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Abstract 

Background Network theory is largely applied in real‑world systems to assess landscape connectivity using empiri‑
cal or theoretical networks. Empirical networks are usually built from discontinuous individual movement trajectories 
without knowing the effect of relocation frequency on the assessment of landscape connectivity while theoretical 
networks generally rely on simple movement rules. We investigated the combined effects of relocation sampling 
frequency and landscape fragmentation on the assessment of landscape connectivity using simulated trajectories 
and empirical high‑resolution (1 Hz) trajectories of Alpine ibex (Capra ibex). We also quantified the capacity of com‑
monly used theoretical networks to accurately predict landscape connectivity from multiple movement processes.

Methods We simulated forager trajectories from continuous correlated biased random walks in simulated land‑
scapes with three levels of landscape fragmentation. High‑resolution ibex trajectories were reconstructed using 
GPS‑enabled multi‑sensor biologging data and the dead‑reckoning technique. For both simulated and empirical 
trajectories, we generated spatial networks from regularly resampled trajectories and assessed changes in their topol‑
ogy and information loss depending on the resampling frequency and landscape fragmentation. We finally built com‑
monly used theoretical networks in the same landscapes and compared their predictions to actual connectivity.

Results We demonstrated that an accurate assessment of landscape connectivity can be severely hampered (e.g., 
up to 66% of undetected visited patches and 29% of spurious links) when the relocation frequency is too coarse 
compared to the temporal dynamics of animal movement. However, the level of landscape fragmentation and under‑
lying movement processes can both mitigate the effect of relocation sampling frequency. We also showed that net‑
work topologies emerging from different movement behaviours and a wide range of landscape fragmentation were 
complex, and that commonly used theoretical networks accurately predicted only 30–50% of landscape connectivity 
in such environments.

Conclusions Very high‑resolution trajectories were generally necessary to accurately identify complex network 
topologies and avoid the generation of spurious information on landscape connectivity. New technologies provid‑
ing such high‑resolution datasets over long periods should thus grow in the movement ecology sphere. In addition, 
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commonly used theoretical models should be applied with caution to the study of landscape connectivity in real‑
world systems as they did not perform well as predictive tools.

Keywords Alpine ibex, Dead‑reckoning, Distance‑based networks, Landscape fragmentation, Minimum planar 
graph, Movement behaviour, Sampling frequency, Scale‑free, Small‑world, Spatial network theory

Background
Studying landscape connectivity is crucial for better 
understanding many ecological processes including ani-
mal foraging behaviour [1], population distribution [2, 3], 
gene or pathogen flow [4], migration behaviour [5], spe-
cies interactions [6, 7], or metapopulation persistence [8]. 
Analysis of landscape connectivity can also be useful to 
identify critical areas favouring movements [9–11] or to 
evaluate and compare the effect of land planning actions 
(e.g., site restoration) [12, 13]. Consequently, an accu-
rate assessment and prediction of landscape connectiv-
ity is needed to avoid spurious understanding of multiple 
theoretical and applied landscape connectivity-related 
processes.

Network (or graph) theory has been  largely used in 
multiple taxa to model and predict connectivity in frag-
mented landscapes [14–18]. In such landscapes, habitat 
patches are represented using nodes while observed or 
predicted movements among patches are represented 
using links [19]. Links can either mirror the Euclidean 
distance between patches (i.e., straight lines) [20] or 
account for matrix composition among patches (i.e., least 
cost path) [6]. The popularity of spatial networks relies 
on their easy implementation and the large amount of 
connectivity indices that can be derived from a network 
providing quantitative information on landscape con-
nectivity at different levels (i.e., node, group of nodes 
or network level) [21–23]. Their adequatedness in real 
landscapes for correctly inferring ecological processes is, 
however, less immediately clear.

A landscape can be described using different network 
topologies including simple planar graphs (e.g., mini-
mum spanning tree or minimum planar graph, MPG) 
[24] and more complex ones (e.g., scale-free or small-
world networks) [25]. This result in different patterns of 
connectivity within the graph (Fig.  1A) [26]. For exam-
ple, a MPG assumes that individuals move in a stepping 
stone fashion among resource patches, such that links 
in a MPG never cross (i.e., no shortcut). By contrast, in 
a scale-free network, few nodes (thereafter called hubs) 
are highly connected to the rest of the patches (thereaf-
ter called peripheral nodes) that have few connections 
[27]. Consequently, a scale-free network is highly sen-
sitive to the removal of hubs but resistant to random 
removal of nodes, whereas a MPG shows similar effects 
of a disturbance independently of its spatial location [3, 

28]. Network topology also has implications for processes 
occurring in spatial networks. Indeed, a disease would 
not spread much if it appears in a peripheral node while 
it would spread faster and to a larger extent if appearing 
in a hub or in a network having shortcuts among patches 
(such as in small-world networks) [20]. An accurate rep-
resentation of actual landscape connectivity is thus of 
paramount importance to correctly identify network 
topology and, consequently, to understand and predict 
many landscape connectivity-related processes.

Application of spatial network theory to real-world 
landscapes generally relies on the modelling of either 
theoretical or empirical networks. Theoretical networks 
commonly include a MPG built from the distribution 
of resource patches [6, 15, 29], or a distance-based net-
work built from both distribution of resource patches 
and empirically-estimated or expert-based dispersal 
distances [4, 9, 30]. Empirical graphs are generated by 
overlapping trajectories of remote-tracked individuals 
with resource patches to identify network links [17, 18, 
31]. With the development of Global Positioning System 
(GPS) technology, many free-ranging species are now 
tracked over long periods of time [32, 33]. However, the 
weight constraints of collars fitted to animals  limit bat-
tery capacities, generally resulting in a trade-off between 
relocation frequency and tracking duration depending 
on scientific questions [34]. For example, empirical net-
works have been built from GPS relocations collected 
every hour in plains bison (Bison bison bison) [3] or in 
African elephants (Loxodonta africana) [17], every two 
hours in woodland caribou (Rangifer tarandus caribou) 
[35], every four hours in brown bear (Ursus arctos) [36] 
or even every 24 h in several species of sea turtle [18]. 
However, the potential effect of relocation frequency on 
observed patterns of connectivity remains unclear. More 
generally, if the temporal dynamics of animal movement 
is too rapid compared to relocation frequency, detected 
patterns of landscape connectivity using networks might 
not reflect actual species movement behaviour. Indeed, 
discontinuous trajectories like the one generated from 
GPS monitoring could result in inaccurate estimations 
of inter-patch movements and, for example, the detec-
tion of artificial shortcuts due to missed stepping stone-
like movements. In other words, an individual could stay 
30 min in a feeding patch, then move to another feeding 
patch by making a quick stop along the way in a patch to 
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Fig. 1 General description of network topologies and design of the study. Ibex photo ©: Franck Merlier
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drink but that series of inter-patch movements would not 
be detected if the individual relocation frequency is every 
hour or two hours. Consequently, relocation frequency 
could impact the assessment of connectivity in the sense 
that networks are perceived as more complex, while 
being actually simpler (e.g., artificial shortcuts could gen-
erate a small-world topology). On one hand, if networks 
are actually simpler than detected, it assures the relevant 
use of simple theoretical networks to predict landscape 
connectivity (i.e., such as the MPG). On the other hand, if 
networks are actually complex, there is an urgent need to 
develop theoretical network models that fit with complex 
functional patterns of connectivity.

In patchy landscapes, the level of habitat fragmentation 
could also impact observed patterns of landscape con-
nectivity from remote-tracked individuals. Indeed, habi-
tats show different levels of fragmentation starting from 
simple patch dissection to patch attrition with interme-
diate patterns such as patch shrinkage [37], resulting in 
habitat patches having different size, organisation and 
composition [38]. While patches can provide different 
resources to animals (e.g., food, shelter), their use (e.g., 
residency time, number of visits) can vary according to 
patch characteristics [3, 6, 35, 39]. For example, plains 
bison and woodland caribou were shown to stay longer 
in larger and highly profitable patches [35, 40]. Such 
variations in residency time within habitat patches could 
result in missed inter-patch movements (e.g., stepping-
stones), notably when the sampling schedule is too coarse 
compared to the temporal dynamic of animal movement 
[41]. While the interplay between landscape fragmenta-
tion and relocation frequency could have noteworthy 
effects on the assessment of landscape connectivity using 
networks, it has yet to be appraised.

Finally, individuals could also adjust their movements 
as a response to space use of congeners, competitors 
or predators [42–45], such that landscape connectivity 
could result in different patterns according to the move-
ment process at stake. For example, individuals can have 
limited access to the landscape when conspecifics are 
territorial and consequently have to restrain their move-
ment to their own territory [46]. Similarly, space use 
and movements can be modified by preys in response 
to a threat (e.g., predator or human presence) [45, 47]. 
Consequently, we could expect network topology to be 
impacted by movement processes and, if so, these move-
ment processes should be accounted for when building 
theoretical network models to predict connectivity in 
heterogeneous landscapes.

In this study, we address these outstanding methodo-
logical questions by investigating the combined effects of 
relocation sampling frequency and landscape fragmenta-
tion on the assessment of landscape connectivity from 

networks using (i) simulated trajectories accounting for 
four movement processes (foraging, foraging + avoid-
ance of an elusive predator, foraging + avoidance of a 
stalking predator, foraging and territoriality) in simu-
lated habitats with variable levels of fragmentation and 
(ii) empirical high-resolution (1 Hz) trajectories of Alpine 
ibex (Capra ibex) tracked in the northern French Alps 
(Belledonne massif ) (Fig. 1C- panels 1-3). For both simu-
lated and empirical trajectories, we also compared pre-
dictions from commonly used theoretical networks (i.e., 
MPG and distance-based graphs) to actual connectivity 
obtained from high-resolution data (Fig. 1C- panel 4).

Methods
Simulation study
Modelling of movement processes
We used a recently developed modelling framework 
to simulate individual trajectories in fragmented land-
scapes from continuous correlated biased random walks 
[48–50]. This framework simulates an animal grazing 
across stationary resources that deplete and regenerate, 
based on three processes: consumption and regeneration 
of resources, resource memory of the grazer, and state-
specific biased correlated movement process [48]. The 
framework can also accommodate predator avoidance 
during movements by simulating predator appearance 
in the landscape and a resulting fleeing-behaviour by the 
grazer that memorizes an encounter location and avoids 
it for a parameterized period of time [49]. The model can 
finally include multiple territorial foragers that regularly 
scent-mark their territory and avoid scent-marks of con-
specifics [50]. Detailed descriptions of foraging, predator 
avoidance and territoriality models are available in [48, 
49] and [50], respectively, such that we only provide a 
brief description of each modelled process in Appendix 
S1.

Modelling of landscape fragmentation
We generated three types of landscapes of 50 × 50 cells 
with different levels of fragmentation using an exponen-
tial variogram model. This model was characterized by 
four parameters including the nugget (i.e., variogram’s 
intercept), the sill (i.e., variogram’s asymptote), the range 
(r, i.e., distance beyond which variables are no longer 
autocorrelated) and the trend (t, i.e., average predicted 
value over the landscape). Constant parameters of the 
model were: nugget = 0 and sill = 1. We set range and 
trend coefficients to obtain three levels of fragmentation: 
low (r = 5, t = 0.3), intermediate (r = 2, t = − 0.5) and high 
(r = 2, t = −  1.5) [51, 52]. We produced 100 landscapes 
for each set of parameters to account for stochasticity. 
Following [48], negative values were truncated to 0 and 
landscapes were normalized to sum to one. Thus, cells 
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with positive values reflected resources of gradual quality 
while null values corresponded to non-resource cells. We 
used the  R package gstat (v2.1-1) to produce the land-
scapes [54]. We then calculated four indices of landscape 
fragmentation for each simulated landscape to make 
sure fragmentation characteristics changed between the 
different landscapes. To do so, we first truncated cells 
with positive values to one to delimit resource patches. 
We then calculated the aggregation index (i.e., the ratio 
between the amounts of realized shared edges and maxi-
mum possible shared edges, range: [0–100]), the patch 
cohesion index (i.e., equivalent of ratio of patch perim-
eters over patch areas, range: [0–100]), the division index 
(i.e., the probability that two randomly selected cells 
are not located in the same patch, range: [0–1]) and the 
proportion of cells occupied by resource patches (range: 
[0–100]) [37]. We selected those indices because they 
range between 0 and 1 such that they are comparable 
between different landscapes. We used the R  package 
landscapemetrics to calculate the fragmentation indices 
[55].

Model runs and construction of spatial networks
We ran each model (F: Foraging-only, F + Pe: Foraging 
and avoidance of an elusive predator, F + Ps: Foraging 
and avoidance of a stalking predator, F + T: Foraging and 
territoriality) in each simulated landscape resulting in 
1200 simulations (100 landscapes of each type × 4 move-
ment processes × 3 levels of landscape fragmentation) 
(Fig. 1C- panel 1). Continuous time models were imple-
mented in Java, with time discretized with small regular 
intervals Δt approximating dt (available code at https:// 
zenodo. org/ recor ds/ 61042 14). For each simulation, we 
ran the model during 10 000 timesteps. As for the F + T 
model, territories have to emerge first, we ran 20  000 
time steps and discarded the first 10  000 to only keep 
movement behaviour when territories were in place [50]. 
Model parameters for each simulated process were ini-
tialized based on [48–50], and are reported in Table S1.

All of the subsequent analyses were performed using 
the R software (v4.3.0, [53]). We then built a network for 
each complete simulated trajectory (i.e., 1200 networks). 
To do so, we identified all movements that occurred 
between two resource patches and used unique inter-
patch movements to build the network (i.e., unweighted 
and undirectional network) (Fig.  1C-  panels  2-3). Then, 
we regularly resampled each trajectory at various fre-
quencies to mimic discontinuous trajectories like the 
one generated from GPS monitoring. Notably, we drew 
one location out of two, one out of three, etc.…, until one 
location out of fifty, resulting in 4999, 3333, etc.…, down 
to 199 movement steps, respectively, for each trajectory 

(Fig.  1C-  panel  2). We then built the spatial networks 
using these resampled trajectories (Fig. 1C- panel 3).

Evaluation of simulated spatial network
Effects of landscape fragmentation and sampling frequency 
on network topology
Multiple network metrics are available to describe land-
scape connectivity and to distinguish between network 
types [22]. Here, we focused on the degree distribution 
(i.e., the distribution of the number of links that each 
node has), the global clustering coefficient C (i.e., the 
number of connected triplets of nodes over the total 
number of triplets in the graph) and the characteris-
tic path length L (i.e., the number of links in the short-
est path between two nodes, averaged over all pairs of 
nodes) (Fig. 1B). These metrics allow evaluating whether 
a network topology is complex and similar to classic 
complex networks such as scale-free or small-world net-
works (Fig. 1A) [25]. In a scale-free network, the degree 
distribution follows a power-law distribution with scale 
parameter α > 1 (i.e., the probability of a node to be con-
nected to k other nodes, P(X = k) ∝ k−α ,α > 1, k > 0 ), 
reflecting the presence of hubs and peripheral nodes 
within the network [27, 56]. In a small-world network, 
many triplets of nodes are connected resulting in a high 
clustering coefficient and some links provide long range 
connection between distant nodes (e.g., shortcuts) lead-
ing to a short characteristic path length (i.e., fast tra-
versability of the graph) [56, 57]. The ad hoc method to 
evaluate whether a network is small-world is to compare 
C and L to the clustering coefficient and characteristic 
path length of an associated random graph built from the 
same number of links and nodes than the one of interest 
[58, 59]. Notably, in a small-world network, the clustering 
coefficient is much larger than the clustering coefficient 
of its associated random graph and the characteristic 
path length is similar to the one of its associated random 
graph.

To evaluate the effects of landscape fragmentation, sam-
pling frequency and movement process driving forager 
behaviour on the network topology, we first extracted the 
node degree of all visited patches of each network. We then 
fitted a linear mixed-effects model to the log-transformed 
node degree as a function of landscape fragmentation, the 
number of relocations used to build the network (corre-
lated to sampling frequency, Fig. 1C-2) and the interaction 
of both (Fig. 1C-3). We included a random effect of land-
scape ID to account for autocorrelation in the degrees of 
patches coming from the same landscape. We ran a model 
for each simulated movement process (i.e., F, F + Pe, F + Ps 
and F + T). We also computed network degree distribution 
for each level of landscape fragmentation and each sam-
pling frequency and fitted the log-transformed frequency 
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of node degrees to the log-transformed degrees using a 
linear model to estimate whether networks were scale-
free (i.e., in such case estimated scale parameter should be 
higher than 1). We then extracted C and L of each network 
and built 100 random networks for each simulated network 
based on the same number of links and visited patches and 
compared their clustering coefficient (CR) and characteris-
tic path length (LR) to C and L to assess whether the empir-
ical network had the small-world property. More precisely, 
we followed [60] and calculated the ratio σ = (C/CR) / (L/LR) 
for each random graph meaning that we had one hundred 
calculation of σ for each simulated network. As these ratios 
should be higher than 1 if the simulated network is small-
world [60], we defined a simulated network to be small-
world if min(σ) > 1. Finally, we calculated the proportion of 
simulated networks being small-world for each simulated 
movement process as a function of landscape fragmenta-
tion and the number of relocations used to build the net-
work. We used the R packages igraph (v1.4.3, [61]) to build 
the networks and calculate their connectivity indices, and 
lme4 (v1.1–33, [62]) and lmerTest (v3.1–3, [63]) to fit the 
statistical models.

Adequacy with commonly used theoretical networks
We first built the minimum planar graph in each simu-
lated landscape using the R package grainscape [53]. We 
also simulated two distance-based networks and a random 
graph in each landscape for each simulated movement 
process (Fig.  1C-  panel  4). Notably, we built distance-
based networks using two thresholds for link length: one 
corresponding to the median length (Lmed) of realized 
links obtained from unique inter-patch movements of the 
complete trajectory (DIST50), and one corresponding to 
the 95% quantile (L95%) of the distribution of realized link 
lengths (DIST95). Consequently, only patches that were 
closer than Lmed or L95% were thus connected in DIST50 
and DIST95, respectively. For the random graph, we ran-
domly assigned the same number of realized links among 
patches of the landscape. We then used the Cohen’s Kappa 
(κ) to assess the performance of theoretical spatial net-
works (MPG, DIST50, DIST95 and Random) to correctly 
predict connectivity emerging from different movement 
models in landscapes having various levels of fragmenta-
tion [64, 65]. We specifically calculated κ by comparing 
predicted links (0/1) of theoretical networks to realized 
links (0/1) from simulated movement processes in each 
landscape.

Empirical study—movements of Alpine ibex 
in the Belledonne massif
Study area and Alpine ibex population monitoring
The empirical study took place in the Belledonne mas-
sif located in the northern French Alps (45° 13′ N, 6° 4′ 

E). The tagged Alpine ibex ranged over a  35km2 area at 
an altitude around 2100 m within the core of the massif. 
Ibex are notably adapted to movements in steep terrains, 
which provide them refuge from perceived predation 
risk, in particular the steepest rocky cliffs. However, 
cliffs generally provide few foraging resources, which 
are rather concentrated in Alpine grasslands [66, 67], 
such that ibex move frequently among various habitat 
types to get both food and cover. In total, 10 male ibex 
(between 7 and 12 years old) were monitored in 2017 
using Lotek (3300S and Litetrack models) or Vectronic 
(Vertex Plus model) GPS collars. Relocation frequency 
varied between 1 location per hour to 1 location every 2 
h and ibex were tracked most of the time nearly one year. 
Among these 10 ibex, 6 were additionally equipped with 
Daily Diary multi-sensor biologgers (Wildbyte Technolo-
gies 2020), which include tri-axial accelerometer and tri-
axial magnetometer sensors recording at 25 Hz/8 Hz, 
respectively. Data from these biologgers were combined 
with GPS data collected every one or two hours to recon-
struct the movement trajectory every second using the 
dead-reckoning technique (DR;  hereafter GPS-enabled 
dead-reckoning) [68]. Given a starting point, DR uses the 
accelerometry and magnetometry data to calculate the 
speed and heading of an individual animal every second 
and thereby reconstruct the full high-frequency move-
ment path [69]. To successfully use the DR method, in 
addition to correctly calibrating the sensors and correct 
for hard and soft iron bias (see [69]), it is important to 
recalibrate the reconstructed DR track as errors can 
accumulate and increase if not accounted for—this is 
typically done using GPS locations collected at a lower 
frequency, as detailed in [70]. We focused our analysis on 
the period for which we had very high-resolution trajec-
tories for all 6 ibex (i.e., June) resulting in a total of 3412 
GPS relocations (341 locations on average per individ-
ual, range: 204–395) from the 10 GPS-collared ibex and 
18 070 914 DR relocations (3 011 819 locations on aver-
age per individual, range: 3 010 683–3 012 356) from the 
6 ibex that were also equipped with biologgers. Variation 
in the number of relocations between ibex from GPS-
enabled dead-reckoning came from a few missing reloca-
tion estimates but since this phenomenon was marginal 
(i.e., less than 0.5% of the dataset) and the time difference 
between two successive relocations never exceeded 4 s, 
we considered missing location to be the same as imme-
diately preceding location.

We used slope and aspect layers provided by the R 
package terra to describe terrain characteristics in the 
ibex range at a resolution of 13 × 13  m. We also used 
description of habitats from the vegetation map provided 
by the Conservatoire Botanique National Alpin [71]. 
Notably, 19 habitats were identified within the ibex range 
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from the vegetation map, which we reclassified into 8 
classes including: closed forest, grassland, herbaceous—
mineral, low ligneous, mineral, open forest, snow and 
other.

Identification of resource patches for Alpine ibex
To identify ibex resource patches, we first quantified 
their habitat selection using a resource selection func-
tion (RSF) and geolocations of the 10 GPS-collared ibex. 
In an RSF, characteristics of observed GPS points of an 
individual are compared to random locations [72]. For 
each observed location of Alpine ibex, we thus gener-
ated 5 random locations within the 99% contour of the 
utilization distribution (UD) of each individual. UD was 
estimated using a brownian bridge kernel calculated from 
the kernelbb function of the  R package adehabitatHR 
with sig2 = 25 (i.e., GPS measurement error) and sig1 
being estimated from the liker function of adehabitatHR 
[73–75]. Observed and random locations were then char-
acterized by land cover types using the reclassified veg-
etation map (8 classes), the log-transformed distance to 
steep slope (i.e., slope > 40°, refuge effect) and the north-
ness (i.e., sinus of aspect, potential thermal cover) [75]. 
We then used a generalized linear mixed-effects model 
with a binomial distribution to estimate RSF parameters. 
We included a random intercept for individual’s ID to 
control for the non-independence and the unbalanced 
number of observations per individual. Model robustness 
was assessed using k-fold cross validation [76]. More spe-
cifically, 80% of the individuals were randomly selected 
to fit the model. We then used the model to calculate 
predicted values for observed and random locations of 
the remaining 20% of individuals. Predicted values were 
divided into 10 equal bins such that observed and ran-
dom locations obtained each a bin rank between 1 and 
10. Bin rank (1–10) was then compared to the frequency 
of observed locations in each bin using Spearman’s rank 
correlation ( rs ). The procedure was repeated 100 times to 
obtain mean and range of ( rs).

We then calculated from the fitted RSF a selection 
probability for each 13 × 13 m pixel of the study area and 
retained pixels with a probability above the 75% quantile 
of probability distribution. We then aggregated adjacent 
selected pixels to generate resource patches for ibex. 
We filtered patches on polygons larger than 2000  m2 to 
take into account the radius of GPS measurement error 
(i.e., π*252  m2). Finally, once ibex resource patches were 
identified, we calculated the four indices of landscape 
fragmentation (i.e., the aggregation, patch cohesion and 
division indices, and the proportion of cells occupied 
by habitat patch) to identify to which fragmentation 
scenario from the simulated landscapes the ibex actual 
landscape was more similar. We used the R packages 

adehabitatHR (v0.4.21), sp (v1.6-1), stars (v0.6-1) and 
raster (v3.6-20) to perform all geographical information 
system work and lme4 (v1.1-33) and lmerTest (v3.1-3) to 
run the statistical analysis [52, 62, 63, 73, 77, 78].

Construction of Alpine ibex spatial network at various 
sampling designs
We used GPS-enabled dead-reckoning relocations 
obtained every second (1 Hz) for 6 ibex to first build a 
very high-resolution spatial network. As for the simu-
lation study, we identified all movement steps that 
occurred between two resource patches and used unique 
inter-patch movements to build the network. We then 
regularly resampled each trajectory to mimic various 
sampling designs and built the resulting spatial net-
works. Notably, we resampled each trajectory by join-
ing one location out of 30 (30 s), 60 (1 min), 300 (5 min), 
600 (10 min), 1200 (20 min), 1800 (30 min), 3600 (1 h), 
7200 (2 h) and 21,600 (6 h). We randomly selected the 
first relocation to start the resampling for each ibex and 
each sampling design to generate stochasticity. For exam-
ple, when relocations were sampled every 30 s, the relo-
cation to start with was randomly selected between the 
first 30 available relocations while for the sampling at 1 h, 
the relocation to start with was selected between the first 
3600. In addition, for the 2 and 6 h sampling design, we 
also shifted the sampling time by one hour every day to 
have a complete sample of all possible hours. For exam-
ple, for the 6 h sampling design, we sampled relocations 
day 1 at 00:00, 06:00, 12:00, 18:00 and 24:00, then day 2 at 
01:00, 07:00, 13:00, 19:00, 01:00, then day 3 at 02:00, 08:00 
and so on.

Evaluation of Alpine ibex spatial network
We performed the same analysis on ibex spatial networks 
as in the simulation study. We first evaluated the effect 
of sampling frequency on node degree by fitting a linear 
model to all log-transformed degrees as a function of the 
log-transformed number of relocations used to build the 
networks. We also assessed whether the networks had 
the scale-free and small-world properties by estimating 
the scale parameter of each degree distribution and by 
comparing their clustering coefficient and characteristic 
path length to the ones of random graphs, respectively 
(see section Effects of landscape fragmentation and sam-
pling frequency on network topology). Secondly, we built 
the four commonly used theoretical spatial networks (i.e., 
MPG, DIST50, DIST95 and random graph) to predict 
connectivity among ibex resource patches. We restricted 
the predictions to patches that were encompassed within 
the 100% minimum convex polygon of the very high-
resolution relocations (i.e., every second) of the 6 ibex. 
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We then compared predictions of each theoretical net-
work to the empirical observation of ibex spatial network 
derived from the very high-resolution trajectory (1 Hz), 
using Cohen’s Kappa.

In addition, we also calculated, for each network 
obtained from the resampled trajectories, the propor-
tion of visited patches detected, the proportion of real-
ized and spurious links detected. To do so, we used the 
spatial network built from the 1 Hz trajectory as the ref-
erence and extracted from it the lists of visited patches 
and realized links. We then evaluated whether these 
visited patches and links were found again in resampled 
networks. We defined spurious links as links that were 
observed in the  resampled networks but missing from 
the reference network.

Results
Simulation study
Effects of landscape fragmentation and sampling frequency 
on simulated networks
Simulated landscapes showed various fragmenta-
tion characteristics according to the four indices of 

landscape fragmentation (described in Table S2). Each 
degree distribution calculated from 100 simulated net-
works decayed as a power function with scale param-
eter being greater than 1 (Table S3), indicating a strong 
heterogeneous pattern of connectivity among patches 
in all simulated networks. Few patches had many links 
(i.e., the hubs) and most of the remaining patches had 
few links, typical of scale-free networks (Figs.  2, S1 
and S2). The scale-free property persisted even when 
sampling frequency decreased (i.e.,  fewer relocations) 
for all types of landscape fragmentation and all simu-
lated movement processes (Fig. 2, Table S3). However, 
node degree depended on both sampling frequency and 
landscape fragmentation for all four simulated move-
ment processes (Fig. 3). Node degree globally increased 
with the number of relocations but at a stronger rate 
in highly fragmented landscapes for the movement 
processes reflecting only foraging (i.e.,  F) or foraging 
and predator avoidance (i.e., F + Pe and F + Ps, Fig.  3), 
implying higher information loss on landscape con-
nectivity in fragmented landscapes when sampling fre-
quency gets coarser. This effect, however, dissipated 

Fig. 2 Degree distributions of simulated networks in three types of landscape fragmentation from four movement processes. F: Foraging, F + Pe: 
Foraging and avoidance of an elusive predator, F + Ps: Foraging and avoidance of a stalking predator, F + T: Foraging and territoriality. All distributions 
decayed as a power function with scale parameter being higher than 1 (Table S3)
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when foragers had to constrain their movements within 
their own territory (Fig. 3, F + T).

The emergence of the small-world property was 
linked to both the simulated movement process and the 
level of landscape fragmentation (Fig. 4). Indeed, from 
the full trajectory (i.e., 10,000 relocations), all simulated 
networks were small-world in highly and medium frag-
mented landscapes for the movement processes reflect-
ing only foraging (i.e.,  F) or foraging and predator 
avoidance (i.e., F + Pe and F + Ps, Fig.  4). This propor-
tion decreased though when landscapes had low lev-
els of fragmentation or when territoriality was at stake 
in the movement process (F + T, Fig.  4). In addition, a 
decrease in the number of relocations generally led to a 
decrease in the proportion of small-world networks at a 
rate that depended on both the movement process and 
the fragmentation level (Fig. 4), meaning that a coarser 

sampling frequency impeded the detection of complex 
network topologies.

Adequacy with commonly used theoretical spatial networks
Commonly used theoretical networks showed various 
levels of accuracy to predict connectivity emerging from 
different movement processes in landscapes having vari-
ous levels of fragmentation (Table 1) and never predicted 
correctly more than half of the landscape connectivity. 
Indeed, Cohen’s Kappa varied between 0 and 0.49 with 
lowest values for the random graph and highest values 
for the DIST50 in all four simulated movement processes 
and all levels of landscape fragmentation. The accuracy 
provided by the MPG was quite similar to the one of 
DIST50 although the DIST50 outperformed the MPG 
when landscape fragmentation was low and the foraging 
or foraging and territoriality processes were modelled, or 

Fig. 3 Estimates and their 95% confidence interval of average node degree of simulated networks. One model was run for each simulated 
movement process: F: Foraging, F + Pe: Foraging and avoidance of an elusive predator, F + Ps: Foraging and avoidance of a stalking predator, 
F + T: Foraging and territoriality. Each model included as covariates the level of landscape fragmentation, the number of relocations used to build 
the spatial network (correlated to the sampling frequency) and the interaction of both. Pseudo‑R2 of the models were: F: 0.14; F + Pe: 0.18; F + Ps: 
0.18; F + T: 0.26
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when landscape fragmentation was high and the forag-
ing process was simulated (Table 1). Note that the accu-
racy of both DIST50 and MPG dropped around 0.25 in 
highly fragmented landscape when foraging and predator 

avoidance or foraging and territoriality were simulated 
(Table 1).

Fig. 4 Pourcentage of simulated networks having the small‑world property. The small‑world property is defined as a relatively high clustering 
coefficient and a similar characteristic path length compared to a random graph. The number of relocations is correlated to the sampling frequency 
with higher number of relocations indicating fine sampling frequency. The combination of three levels of landscape fragmentation and four 
movement processes were simulated: F: Foraging, F + Pe: Foraging and avoidance of an elusive predator, F + Ps: Foraging and avoidance of a stalking 
predator, F + T: Foraging and territoriality

Table 1 Adequacy (Cohen’s Kappa) between theoretical spatial networks and simulated networks from four movement processes

The Cohen’s Kappa is calculated from the comparison of predicted links from four theoretical spatial networks and observed links obtained by simulation of 
individual trajectories from different movement processes in landscapes having various levels of fragmentation (low, medium (med) or high). Simulated movement 
processes: F: Foraging, F + Pe: Foraging and avoidance of an elusive predator, F + Ps: Foraging and avoidance of a stalking predator, F + T: Foraging and territoriality. 
Theoretical networks: DIST50: distance-based network where patches closer than  L50% are connected, DIST95: distance-based network where patches closer than 
 L95% are connected, MPG: minimum planar graph, Rand: random network where random patches are connected.  L50% is the median length of realized links obtained 
from unique inter-patch movements of the complete simulated trajectory and  L95% is the 95% quantile of the distribution of realized link lengths. Kappa can vary 
between − 1 and 1 with closer values to 1 indicating perfect match

F F + Pe F + Ps F + T

Low Med High Low Med High Low Med High Low Med High

Dist50 0.46 0.42 0.40 0.49 0.42 0.24 0.48 0.41 0.24 0.43 0.42 0.26

Dist95 0.30 0.16 0.13 0.33 0.16 0.06 0.28 0.14 0.05 0.41 0.29 0.09

MPG 0.39 0.41 0.31 0.48 0.42 0.23 0.47 0.41 0.24 0.31 0.42 0.26

Rand 0.01  − 0.00 0.01 0.00  − 0.00 0.00 0.00 0.00  − 0.00 0.00 0.01 0.03
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Case study
Identification of resource patches for Alpine ibex
Habitat selection by male ibex in June depended on 
both the distance to steep slopes and land cover class 
(Table  S4). Males selected notably low levels of  ligne-
ous cover  and avoided mineral and snow covered areas 
when compared to grasslands (i.e., reference habitat). 
Besides, they selected cover that was close to steep slopes 
(Table S4). Ibex resource patches were highly aggregated 
as the aggregation index was 78.4 and the patch cohe-
sion index reached 96.2. However, the division index was 
equal to 0.90 indicating that despite being aggregated, 
patches were also highly divided in the landscape. The 
proportion of cells occupied by habitat patches totalled 
23.8%. Consequently, the level of fragmentation in ibex 
landscape was relatively similar to the one of land-
scapes defined as medium or low fragmention in our 
simulations, according to these four indices of landscape 
fragmentation.

Evaluation of Alpine ibex spatial network
Similarly to the simulation results, topology of ibex 
spatial network was impacted by sampling frequency 
as node degree increased significantly with the num-
ber of relocations used to build individual trajectory 
(  log(D) = 0.043(±0.010) ∗ log(N ), p < 0.001,R2

= 0.03 , 

Fig.  5). The amount of variance explained ( R2 ) was 
however quite low indicating that other factors should 
impact patch connectivity more strongly. In addition, 
most ibex networks were scale-free according to the 
estimation of scale parameter (i.e., α̂ > 1 , range for 
scale-free networks [min–max]: 1.03–1.30, R2 of fitted 
models [min–max]: 0.47–0.75). However, two networks 
(i.e., sampling relocations every 30 s and 1 min) did 
not show scale-free properties (i.e., α̂every30sec. = 0.94, 
 R2 = 0.49 and α̂every1min. = 0.93,  R2 = 0.47) even though 
their scale parameter were both very close to one. Fur-
thermore, most ibex networks had the small-world 
property according to the comparison of their cluster-
ing coefficient and characteristic path length to the one 
of random graphs (Table 2). This property was however 
not detected when sampling frequency was too coarse 
(i.e., relocations every 6 h, Table 2).

A strong loss of information on animal movement 
appeared quickly when sampling frequency became 
coarser (Figs. 6, 7). For example, when relocations were 
collected every 30 min, we detected 76% of visited 
patches and 52% of realized links and when relocations 
were collected every 2 h, these values dropped to 51% 
and 26%, respectively. This loss of information did not 
evolve linearly with sampling frequency as a significant 
amount of information was lost within the range of one 

Fig. 5 Degree distributions of Alpine ibex spatial networks in Belledonne massif (French Alps) in June 2017. Colors indicate the relocation 
frequency used to build individual trajectories that generated the spatial network. Lines indicate estimated degree distribution from a power law 
ajusted to the observed degree distribution (points)
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relocation every 5 min to one relocation every 30 min 
(Fig. 7). Sampling frequency also impacted the detected 
pattern of connectivity as many identified links were 
actually spurious (Fig. 7). For example, 20% of detected 

links were spurious when relocations were sampled 
every 20 min and it raised to 27% when relocations 
were collected every hour (Fig. 7).

Table 2 Properties of Alpine ibex spatial networks in the Belledonne massif (French Alps) in June 2017

Sampling frequency indicates the frequency at which we resampled the full individual trajectories (i.e., every 1s) to further build ibex spatial network. α̂  [R2]: scale 
parameter estimate of network degree distribution and its associated model’s R-squared, C: network clustering coefficient, L: network characteristic path length

Sampling frequency Num. of locations Num. of 
visited 
patches

Num. of links α̂[R2] Scale-free C L Small-world

Every 1 s 18 070 914 83 170 1.03 [0.60] Yes 0.42 4.84 Yes

Every 30 s 604 720 80 166 0.94 [0.49] No 0.44 4.84 Yes

Every 1 min 302 380 80 167 0.93 [0.47] No 0.44 4.86 Yes

Every 5 min 60 480 76 154 1.03 [0.65] Yes 0.39 4.75 Yes

Every 10 min 30 240 73 142 1.15 [0.75] Yes 0.46 4.79 Yes

Every 20 min 15 120 67 133 1.15 [0.71] Yes 0.42 4.79 Yes

Every 30 min 10 080 63 119 1.10 [0.68] Yes 0.43 4.54 Yes

Every 1 h 5 040 55 100 1.10 [0.74] Yes 0.49 3.75 Yes

Every 2 h 2 619 42 59 1.22 [0.75] Yes 0.22 3.22 Yes

Every 6 h 1 005 28 28 1.30 [0.47] Yes 0.11 3.71 No

Fig. 6 Alpine ibex spatial networks for three sampling schedules in Belledonne massif (French Alps) in June 2017. Resources patches are shown 
in light grey and black lines indicate inter‑patch movements identified from ibex trajectories. Red patches and red dotted links are patches and links, 
respectively, that are detected from the full trajectory but not with the resampled trajectory. Yellow dotted links represent spurious links that were 
only detected with the resampled trajectory
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Commonly used theoretical networks showed rela-
tively poor capacity to accurately predict landscape con-
nectivity derived from our empirical dataset on Alpine 
ibex. Indeed, Cohen’s Kappa equalled 0.29, 0.10, 0.26 
and 0.00 for the DIST50, DIST95, MPG and random 
graphs, respectively. Consequently, the DIST50 pre-
dicted more accurately inter-patch movements for ibex 
than the MPG, even though the difference is weak, but it 
only predicted successfully about one-third of landscape 
connectivity.

Discussion
Using both simulated and empirical movement trajecto-
ries at very high-resolution of individuals showing dif-
ferent movement behaviours in landscapes with varying 
levels of fragmentation, we first demonstrated that an 
accurate assessment of landscape connectivity patterns 
can be hampered when the relocation sampling fre-
quency is too coarse compared to the temporal dynam-
ics of animal movement. However, we also revealed that 
the level of landscape fragmentation and the processes 

driving animal movement can both mitigate the effect 
of relocation sampling frequency on the detection of 
accurate landscape connectivity patterns. In addition, 
we showed that network topologies emerging from dif-
ferent movement behaviours and a wide range of land-
scape fragmentation were generally complex, and that 
commonly used theoretical networks, usually of simple 
topologies, did not perform well to accurately predict 
landscape connectivity in such environments. Finally, we 
also pinpointed that a significant amount of information 
on landscape connectivity  is rapidly lost when sampling 
frequency of individual relocations becomes coarser.

Empirical spatial networks have been built from indi-
vidual trajectories obtained at varying sampling fre-
quencies without knowing so far the potential effect of 
trajectory resolution on the assessment of landscape 
connectivity using networks [6, 17, 18, 35, 36, 79, 80]. 
Here, we demonstrated that the sampling frequency of 
individual relocations can notably impede the detec-
tion of network small-world property but the strength 
of this effect was strongly linked to the level of landscape 

Fig. 7 Effect of sampling frequency on information loss in Alpine ibex spatial networks. Proportion of visited patches detected (green), proportion 
of realized links detected (yellow) and proportion of spurious links detected (purple) in Alpine ibex spatial networks in Belledonne massif (French 
Alps) in June 2017 as a function of relocation sampling frequency
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fragmentation. Indeed, a higher number of relocations 
(i.e., finer sampling frequency) was necessary to detect 
the small-world property of simulated networks in low 
fragmented than in highly or medium fragmented land-
scapes. The characteristics of small-world network result 
in many connected triplets of nodes (i.e., potential local 
functional use) with efficient movement within the net-
work (i.e., through shortcuts) [57, 59]. Consequently, the 
missed detection of such patterns could result in inac-
curate understanding of how landscapes are connected 
and for example, could lead to missed identification 
of patches or connections used for specific functional 
attributes (e.g., stopovers or stepping-stones) [31, 41, 81]. 
Similarly, we did not detect the small-world property of 
Alpine ibex empirical network when sampling frequency 
was too coarse (i.e., one location every 6 h). On the other 
hand, the scale-free property of simulated networks was 
always detected independently of the grain of reloca-
tion sampling frequency. However, the skewness of net-
work degree distribution was impacted by both the level 
of landscape fragmentation and sampling frequency. 
Indeed, the local connectivity (i.e., node degree) was 
generally less heterogeneous (i.e., less skewed) in patchy 
landscapes when full trajectories were used to infer land-
scape connectivity but when sampling frequency became 
coarser, the skewness of degree distribution became 
stronger. These results indicate that commonly used dis-
continuous trajectories could lack robustness to infer 
landscape connectivity in real-world systems.

While habitat patch characteristics can potentially 
reduce the effect of sampling frequency on detected 
patterns of connectivity, the mitigation could yet be 
effective in opposite landscapes (i.e., high vs low frag-
mentation) depending on network topology (i.e., 
scale-free or small-world). Notably, in low fragmented 
landscapes, fine sampling frequency should be set to 
correctly detect small-world property while in highly 
fragmented landscapes, fine sampling frequency should 
be set to accurately assess scale-free property, accord-
ing to our simulations. Many studies demonstrated that 
animals adjust their behaviour regarding patch selec-
tion and intensity of use as a response to patch environ-
mental attributes [40, 82–85]. We indeed demonstrated 
that movements in landscape having different attributes 
can generate different connectivity patterns and that 
such patterns actually require fine sampling frequency 
to be correctly appraised. For example, we showed that 
about 50% of information on ibex movements in a low 
to medium fragmented environment was lost when ibex 
were relocated every 30 min and about 25% of their 
inferred movements were spurious with this sampling 
rate. While vertebrate movements are generally drawn 
from discontinuous individual trajectories collected at a 

coarser rate than one location per hour [18, 36, 80, 86, 
87], our empirical study raised a warning on the use of 
such movement inference to the assessment of landscape 
connectivity from spatial networks.

The effect of relocation sampling frequency on 
detected patterns of landscape connectivity was also 
largely mitigated when simulated individuals were ter-
ritorial in all types of fragmented landscapes. In the 
simulation, territorial individuals constrained their 
movements to their own territory due to the pres-
ence of conspecific scent-markings that were avoided 
[50]. Consequently, territorial individuals had access 
to a smaller part of the landscape than non-territorial 
individuals (i.e., F, F + Pe and F + Ps scenarios) such 
that movements within their territory were probably 
more redundant resulting in less information loss from 
coarser sampling frequencies. While our simulations 
provide new insights on the interplay between animal 
movement behaviour, landscape fragmentation and 
relocation sampling frequency on detected patterns 
of landscape connectivity, it has yet to be appraised 
using more empirical studies to provide additional sup-
port to our results. It could notably be helpful to fur-
ther improve the design of studies aiming at evaluating 
landscape connectivity from empirical networks.

Most of our results, either from empirical or simu-
lated cases, conclude that very high-resolution tra-
jectories should be used to correctly infer patterns of 
landscape connectivity from empirical networks. New 
technological developments in animal tracking should 
help meeting this need. Indeed, a wide range of spe-
cies, from small to large sizes, can now be tracked 
using GPS tags that collect more frequent data and over 
longer periods that in the past (e.g., by relying on solar 
energy) [88]. GPS relocations can be collected as fre-
quently as every second, but generally at a cost of lim-
ited duration of tracking due to the high battery needs 
[89]. The application of dead-reckoning techniques to 
biologging and GPS data could also help collecting very 
high-resolution trajectories over longer periods [90]. 
DR relies on accelerometry and magnetometry data to 
calculate speed and heading along individual trajecto-
ries that can further be translated into very high-reso-
lution coordinates (e.g., location every second, [68]). As 
battery constraints are less limited for magnetometers 
and accelerometers, sensor data can be collected much 
more frequently than solely GPS data and, when com-
bined together to correct for magnetic drift, proved to 
be quite performant [68, 90]. In this study, Alpine ibex 
were equipped with tri-axial accelerometer and tri-
axial magnetometer sensors recording at 25 Hz/ 8 Hz, 
respectively, and we combined those data with GPS 
data collected every two hours to produce locations 
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every second [68]. DR has largely been used on domes-
tic and aquatic wild species but its application remains 
rare for terrestrial wild species while it could provide 
detailed information about the movement paths of ani-
mals between GPS fixes and open new opportunities in 
movement ecology [91–95].

Spatial networks reflecting movements among resource 
patches have been identified as having complex topolo-
gies in a large body of litterature for various species [3, 31, 
35, 79, 96]. We suggested that network topologies could 
be simpler than actually detected due to missed stepping-
stone movements from coarse sampling frequency and 
consequently be more similar to simple topologies like 
the MPG or distance-based networks. Here, we refuted 
this hypothesis as all networks obtained from very high-
resolution trajectories were actually complex (i.e., always 
scale-free and most of the time small-world). Observa-
tions of complex patterns of landscape connectivity could 
actually be expected as animal movement results from 
the complex interplay of animal state, navigation and 
motion capacity and external factors [43]. Consequently, 
commonly used theoretical networks did not succeed to 
accurately predict landscape connectivity in our simu-
lated or empirical landscapes. These network models 
make general and relatively simple hypotheses on the 
drivers of animal movement among resource patches and 
are actually quite commonly used as decision-making 
tools [29, 97–99]. However, we demonstrated that they 
should be used with caution as they only succeeded to 
correctly predict between 30 and 50% of landscape con-
nectivity when tested for various movement behaviours 
in different landscapes. Other tools such as individual 
based models (IBMs), have been combined with network 
theory to assess landscape connectivity [100, 101]. An 
IBM models individual movement in a landscape from 
parameterized rules of movements and consequently 
allows to generate mechanistic-based stochastic move-
ment trajectories in heterogeneous environments [96, 
102, 103]. Many IBMs have been developped to simulate 
dispersal behaviour in heterogeneous landscapes (i.e., 
individual based dispersal models [101]) notably because 
IBMs can address questions even when empirical knowl-
edge is insufficient for linking individual-level processes 
to landscape-level patterns [104]. However, the applica-
tion of IBM to the study of landscape connectivity using 
networks in the context of home-ranging behaviour 
(e.g., including recursive movements [105, 106]) remains 
underexploited and could cope with the urgent need to 
develop theoretical network models that fit with com-
plex but more realistic functional patterns of connectivity 
[104].

Conclusions
Animal behaviour, the level of landscape fragmentation 
and the frequency of individual relocations were shown 
to have an effect on the assessment of landscape con-
nectivity using spatial networks. In general, very high-
resolution trajectories (e.g., relocations collected every 
1 min in Alpine ibex) were necessary to accurately iden-
tify complex network topologies and avoid the genera-
tion of spurious information on landscape connectivity. 
New technologies providing such high-resolution data-
sets over long periods, as for example dead-reckoning 
techniques, should thus grow in the movement ecology 
sphere to help unravelling many ecological questions 
and conservation challenges. In addition, commonly 
used theoretical models should be applied with caution 
to the study of landscape connectivity in real-world sys-
tems as they did not perform well as predictive tools. 
Instead, other modelling tools should be challenged to 
assess whether they can correctly generate more realis-
tic functional patterns of landscape connectivity in actual 
environments.

Abbreviations
DIST50  Distance‑based network where patches closer than the median 

realized link length are connected
DIST95  Distance‑based network where patches closer than the 95% quan‑

tile of realized link length are connected
DR  Dead‑reckoning
GPS  Global positioning system
IBM  Individual‑based model
MPG  Minimum planar graph
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