and resilience to anthropogenic 
threats such as fishing and climate change [3–8].

Vertical movement is thought to be driven by the 
need to optimise foraging and energy expenditure, while 
remaining within physiological limits imposed by abiotic 
factors, such as ambient water temperature and dissolved 
oxygen levels, to ultimately ensure growth, survival, and 
reproduction [3, 9, 10]. Thus, common hypotheses to 
explain observed depth use and vertical mobility include 

efficient foraging, locomotion or thermoregulation 
[11–15].

A common vertical movement pattern across marine 
predators such as elasmobranchs is diel vertical migra-
tion (DVM), which is often associated with foraging as 
sharks follow the daily migration of zooplankton, mes-
opelagic fish, and associated predators. The classical or 
normal DVM (nDVM) pattern is characterized by a dusk 
ascent towards the surface and a dawn descent to the 
mesopelagic, triggered by the evasion of visual predators 
in well-lit surface waters [16–18]. However, variations 
in DVM behaviour are often observed such as reversed 
DVM (rDVM), where species like some sharks are found 
in shallower waters during the day and deeper waters 
during the night, which can be linked to spatio-tempo-
ral variations in prey distribution [3, 19]. Depending 
on the physiological tolerance of a species, diel verti-
cal patters can range on a continuum from highly oscil-
latory swimming with a diel pattern to strict DVM [9]. 
With oscillatory swimming we refer to repeated dives to 
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a given depth either during day or night as observed in 
blue sharks (Prionace glauca) or yellowfin tuna (Thun-
nus albacares) [11, 20], while with strict DVM behaviour 
we imply a consistent use of a preferred depth during 
day and night as described for example for big-eye tuna 
(Thunnus obesus) [20].

Biologging and biotelemetry have become key tools 
to study such individual movements in space and time 
[21–23]. Technological advancements in the last decades 
have facilitated the development of electronic tags which 
autonomously transmit data without the need to resight 
or recapture the animal. In the  case of pop-up archival 
transmitting tags (PAT tags or PSATs), depth, tempera-
ture, light-level, and depending on the manufacturer and 
model also triaxial acceleration data are continuously 
archived. After a programmed release, summaries of this 
data are relayed via the Argos system (http:// www. argos 
system. org/). If tags are physically recovered, researchers 
obtain access to the full data archive comprising the data 
streams highlighted above at a resolution of minutes to 
seconds, depending on tag model and deployment time. 
Such animal-borne data can be used to reconstruct occu-
pied environmental niche spaces of individuals or popu-
lations by building multivariate environmental envelopes, 
e.g. depth-temperature spaces, using kernel density or 
principal components [24, 25]. Further, continuous time 
series that are provided by biologging devices allow anal-
ysis of periodicity in movement using signal processing 
methods such as continuous wavelet analysis. In contrast 
to a Fast Fourier transformation (e.g., [26–29]), wavelet 
transformations retain temporal data with the wave fre-
quencies, such that episodes of cyclical behaviour can 
be identified from archived depth or acceleration data 
(e.g., [30–32]). Besides cyclical behaviours, instances of 
discrete behaviours may be identified from accelerom-
eters. Triaxial accelerometers can sample at very high 
frequencies in three spatial dimensions to identify differ-
ent behavioural states. Foraging or predator–prey escape 
responses, for example, are often characterised by sud-
den bursts in acceleration, so-called fast starts [33, 34]. 
Fast starts have been studied in a range of species from 
bottom-dwelling fish such as the great sculpin (Myoxo-
cephalus polyacanthocephalus) to pelagic high-perfor-
mance swimmers such as yellowfin tuna [35–40].

While in the past decades research efforts in the field of 
satellite telemetry have focused on large-bodied (> 3 m up 
to > 10 m) and wide-ranging species such as whale sharks 
(Rhincodon typus), tiger sharks (Galeocerdo cuvier), white 
sharks (Carcharodon carcharias), or blue sharks [41, 42], 
advancements in the miniaturisation of tags have made it 
possible to track smaller, and also slimmer, commercially 
important species such as spurdog (Squalus acanthias 
Linnaeus, 1758) with a common length of about 1  m 

[43–47]. Spurdog, also known as piked dogfish and spiny 
dogfish, is circumglobally distributed and predominantly 
occurs in temperate waters of the Atlantic and Pacific 
oceans between 20 and 300  m depth, but found down 
to 900 m [48–51]. In the North-East Atlantic (NEA), its 
northern distribution limit extents to Norway and Ice-
land [52]. In Norway, the combination of (i) a complex 
coastal landscape consisting of deep coastal fjords com-
monly extending to 650 m depth (e.g. Osterfjorden) and 
a maximum depth of 1,300  m in Sognefjorden, (ii) the 
offshore Norwegian Trench, and (iii) the relatively shal-
low North Sea make the area dynamic and conductive to 
the formation of local populations with possibly distinct 
environmental niches and movement dynamics.

Having mainly been subject of conventional tagging 
efforts as well as catch-based data in the NEA and North-
West Atlantic (NWA) [48, 53–61], fine-scale vertical 
movement patterns in spurdog remain to be resolved. 
Although fishery-dependent data are available, they are 
limited to areas and seasons spurdog is fished in and 
depend on reporting. Beyond broad ranges of depth and 
temperature use, often inferred from bottom trawl sur-
veys [50, 62–64], little is known about the environmental 
niche of individuals and related temporal patterns [65]. 
Existing studies from the U.S. east-coast as well as Scot-
land using electronic telemetry [44, 47, 66] have provided 
first indication that spurdog display DVM behaviour, yet 
have suggested location- and cohort-specific habitat use 
and movements across the species’ latitudinal range [44, 
53, 67, 68].

Late maturity, slow gestation [69–74], sexual dimor-
phism, and gregarious behaviour [50, 51, 67, 75–77] 
make spurdog particularly vulnerable to overfishing and 
bycatch [43, 78, 79]. Due to regulations preventing tar-
geted fishing, spurdog was recently moved from Endan-
gered to Vulnerable on the Norwegian Red List [80]. With 
an improving status in the NEA and ICES recommending 
the first catch advice in the NEA since 2009 [46] there is a 
great need to better understand the movement ecology of 
this shark to attenuate the increasing occurrence of con-
flicts with fishers and fish farmers.

After previous difficulties related to tag attachment, a 
recent telemetry study successfully deployed 19 PSATs 
for up to 365 days on adult females in the fjord systems 
in western Norway between 2019 and 2023 (Junge et al., 
in review). Junge et al. (in review) identified coastal fjord 
systems as key habitats for pregnant female spurdog and 
highlighted significant differences in inferred depth-
temperature niches obtained from individual-based tag-
ging data and catch-based data from bottom trawls and 
longlines.

Building upon this archival dataset with continuous 
0.2 Hz time series of depth, temperature, light level, and 

http://www.argossystem.org/
http://www.argossystem.org/
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triaxial acceleration for 4,612 cumulative days across 19 
individuals, this study wants to shed light on patterns of 
individual depth and temperature use, as well as verti-
cal movement, which to this date have remained poorly 
understood for spurdog, particularly in the NEA. The 
objectives of this study were therefore to: (i) examine the 
realised depth- temperature niche occupied by sharks 
close to their northern distributional limit across time, 
(ii) inspect periodicity in vertical movement behaviour 
across individuals and time, (iii) explore possible drivers 
of vertical movement behaviour and (iv) highlight impli-
cations of vertical occupancy and activity patterns for 
coastal fisheries management. In doing so, we provide 
insights into the vertical space use and activity patterns 
of this economically important and yet enigmatic species.

Methods
Tagging data
Subsequent analysis is based on data from female spur-
dogs, tracked for 86–366 days in four consecutive years 
(2019–2022) between late October to early December 
with pop-up archival transmitting tags (PSATs, Mini-
PAT-348, Wildlife Computers, Redmond, WA, United 
States, n = 21, Table S1). Spurdogs were tagged in differ-
ent locations along the western Norwegian coast between 
60.02°N and 60.52°N to capture movement behaviour 
across the wider fjord system. In 2019 and 2020, tagging 
took place south of the city of Bergen, in the Hardanger-
fjord. In 2021 and 2022, sharks were tagged north of Ber-
gen, in Herdlefjorden which is part of the Osterfjord area 
(see Figure S1). This area hosts an acoustic receiver array 
which allowed to confirm year-long residency within the 
fjord system for sharks double tagged with acoustic tags 
in 2022 (see Junge et al., in review).

The tagging method and data are described in detail by 
Junge et al. (in review). In short, female sharks between 
85 and 115 cm total length were tagged after confirming 
their pregnancy status via a portable ultrasound (Min-
dray DP 50 vet). PSATs were tied to a harness made of 
1  mm thick braided nylon cord which was attached to 
two plates, each on either side of the shark. This allowed 
the tag to trail freely behind the dorsal fin. In the first 
two years (2019, 2020), the plates were placed slightly 
posterior to the first dorsal fin, which was optimised by 
moving them forward in subsequent years to minimise 
premature tag loss after extending the scheduled deploy-
ment period from 180 to 360 days in 2020. In case of 
suspected mortality (i.e., constant pressure at depth; 
variance ≤ 2.5 m) or early tag detachment, the tags were 
programmed to detach and report after two days. Nine-
teen out of 21 PSATs popped up within the connected 
fjord system around Bergen within 40km distance from 
the tagging location (see Figure S1) following premature 

(n = 6) and scheduled (n = 10) detachment or recap-
ture by fishers (n = 3) (Table S1). Recaptures occurred at 
nighttime in commercial bottom gillnets between 10 and 
100 m depth (Figure S2). A dissection of two recaptured 
sharks identified an absence of embryos in shark 11 and 
17 at the point of recapture in late September and Octo-
ber almost one year after tagging. Until February 2024, 
two more sharks were reported as recaptures after PSAT 
detachment, but the fishers did not report the animal 
IDs. All 19 tags were physically recovered which meant 
that the full 0.2Hz archive including continuous tempera-
ture, depth, light level, and triaxial accelerometer data 
was available for analysis.

Data processing
Data processing and analysis was performed in R (Ver-
sion 4.3.2). Archival PSAT data were visually inspected 
and cleaned to remove potential tagging and capture 
effects. While an inspection of the depth time series 
showed no indication of tagging effects on the diving 
behaviour, we conservatively removed the first 24  h of 
each track. We also removed any data indicating sur-
face drifting or constant depth prior to tag release. Due 
to a sensor failure in the tag of shark 5 and shark 13, the 
tracks were terminated five days prior to the appearance 
of any extreme and implausible depth records, result-
ing in only 116 and 82 days respectively for subsequent 
analysis.

As a proxy for possibly foraging related activity, bursts 
in acceleration or fast starts were calculated from triaxial 
acceleration data similar to Wright et  al. [40]. First, the 
magnitude of acceleration (MA) was calculated as the 
square root of the sum of squares of the raw accelera-
tion values of each axis ( MA =

√
X2 + Y 2 + Z2 ). Then, 

fast starts were identified using the 95% percentile of MA 
values for each individual (i.e., upper 5% of MA). In the 
absence of empirical MA thresholds at which fast starts 
linked to feeding events occur in spurdogs, i.e. via video 
material, the 95% threshold was chosen based on the 
species known feeding ecology in comparison to thresh-
olds used for other species in the literature [33, 35, 38, 
40]. A sensitivity analysis with thresholds of 97% and 99% 
resulted in no markable differences in the overall patterns 
(Figure S3). While the low sampling rate translates to a 
down-sampling of fast starts, which may occur on a sub-
second level, the relative signal can be assumed to remain 
consistent and thus still be used to identify periods where 
such acceleration bursts occur [35, 38, 40].

For most subsequent analyses, raw archival data were 
aggregated to the minute and hourly level. Due to non-
normal distributions for depth, temperature, and light 
level, these variables were aggregated using the median, 
while MA and vertical speed were summarised using the 
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mean. The number of fast starts detected in the accelera-
tion time series were summed per hour. Given evidence 
for a coastal association of these individuals in the fjord 
system during the tagging period (Junge et al., in review), 
data were linked with information for sunset and sunrise 
as well as nautical dawn and dusk using RchivalTag [81] 
for the coordinate 5.2°E, 60.3°N, which lies in between 
both tagging locations. Based on these times two (day, 
night – marked by sunset and sunrise only), and four 
(dawn, day, dusk and night – marked by nautical dawn, 
sunrise, nautical dusk, and sunset) diel periods were clas-
sified. Visualisations of the data were performed with 
ggplot2 [82], and differences between and within groups 
were visualised with ggstatsplot [83, 84].

Depth‑temperature niche
To compute the realised depth-temperature niche of the 
sharks, kernel density estimation was applied to hourly 
data using the MASS package [85]. The bandwidth.nrd 
{MASS} function was applied to depth and temperature 
to calculate a suited smoothing bandwidth for x and y. 
Similar to standard procedures in horizontal space to 
estimate home ranges [86], the 95% and 50% isopleths 
were calculated. To account for the heterogenous data 
density across different times of the year due to varia-
tion in the times at liberty (see Table S1), densities were 
weighted by the reciprocal sum of entries per Julian day. 
Realised niches were set into context of the available 
depth-temperature space using data from Conductiv-
ity, Temperature, Depth (CTD) recorder profiles from a 
hydrographical station in Hardangerfjord (H2 station—
60.39°N, 6.34°E) collected nearly every month through-
out the deployment period by a RBR Concerto 3—CTD 
instrument.

Periodicity in vertical movement
To investigate the periodicity in the depth signal of each 
tag, a continuous wavelet analysis was performed on 
hourly depth time series using the WaveletComp package 
[87]. In a wavelet analysis, functions, which are referred 
to as wavelets, are used to localize specific frequencies 
as a function of time [88, 89]. Here we used the Morlet 
 (x0 = 6) wavelet function, as it is well suited to isolate fre-
quencies with a signal while maintaining a good compro-
mise between both time and frequency resolution [31, 
88, 89] and includes a bias correction to prevent high-
frequency phenomena from being underestimated [90, 
91]. Significance of the wavelet spectrum was assessed 
by generating 1,000 simulated time series for each indi-
vidual with a lag-1 autoregressive (AR(1)) model using 
p = 0.5 and the mean of the data to test the null hypoth-
esis of ‘no periodicity’ while preserving the short-term 
autocorrelation structure of the original time series [88]. 

Statistical significance was assessed by comparing the 
local and global, scale-averaged wavelet power spectra to 
this distribution. Values exceeding the bootstrapped 95% 
confidence levels were considered statistically significant 
and were used to identify non-random vertical migra-
tory behaviour within the time series. For each shark, the 
wavelet spectrum was calculated for the entire deploy-
ment period and prevalent periods in the depth signal 
were displayed over time in form of a scalogram.

To determine if an individual undertook significant 
diel vertical migrations (DVM), the global wavelet power 
spectrum was examined for a significant peak at the 
1-day (i.e., 24 h) period. To inspect inter-individual dif-
ferences in the occurrence of DVM behaviour across 
time, a cluster analysis was performed on the p-values 
associated with the 24h-period obtained from the wave-
let analysis for each shark. Hourly p-values were averaged 
per day and a rolling mean with a window of 11 days was 
applied to smooth over the time series to inspect simi-
larity of larger temporal patterns in the resulting signal. 
Euclidian distance was used to obtain distance matrices 
and dendrograms using the factoextra package [92]. As 
entire time series were used, missing values for sharks 
with shorter than 364d deployments are excluded from 
all computations involving the rows within which they 
occur, and sums are scaled up proportionally to the num-
ber of columns used.

Differences between groups were tested using appro-
priate statistical tests. For example, a student’s t-test was 
used to assess if vertical speeds at different times of day 
were significantly different from zero. Mann–Whitney U 
tests were used to compare the number of fast starts dur-
ing DVM and non-DVM behaviour and Wilcoxon singed 
rank tests were used for paired and non-parametric data 
e.g. when comparing median depths during day and 
night.

Vertical occupancy and activity hotspots
To identify vertical occupancy and activity hotspots, 
we binned the 0.2 Hz data into cells of 10 m depth and 
1 h for each month and calculated the scaled number of 
fast starts per depth-time bin. To ensure comparability 
between months, fast starts were scaled by the number 
of datapoints of each month. To rule out any possible tag-
ging effects on fast starts beyond 24h after tagging, the 
analysis was also conducted with the first 120h (5 days) of 
data post tagging removed.

Results
The cleaned archival dataset a comprised continuous 
time series of depth, temperature, light level, and triax-
ial acceleration at 0.2Hz resolution for 19 female spur-
dogs over a total of 4,612 days. With an average time at 
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liberty of 243 days (range 82–364d) this dataset is tempo-
rally extensive and for at least seven individuals (≥ 319d) 
allows the analysis of movement behaviour across all sea-
sons (Table S1).

Depth‑temperature niche
Across all 19 individuals and the entire deployment 
period, sharks used a median depth of 56.5 m (interquar-
tile range (IQR) – 21.5–128.0 m, range 0.0–644.0 m) with 
a median temperature of 9.6 °C (IQR 8.3–11.1 °C, range 
4.5–18.2  °C). Accounting for differences in the coverage 

in respect to Julian days, most time was spent in waters 
between 25 and 50  m (21.9% ± 0.5 standard error), with 
68.9% of time spent in the upper 75 m (here referred to 
as “shallow depths”). The sharks spent 90.9% of the time 
in the epipelagic zone (≤ 200 m; sunlight zone), such that 
the mesopelagic zone (> 200–1,000 m; twilight zone) was 
visited only 9% of the time during an average day. Regard-
ing temperature, the most frequented temperature across 
the deployment was 8–10  °C (37.1 ± 1.0%), followed by 
12–14 °C (24.9 ± 1.1%) and 10–12 °C (21.1 ± 0.8%) (Fig. 1, 
S4).

Fig. 1 Depth-temperature niche for 19 female spurdogs. Red colours denote the density of hourly data points (n = 110, 360) within a given grid 
cell weighted by the reciprocal of data points per Julian day. Black dotted and solid lines indicate the niche space that encompasses 50% and 95% 
of the points, respectively. Marginal densities are shown for both covariates on the upper and righthand side. For visualisation purposes, the y-axis 
was limited to 400 m depth
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This encompassed a lot of seasonal variation, with 
generally deeper and colder waters occupied in boreal 
winter and spring, and the utilization of warmer, shal-
lower waters in summer and autumn. Daily median 
depths increased continuously from September 
(16.3 ± 0.8  m) to January (94.8 ± 1.5  m) and remained 
between 80 and 86  m until April. Subsequently mean 
daily depths decreased to 66.4 ± 3.2  m in May and 
22.5 ± 3.6  m in June and remained at shallow depths 
at around 20–40 m until November. On average, daily 
depth ranges and IQR were particularly extensive in 
the winter and spring (Dec–May) with ranges around 
300 m, and IQRs between 79.9 and 114.3 m whereas in 
August and September mean daily depth ranges were 
around 170 m and IQRs include only 16 m (Sep–Oct). 
Noticeably, mean daily minimum depths do not extend 
to surface waters (≤ 10 m) from December until March 
(16.4 ± 1.0  m − 29.8 ± 1.4  m). From July until October, 
mean daily maximal depth did not extend down to the 
mesopelagic zone (> 200  m) on average reaching only 
to 184  m depth. From September to April, selected 
waters decreased in their mean daily temperatures 
from 13.9 ± 0.1  °C to 8.4 ± 0.0  °C. From May on, the 
temperatures in the occupied waters increase until 
September. The IQR of temperatures, which incorpo-
rates variation across all 1-min temperature intervals 
recorded per date across individuals, was greatest 
in June, July, August, and November (2.1–2.9  °C). 
This trend was also apparent in the overall tempera-
ture range, which in July for example extended from 
8.1 ± 0.1 to 15.1 ± 0.1  °C. The corresponding range in 
April was only 7.5 ± 0.0 to 9.5 ± 0.0 °C (Figure S5).

Modulated by the season, female spurdogs exhib-
ited a bimodal habitat use, with high occupancy of 
shallow depths in the first 75  m and elevated tem-
peratures between 10 and 16  °C, as well as deeper 
waters between 150 and 200 m at rather constant 8 °C 
(Fig. 1). In winter, cool surface waters (4–7  °C) which 
are separated from warmer intermediate waters by 
a strong thermocline at 10–20  m as indicated by H2 
CTD profiles, were not occupied (Figure S6). Between 
December and April, surface waters were visited only 
0.0 ± 0.0% to 1.6 ± 0.2% of the time, while waters below 
200  m were used between 15.5 ± 1.4% to 20.3 ± 1.3% 
between January and April. In late summer and early 
autumn (Aug-Oct), the realised niche was rather uni-
modal, focussing on warm shallow waters (< 20 m, 
12–15  °C) which coincide with the warm fjord-based 
surface layers above the thermocline. From June to 
September 30.5 ± 3.9–52.6 ± 3.0% of the time are spent 
in the first 10 m while in these and the two subsequent 
months only 1.4 ± 0.4 to 6.2 ± 1.3% was spent in the 
mesopelagic zone (Figures S7, S8).

Periodicity in vertical movement
Based on the scale-averaged results from the continuous 
wavelet analysis, which collapsed the time-domain, a sig-
nificant period around 24h was detected across all indi-
viduals (n = 19). In all but two sharks, a significant 12h 
period was present. In one individual, a significant period 
around 14 ± 1d was present; in six individuals this was the 
case for a 28 ± 2d period. Sixteen sharks showed signifi-
cant periods greater than 84d (Fig. 3B).

Continuous wavelet analyses performed per individual 
allowed for the inspection of the persistence of these 
periods over time (Fig. 2, S9B). Significant diel patterns, 
classified as DVM behaviour were detected across sea-
sons. However, DVM behaviour was more persistent in 
winter and spring (Fig. 3A, B). Most individuals for which 
deployments covered the summer period (i.e. tagging 
cohort 2021 and 2022) did not display DVM behaviour 
between June to October, exceptions being sharks 6, 17, 
and 19, which displayed more than half the time sig-
nificant DVM behaviour in June, August, and October 
respectively. In December, January and April, 60–70% of 
individuals displayed DVM behaviour more than half of 
the time. The cluster analysis based on significance lev-
els of the 24h period, highlights the similarity of all but 
shark 11 in the tagging cohort 2021 and all individuals 
from 2022. Amongst those, sharks 17 and 19 are different 
from the others, displaying DVM also in summer. How-
ever, one should note that patterns are matched across 
different deployment durations and years. While overall 
dendrogram splits broadly match tagging cohort associa-
tion, DVM patterns vary amongst individuals of the same 
tagging year resulting in some ‘mixed branches’ (Fig. 3D). 

Inspection of hourly and minutely time series revealed 
the DVM pattern overall as strict normal DVM (nDVM) 
behaviour, with sharks ascending during dusk, remain-
ing at shallower depth during night and descending to 
deeper depth during dawn, where they remain for the 
daylight period (Fig.  4, Figure S9,  S10). While display-
ing significant DVM behaviour, median depths at day 
are significantly deeper (198.5  m, IQR 162–231  m) 
than at night (60.0  m, IQR 37.5–88  m) (Fig.  4A, Wil-
coxon signed-rank test: V = 2.06e + 06, npairs = 2,037, 
p < 2.2e−16). This is also supported by mean hourly ver-
tical speeds, which during dusk and dawn were found 
to be significantly different from zero (One-sided t-test: 
t = − 54.407, df = 3140, p-value < 2.2e−16; t = 52.237, 
df = 3030, p-value < 2.2e−16) as opposed to day or night 
(One-sided t-test: t = 0.291, df = 21,855, p-value = 0.771; 
t = − 0.315, df = 18,718, p-value = 0.753). Vertical speeds 
were positive at dusk and negative at dawn, marking 
ascents and descents, respectively (Fig. 4B). Overall, the 
mean absolute vertical speed was 0.24  m   s−1. Vertical 
speeds ranged from − 1.26 to 1.25 m  s−1. While nDVM 
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Fig. 2 Exemplary hourly median depth time series (A) and corresponding wavelet scalogram (B). In B significant wavelet powers (p ≤ 0.05) are 
highlighted with grey contours. In A the upper bar indicates the presence (dark grey) or absence (light grey) of diel vertical migration (DVM) 
behaviour, based on significance (p ≤ 0.05) of wavelet powers at 24h
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behaviour prevails in all individuals across the deploy-
ment period (Figure S11), there is indication for periodic 
reverse DVM (rDVM) behaviour, for example in sharks 
18 and 19 in January with shallower depth encountered 
during the day, particularly during early and late daylight 
hours as shown in Fig. 5. 

Fast start patterns
The number of hourly fast starts was highest between 200 
and 500  m (Figure S12). Fast starts occurred more fre-
quently during DVM behaviour (one-sided Mann–Whit-
ney test, W = 1,767,840,970, p-value < 2.2e − 16) (Figure 
S13). Significantly more fast starts were detected dur-
ing day than during night, particularly while sharks dis-
played DVM behaviour (one-sided Wilcoxon signed rank 
test, DVM: V = 1,402,560, p-value < 2.2e−16; non-DVM: 
V = 1,588,559, p-value = 2.689e−08, Figure S14). This is 
exemplified by sharks 2, 10, and 15 in Fig. 5, which dis-
played more fast starts in winter during nDVM behav-
iour, particularly during the day, whereas fewer fast starts 
were observed in summer. However, there were individ-
ual differences in these activity patterns. Based on one-
sided Wilcoxon signed rank tests for each individual, 
four sharks showed no significant difference (shark 10, 
13, 14, 17) and four sharks exhibited an opposing trend 

with an elevated number of fast starts during the night 
(shark 3, 11, 15, 19) (Figure S15). Within individuals, this 
could also vary with season, as shown for sharks 15 and 
19 (Fig.  5). Comparing hourly fast starts across months 
(based on sharks for which data for more than 320 days 
were available i.e. 11, 12, 14, 15, 17, 18, 19) identified 
November to February, and May as the months with 
more fast starts than the year-round median (8 fast starts 
per hour). From August to October, spurdogs showed the 
lowest fast start activity across all months  (medianAUG  = 1 
(IQR 0–15),  medianSEP = 1 (IQR 0–9),  medianOCT = 4 
(IQR 0–35) fast start per hour) (Figure S16). Correla-
tion of fast starts to environmental conditions revealed 
a positive correlation with depth  (rpearson = 0.836) and 
a negative correlation with ambient water tempera-
ture  (rpearson = − 0.686) and light level  (rpearson = − 0.794). 
Lower light levels around 60–70, corresponding to 
 10−9  W   cm−2 comparable to starlight conditions at the 
surface, seemed to be associated with the highest median 
number of fast starts within an hour (Figure S17).

Vertical occupancy and activity hotspots
Between June and September, female spurdogs showed 
the highest number of scaled fast starts (at depths from 
zero to 20  m, particularly during the night, due to the 

Fig. 3 Individual differences in diel vertical migration (DVM) behaviour across a year. Colours indicate tagging years (2019-blue, 2020-green, 
2021-yellow, 2022-red). A Overall proportion of DVM behaviour displayed on a given Julian day based on B. B Occurrence of significant DVM 
behaviour for each shark by Julian day. Dark bands denote days identified as showing predominantly significant DVM behaviour (based 
on significant 24h period in wavelet power), while light bands refer to days at which this is not the case. Coloured vertical lines present the Julian 
day of tagging. Data gaps due to different deployment durations are shown in white. C Global, scale-averaged periodogram indicating the overall 
wavelet power for each shark averaged for the entire deployment period. Only significant (p ≤ 0.05) powers are shown without transparency. D 
Dendrogram indicating the dissimilarity between individuals based on Euclidean distance of p-values for the 24h-period
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high occupancy in these shallow depths. In October 
and November, this shallow occupancy and activity hot-
spot dropped to 20–50  m at night. During the day, this 

hotspot was prominent between 150 to 250 m (i.e. Nov–
Jan), both due to more time spent at this depth and ele-
vated numbers of fast starts in this period (Figure S12). 

Fig. 4 Evidence for normal diel vertical migration (DVM) behaviour during as significant classified DVM. Normal DVM is indicated by (A) deeper 
depth used during the day compared to night and (B) negative vertical speeds during dawn and positive speeds during dusk. C–E highlight depth, 
light level and vertical speed across the deployment for the time of day exemplary for shark 15. A Plot is based on 1-min interval median depth 
data and boxes indicating the median and the lower and upper quartiles, whiskers are 1.5 times the interquartile range. Violine plots indicate 
the data range. B Plot is based on hourly vertical mean speeds for different daily periods, with boxes showing the mean and outliers shown. Dawn 
and dusk mark the time between nautical dawn and sunrise as well as dusk and sunset respectively for all sharks. Asterisks denote significance 
level of Wilcoxon signed rank (A) and one-sided t-test (B) (***—p ≤ 0.001). One minute interval median depth and light level (C,D) and hourly mean 
vertical speeds (E) of shark 15 in the context of times of sunrise and sunset (solid lines) and nautical dusk and dawn (sun at 12° below horizon; 
dashed lines) associated with the tagging location. Light levels of 150, 110, and 70 correlate to  10–5,  10–7, and  10−9 W  cm−2, respectively (see 
Supplement Detail S1). In (E) blue colours indicate ascends and red colours descents

Fig. 5 Seasonal differences in depth time series and number of fast starts. Exemplary data shown for sharks 2, 10, 15, and 19 for a week in January 
(winter, left) and June (early summer, right) based on 1-min interval median depths (left y-axis) and temperatures (as colour) as well as hourly 
counts of fast starts (dark grey bars, right y-axis). Grey polygons mark night defined by sunset and sunrise and nautical dusk and dawn (sun 12° 
below horizon, winter only) around the tagging location. Note free y-axes and the x-axis in B showing data for May and not June due to lack of data 
for later month

(See figure on next page.)
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Fig. 5 (See legend on previous page.)
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Nighttime hotspots in shallow waters successively ceased 
over the course of these months. Between February and 
May, vertical occupancy and activity was less confined, 
gradually shallowing during the night (Fig. 6). Patterns of 
elevated fast start activity at depth during October and 
November remained consistent also when the first five 
days after tagging were removed from the data (Figure 
S18).

Discussion
To our knowledge, this is the first comprehensive analy-
sis of vertical movement of spurdog published to this 
date. We analysed continuous 0.2  Hz time series data 
for temperature, depth, light level, and triaxial accel-
eration from 19 pregnant females over 4,612 days. These 
data showed a seasonal effect on depth and temperature, 
in which spurdogs occupied deeper and colder waters 

Fig. 6 Vertical occupancy and activity hotspots across months calculated as the scaled number of fast starts for 10 m depth bin and each hour 
of day. The number of data points per month by which data was scaled is noted in brackets together with the number of individuals which 
contributed to each month. Dotted vertical lines mark the median hour of sunrise and sunset for a given month
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during winter and spring, and warmer and shallower 
waters during summer and autumn. Continuous wavelet 
analysis revealed a significant 24  h-period in depth use 
across all individuals. DVM behaviour was most promi-
nent in winter months. Amongst sharks with close to 
1-year deployments, most spurdogs did not exhibit DVM 
behaviour between June and October. A higher occur-
rence of fast starts was found in association with DVM 
behaviour, particularly at depths between 150 and 500 m 
during the day. We identified distinct vertical movement 
patterns and trends across individuals, season, and time 
of day to build a better picture of the movement ecology 
of spurdog at the northern end of their distribution and 
highlight management implications for this commercially 
important yet enigmatic species.

Depth‑temperature niche
Biologging can provide consecutive data about the envi-
ronmental niche occupied by an animal in its natural 
habitat, allowing inferences about habitat selection on 
an individual-based level across time and space. The uti-
lised depth and temperature shown in this study align 
well with other tracking studies from northern lati-
tudes. The depth range of the tagged sharks (0–644  m, 
median = 56.5  m) is comparable to 0–481.5  m with a 
mean of 92.6 m as reported by [44], and also falls in the 
range described in earlier studies [53, 63, 78]. Experi-
enced temperatures (4.5–18.2  °C, median = 9.4  °C) also 
align well with corresponding DST- or PSAT-based stud-
ies with reported ranges of 6.3–15.2  °C (most common 
10–11 °C) along the Scottish Westcoast and 2.8–19.2 °C 
(mean = 9.2 °C) in the northern Gulf of Maine [44, 66].

We found large seasonal variation in the occupied 
depth-temperature niche with sharks occupying deep 
and cold waters in boreal winter and spring, while pre-
dominantly utilising warm, shallow waters in summer 
and autumn, a pattern that seems to be consistent with 
the tendency described for northern subunits in the 
NWA [44]. As suggested for other Nordic locations [66, 
68], we found evidence for temperature-driven and in 
parts -limited habitat use. In winter, the sharks’ vertical 
distribution seems to be limited to waters above 6–7 °C, 
with colder surface waters not being utilised despite the 
likely nocturnal presence of prey resources [93–98]. Hab-
itat use in summer also seems to be thermally driven, yet 
likely not thermally limited, with individuals selecting the 
warmest available water bodies above the shallow ther-
mocline at around 10–15 m depth.

The bimodal depth use in winter and spring results 
from an oscillatory depth use, which hints to an active 
use of the water column. Considering that local fjords 
commonly extend to 600 m and beyond and the sharks’ 
variable depth use, tagged individuals likely spent a 

considerable amount of time off the bottom when in 
these fjords during this period, representative of an active 
use of the entire available habitat, that is benthic and 
pelagic. This is in line with recent evidence from track-
ing studies in the NWA [44, 47] and measured metabolic 
rates which are above what would be expected if spurdog 
were associated with a predominantly benthic lifestyle 
[99]. However, the lack of fine-scale horizontal position 
data does not permit to link the shark’s depth to the local 
bathymetry to infer the actual distance of the shark to the 
seafloor.

Periodicity in vertical movement
Results from the continuous wavelet analysis revealed 
this oscillatory pattern in the vertical time series to be 
predominantly driven by a diel pattern, followed by 
12h-periods, which co-occurred with the 24h-patterns. 
A pattern around 12h is commonly linked to astronomi-
cal tidal forcings as here the semi-diurnal lunar constitu-
ent (M2) with a period of 12.42 h is the most prominent. 
Rather than the tidal range itself (max. tidal range 1.0–
1.5 m), internal waves in the sill fjords of the study region 
have the potential to significantly displace sharks and 
their prey in the water column [100]. The co-occurrence 
of 12h and 24h patterns and the absence of semi-diurnal 
cycles when sharks spend substantial time at the pycno-
cline, where the influence of the interval wave is expected 
to be highest, however, might indicate that observed 12h 
cycles may also present harmonics resulting from a non-
strictly sinusoidal movement behaviour of the sharks (for 
simulation results and further discussion see Supplement 
Detail S2).

Despite anecdotal reports from fishers in the region 
and evidence for lunar effects on depth use in pelagic 
predators [101–103], our data did not support an associ-
ation of depth with lunar cycles in the tracked spurdogs. 
Across the deployment, only three individuals showed a 
significant 28 ± 2d period in the wavelet transform. The 
frequent cloud cover in the study region might dampen a 
potential lunar illumination effect. The occurrence of sig-
nificant periods greater than 84 days in more than 80% of 
individuals underlines seasonal trends to play an impor-
tant role in the species’ depth use. Given the pronounced, 
significant diel patterns across individuals, the subse-
quent section will focus on diel vertical migration (DVM) 
and respective variations across seasons and individuals.

Diel vertical migration and its variability
In line with earlier indications from the NWA [44, 47] 
and previous reports based on fisheries data [50, 104], 
this study demonstrates spurdogs in the NEA to exhibit 
diel vertical migration behaviour. As indicated by Carlson 
et al. [44], diurnal depth differences might be particularly 
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pronounced in Nordic subunits. Across all individuals, 
a strict nDVM pattern seems to be predominant, with 
sharks inhabiting consistently deeper waters during day-
time and shallow waters during nighttime. This is asso-
ciated with elevated crepuscular activity in the form of 
high and significantly positive vertical speeds during 
dusk (ascents) and significantly negative vertical speeds 
during dawn (descents). Normal DVM behaviour has 
been observed in many elasmobranch species such as 
the starry smooth-hound (Mustelus asterias), bluntnose 
sixgill shark (Hexanchus griseus), broadnose sevengill 
shark (Notorynchus cepedianus), reef manta ray (Mobula 
alfredi), blue shark (Prionace glauca), porbeagle (Lamna 
nasus), white sharks (Carcharodon carcharias) and bask-
ing shark (Cetorhinus maximus) [3], and has been linked 
to foraging or behavioural thermo- or oxygen regulation 
[19, 105].

The extensive temporal range of the dataset, especially 
for sharks tagged in 2021 and 2022, provided insights 
into the seasonal variability of DVM patterns. Across 
individuals it seems that DVM was a dominant pattern 
over winter and spring (November–May). Yet opposed 
to our expectations, this pattern dwindled in the summer 
months, with most sharks utilising almost exclusively the 
first 25 m of the water column from June to September, 
with only sporadic dives to deeper depths. Extant indi-
vidual differences can be linked to cohort association 
and similarity in the encountered environment as tag-
ging occurred in the same location and within consecu-
tive hours or a few days. With spurdogs being known 
to move in age- and sex-specific cohorts [50, 51, 58, 62, 
76, 77], a synchronisation of DVM patterns might indi-
cate that tagged females in a given year moved around as 
one cohort for certain time periods. Differences in pop-
up locations, however, suggest that this was not the case 
towards the end of the deployment.

Tagging year rather than tagging location seemed to be 
a key factor as sharks from cohort 2021 appeared syn-
chronised and distinct in their DVM pattern, compared 
to cohort 2022, which was tagged in the same location 
and showed more variation in DVM behaviour. Cohort 
2022 seemed more similar to DVM patterns of cohort 
2020, although the different temporal extent of the data-
sets limited the comparison to winter and spring. Given 
high oceanographic connectivity within the fjord system, 
this might support the notion that similar environmental 
conditions result in similar vertical movement patterns in 
this species. As inter-annual differences in temperatures 
in this fjord system, particularly at depth, are rather neg-
ligible, other factors such as oxygen levels, which change 
on annual levels, could play a role here. Some individual 
differences amongst tagging cohorts might be linked to 
sporadic movements out of the fjord, as we know from 

pop-up locations and alignment of hydrographic profiles 
that sharks 3, 9, and 10 must have left the system in win-
ter (Junge et al., in review). Individual differences might 
also be linked to variations in pregnancy status. While we 
assumed all individuals to have comparable pregnancy 
status, it is possible that some females had abortions or 
earlier parturition, as indicated by sharks 11 and 17 that 
did not carry any embryos in late September and Octo-
ber. In case of shark 17, this might explain the resump-
tion of DVM behaviour in August, but could also be 
linked to an abortion, or an early release of the young due 
to the recapture of the fish, in which case any behaviour 
prior to recapture should have remained unaffected.

While DVM patterns of most individuals predomi-
nantly reflected nDVM, we also found sporadic occur-
rences of rDVM patterns with shallower depths 
encountered during the day in some individuals. Such 
behaviour has been described for basking sharks, porbea-
gles or blue sharks, while foraging in well-mixed inner-
shelf regions where zooplankton may be aggregated in 
surface waters during the day, with cascading effects on 
their predators due to tidal fronts [19, 106, 107]. Given 
the topographically complex fjord system, oceanic fea-
tures are likely to be patchy on a small scale.

Possible drivers of vertical movement behaviour
Diel patterns in depth use and movement have frequently 
been linked to foraging or search behaviour in marine 
predators, as they have been shown to modify diving 
behaviour in response to diel-migrating prey [3, 19, 20, 
107]. Besides foraging related behaviour, alternative the-
ories to explain diel depth changes include thermo-reg-
ulation and bioenergetic efficiency [15, 101]. Yet, other 
studies have related this behaviour to an affinity to con-
stant light levels possibly to minimise predation risk or 
maximise foraging success [108–111]. In the following, 
we focus on foraging and thermoregulation as the main 
drivers of observed depth use patterns. In the absence 
of fine-scale horizontal positions, shark-borne oxygen 
measurements, and telemetry data from other sex and 
age groups we can only speculate about the role of other 
possible drivers such as (i) the evasion of hypoxic condi-
tions prevalent in some of the fjord basins, (ii) the mini-
misation of predation risk for predator naïve offspring, 
and (iii) the reduction of intra-specific competition via 
the avoidance other sex- or age groups (see Supplement 
Detail S3).

Foraging
Spurdog has been proposed to vertically migrate in 
pursuit of abundant prey resources that follow their 
diel migrating planktonic prey [50, 104]. With a stand-
ardized trophic level of 3.9, spurdog is an upper 
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secondary-tertiary consumer, commonly found to feed 
on teleost fish, crustaceans, squid, and ctenophores [78, 
112, 113]. In this study, the depths utilised by sharks dur-
ing DVM behaviour correspond well with the depths 
of scattering layers of zooplankton [93, 94, 114], as well 
as (meso)pelagic fish documented in the local fjords 
in respective seasons (e.g., Mueller’s pearlside (Mau-
rulicus muelleri) [95, 97, 98, 115, 116], herring (Clupea 
harengus), whiting (Merlangius merlangus), Norway 
pout (Trisopterus esmarkii) and sprat (Sprattus sprat-
tus) [117–119]. Most of these species have been found in 
Irish [120] and Norwegian spurdog stomachs (CJ, unpub-
lished data), suggesting sharks follow their prey both dur-
ing day and night to forage, resulting in observed nDVM 
patterns. This is in line with previous findings indicating 
spurdog to feed both during the day and night [77, 78, 
104] and to exhibit similar activity levels [67, 121].

To investigate this further, we analysed trends in hourly 
cumulated fast starts, brief acceleration bursts deemed 
indicative for the presence of feeding or escaping events 
[33, 35, 40]. Given the limited presence of known pred-
ators for adult female spurdog, such as killer whales 
(Orcinus orca), or grey seals (Halichoerus grypus), in the 
system [104, 122], and evidence for a subordinate influ-
ence of predation on diel movements on such a large fish 
[15, 67], we assumed fast starts to be primarily linked to 
foraging events. The elevated number of fast starts during 
DVM behaviour supports the assumption that sharks are 
displaying DVM to follow their prey. We note, however, 
that additional data streams, i.e. video records, would add 
valuable information to link acceleration data and derived 
metrics such as fast starts to actual feeding behaviour 
[35, 123]. A comparison of fast starts between day and 
night suggests most individuals to exhibit higher foraging 
activity during the day, despite notable individual, and 
seasonal variation in activity patterns. Unlike demersal 
small-spotted catsharks (Scyliorhinus canicula) or Atlan-
tic stingrays (Hypanus sabinus), which were found to for-
age in warmer surface waters and rest in colder waters at 
depth to increase nutrient uptake efficiency via reduced 
evacuation rates [15, 124], these data do not suggest a 
cessation of feeding activity during specific times of day 
in the tagged female spurdogs. With fast starts being pos-
itively correlated with depth and inversely correlated to 
temperature, there is no evidence of resting at depth or at 
cold temperatures but rather for an active lifestyle across 
both day and night.

Surprisingly, during summer, DVM behaviour ceased 
in most sharks for which tracks extend to summer and 
autumn, spending most time in the first 25 m at 12–15 °C 
above the thermocline with only sporadic dives com-
monly down to 100–400 m. Evidence from acoustic and 
trawl surveys as well as bottom-mounted echosounder 

stations in the local fjords suggests that this is unlikely 
linked to a behavioural change in prey as DVM of meso-
pelagic fish seems to remain persistent across seasons 
[95, 96, 98, 115, 116, 119]. The low number of fast starts 
observed during non-DVM behaviour in summer sug-
gests these individuals to have been less active and 
engaged in possibly foraging related activities, including 
at night when prey species predate on dense copepod 
patches closer to the surface [96]. A seasonal prey-shift 
to prey which is easier to catch and does not result in 
fast starts might be an alternative explanation but has 
so far not been reported for spurdog. As an opportunis-
tic feeder, spurdog might exploit highly nutritious food 
sources during sporadic fast start events involving the 
chasing of herring and mackerel or extracting of dead 
fish from aquaculture farms, nets, or bait, as anecdo-
tally reported the region. The 0.2 Hz sampling rate likely 
translates to a down-sampling of fast starts, so while 
the relative signal can be assumed to remain consistent, 
fast starts cannot be translated to an absolute number 
of high-acceleration events, such as feeding events [35, 
40]. Without complementary data such as video footage 
and seasonally resolved stomach analyses for pregnant 
females in the fjord system it thus remains open how 
these sharks meet their likely elevated energy demands in 
the warmer waters during this period.

Behavioural thermoregulation
Summer and autumn (Jun-Oct) likely mark the sharks’ 
second gestation year and final gestation phase. Move-
ment behaviour from this time period suggests that 
pregnant females de-emphasize foraging and despite pos-
sible energetic concessions linked to elevated metabolic 
rates, select favourable thermal conditions for reproduc-
tion [99, 125]. According to the thermal niche-fecundity 
hypothesis, such thermoregulatory behaviour facilitates 
egg production and embryonic growth in ectotherms [75, 
126, 127]. In Atlantic stingrays, a 1  °C increase in water 
temperature has been shown to reduce gestation times by 
up to two weeks [124]. Similar movements of pregnant 
females to shallower warmer water were also observed 
in leopard sharks (Triakis semifasciata) or round sting-
rays (Urobatis halleri) [128, 129]. In line with earlier 
findings from high latitudes [72, 74, 130], spurdog data 
from Oslofjord show embryonic growth during the first 
and colder half of the second year of pregnancy (Oct-
May) to be much slower (0.6cm/month) compared to 
the second half (May-Dec, 1.2cm/month) which is asso-
ciated with higher water temperatures [70]. With slight 
differences in timing possibly due to the high latitude, 
this would also support earlier hypotheses according to 
which habitat distribution of adult females in the spring 
and summer (here summer and autumn) is mainly driven 
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by environmental factors (i.e., temperature and depth), 
while in the fall (here winter and spring) it is mainly influ-
enced by ecological factors (i.e., prey abundance) [50, 51].

Implications for coastal fisheries management
In light of recent catch advice for spurdog for the NEA 
[46] and increasing interactions with gears of fish 
farms as well as commercial or recreational fishers [45, 
133131−], telemetry data as presented in this study 
can provide valuable insights for the management of a 
directed fishery as well as incidental bycatch of spurdog. 
Availability to fishing gear can be considered a function 
of where in the fjord system and where in the water col-
umn sharks spent their time and where they are active 
and engaged in searching or foraging behaviour. Based on 
vertical occupancy and possibly foraging related activity 
patterns (fast starts), three phases can be distinguished 
with regards to the availability of late pregnant females to 
fishing on the Norwegian west coast: (1) June–Septem-
ber: 0–20  m, particularly at night, (2) November–Janu-
ary: 20–50 m during the night and at 150–250 m during 
the day, (3) February–May: diffuse ‘availability seascape’ 
across depth and time of day. The active and oscillatory 
nature of their depth use throughout the water column 
is likely to expose these female sharks to more variable 
gear types, compared to less-active species with a more 
demersal or benthic lifestyle. This is particularly the 
case for passive gear types, such as gillnets, which rely 
on active gear encounter. They are commonly used in 
the coastal fishery on the Norwegian west coast [134], 
https:// www. baren tswat ch. no/ fiske riakt ivitet/) and can 
be deployed at multiple depths depending on the target 
species. In fact, 89% of spurdogs are caught as bycatch 
in nets, predominantly gillnets used in the mixed fish-
ery down to depths of 550 m, often during the summer 
months [135]. The fact that all recaptured sharks in the 
present study were caught in commercial bottom gill-
nets during the tracking period in spring and autumn at 
depths between 10 and 100  m during nighttime further 
underlines that bycatch in this gear type is an issue for 
these pregnant females, which are of elevated manage-
ment concern due to their key role in stock recruitment.

Identified DVM patterns predominantly found in win-
ter and spring suggest that management measures with 
regards to bycatch mitigation and the spatio-temporal 
distribution of a reopened fishery should take such diel 
and seasonal cycles into account. However, individual 
variation in depth use and activity patterns observed 
within this geographically, demographically, and repro-
ductively homogeneous group indicate the need for 
adaptive management measures. To holistically under-
stand vulnerability to fishing, more horizontal movement 

data from both males and females and at different age 
classes will be necessary. High resolution PSAT data 
here focused on mature females and may in the future be 
paired with spatial data from an acoustic telemetry array 
in the region (i.e., ‘Bergen Telemetry Network’) and dedi-
cated surveys such as a new spurdog-specific longline 
survey [48], both of which incorporate data on other sex- 
and age-groups. This will help to better assess catchabil-
ity coefficients of particular gear types for spurdog, which 
are critical to estimate actual shark densities [136] and 
quantify bycatch risks in this dynamic system.

Conclusions
Presented results obtained from the 19 pregnant female 
spurdogs, satellite-tagged in Norwegian fjords, begin to 
fill existing knowledge gaps associated with the three-
dimensional movement of pregnant spurdog in the NEA. 
Tagged individuals frequently utilised shallow depths 
down to 300 m at temperatures between 8–14 °C. Depth 
use seems to be shaped by diel and seasonal cycles. 
Normal diel vertical migration patterns are dominating 
during winter and spring and are likely foraging related 
given indication for spatio-temporal alignment with 
local prey patterns and elevated likely feeding-related 
activity. Variations between individuals and tagging 
years, however, point to a complex interplay of move-
ment behaviour and habitat use with the abiotic and 
biotic environment. DVM behaviour is rarely displayed 
in summer and autumn. During this period, sharks pre-
dominantly reside in warm waters above the thermocline 
with only sporadic dives to 100–400  m depth. The low 
number of fast starts during this period suggests habi-
tat use rather to be driven by behavioural thermoregu-
lation, yet other factors could also play a role. These 
results provide critical information for informing the 
spatio-temporal management of spurdog in the context 
of a newly reopened fishery in the NEA and increasing 
bycatch-related conflicts with fishers and fish farmers. 
Nevertheless, further studies investigating the fine-scale 
horizontal movement, thermal- and oxygen-preferences, 
as well as sex- and age-group specific differences in habi-
tat use and foraging habits are needed to build a more 
comprehensive picture of the mechanisms underlying 
habitat selection and niche segregation in spurdog in the 
NEA and beyond.
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