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Abstract 

We record and analyze the movement patterns of the marsupial Didelphis aurita at different temporal scales. Animals 
trajectories are collected at a daily scale by using spool‑and‑line techniques and, with the help of radio‑tracking 
devices, animals traveled distances are estimated at intervals of weeks. Small‑scale movements are well described 
by truncated Lévy flight, while large‑scale movements produce a distribution of distances which is compatible 
with a Brownian motion. A model of the movement behavior of these animals, based on a truncated Lévy flight 
calibrated on the small scale data, converges towards a Brownian behavior after a short time interval of the order 
of 1 week. These results show that whether Lévy flight or Brownian motion behaviors apply, will depend on the scale 
of aggregation of the animals paths. In this specific case, as the effect of the rude truncation present in the daily 
data generates a fast convergence towards Brownian behaviors, Lévy flights become of scarce interest for describ‑
ing the local dispersion properties of these animals, which result well approximated by a normal diffusion process 
and not a fast, anomalous one. Interestingly, we are able to describe two movement phases as the consequence 
of a statistical effect generated by aggregation, without the necessity of introducing ecological constraints or mecha‑
nisms operating at different spatio‑temporal scales. This result is of general interest, as it can be a key element 
for describing movement phenomenology at distinct spatio‑temporal scales across different taxa and in a variety 
of systems.
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Introduction
In the last 2 decades the analysis of a large amount of bio-
logical data related to animal displacements has shown 
that the distribution of the movement single steps can be 
well characterized by the use of heavy tailed distributions 
[1–7]. Even if some concerns about these results have 
been raised [8], and the risk of describing such a variety 
of behaviors and strategies with an oversimplified theo-
retical framework can exist, nowadays it seems evident 
that stochastic processes which can generate such type of 
behaviors must be included in the indispensable toolbox 
for modeling animal movements. These processes, gener-
ally known as Lévy processes [9, 10], present some spe-
cific traits which are very different from those of ordinary 
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Brownian processes. In fact, they produce trajectories 
with a peculiar geometry, marked by abrupt long jumps 
that connect clusters of frequent short displacement, 
which generates a characteristic scale-invariant structure. 
Moreover, such Lévy processes trigger super-diffusive 
behavior [11–13], which means that the mean squared 
displacements of individuals are a super-linear function 
of time and the limiting distributions of the total traveled 
distances present power law behavior. These features lead 
to an efficient way of exploring the space, in contrast to 
the slowness of standard diffusive behavior. In fact, Lévy 
flights have been suggested to be the best option for solv-
ing the problem of random search [1, 14], and, for this 
reason, the optimal choice for describing searching and 
foraging movements, specifically for environments with 
homogeneous and scarce resources [15].

Lévy flights, similarly to ordinary random walks, can be 
defined as a sum of independent identically distributed 
random steps. In this case, the step distributions present 
power law tails which generate divergent variances. For 
this reason, the central limit theorem does not apply, and 
the limiting distributions of the total traveled distances 
present power law behaviors [13].

The fact that the single step distributions present infi-
nite variance can discourage their use, as in ecological 
systems an unavoidable cutoff is always present. In fact, 
the step movement of an individual is evidently limited 
because of natural, physical and energetic constraints. 
Moreover, a realistic animal movement is characterized 
by physiological and circadian rhythms which cause 
direct limits on the maximum step length. For this rea-
son, the power law behaviour can hold only in a limited 
spatial range, and some type of cutoff must be consid-
ered. These facts suggest the use of truncated power laws 
[8, 16], an important element taken into account in dif-
ferent studies [8, 15, 17–20].

The presence of the cutoff means that the variance 
is finite and, in principle, it should cause the conver-
gence to a Gaussian behaviour. But this convergence, in 
general, is slow and it is reached only after a very large 
number of steps [20]. In these conditions, the distribu-
tion of the total traveled distances maintain statistical 
properties indistinguishable from the ones generated 
by Lévy flights. Only increasing the number of realized 
steps, a crossover between Lévy and Gaussian regimes is 
observed, which depends on the cutoff and the exponent 
values of the Lévy flights [20]. Therefore, an open ques-
tion is when such large number of steps are achieved in 
the movements of specific organisms, causing a change 
from a Lévy to a Gaussian regime.

These theoretical results have been registered in some 
empirical studies. Two distinct modes in the walking 
behaviour of aphids was recorded by Mashanova et  al. 

[17]. Similarly, in the case of human mobility, the heavy-
tailed behaviours have been reported within a certain 
region, but not on a global scale [18, 21]. The relation-
ship between Lévy and Gaussian regimes in movement 
paths could therefore depend on the scale of the track-
ing data. The same organism could present a Lévy regime 
at fine-scale movements that could change to Gaussian 
as the interval between locations increases. This inter-
esting question remains still open, as empirical studies 
which describe the movements of the same species at 
pronounced different scales are sparse [22–24]. Fryxell 
et al. [22] studied elks over different orders of magnitude 
in time (minutes to years) and space (meters to 100 km). 
This study is based on descriptive statistics and qualita-
tively shows and characterizes elk shifts from dispersive 
to home-ranging phases. At the finest scales, elk used 
area-restricted search while browsing, and less sinuous 
paths when not browsing. The study by Kazimierski et al. 
[24] studied the movements of a small american marsu-
pial qualitatively characterizing the shape of the small 
scales trajectories and estimating the speed of movement, 
the daily home range (less than 100 m 2 ) and its explora-
tion by using the large-scale dataset.

The main purpose of our study is to characterize the 
movement patterns of a Neotropical marsupial at differ-
ent temporal scales. In a first experimental set, animal 
trajectories were mapped continuously and in detail, dur-
ing a tracking that lasts up to one night of activity (ca. 
8  h). These data were used to estimate the single step 
distribution P(ℓ) , where the step ℓ is defined as the dis-
tance between two successive turning points. In a second 
field work, based on radio-tracking locations, positions 
of animals were recorded at larger time intervals, of the 
order of weeks. Animals were released in the same site of 
capture, and their location was determined every night, 
for several nights. From these measurements it was pos-
sible to estimate the total traveled distances distribution 
P(r), where r is the geographical distance traversed in a 
week time. The statistical properties of these two distri-
butions were analysed, showing the presence of a trun-
cated Lévy flight for P(ℓ) , with parameters that generate a 
total traveled distances distribution P(r) with a Brownian 
character, for large temporal scales. The number of steps 
necessary for reaching such distribution is estimated, 
allowing a consistency check between the distinct move-
ment characteristics present at different scales.

Materials
These experiments were conducted in the Iconha and 
Guapi-Macacu river basins, which are part of the munici-
palities of Guapimirim and Cachoeiras de Macacu, in the 
Rio de Janeiro State, Brazil.
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For describing the features of animals movements at 
different temporal scales we use two complementary 
approaches: with spool-and-line devices and with radi-
otracking. The experiments of the first set, with spool-
and-line devices, were conducted in the Serra dos Órgãos 
National Park, PARNASO, the largest continuous Atlan-
tic Forest remnant in the State of Rio de Janeiro (20,020 
ha), southeastern Brazil ( 22.479◦ S, 42.988◦ W, datum 
WGS84), between 500 and 700 m altitude. The forest is 
part of the montane rainforest complex, in an old-growth 
successional stage (details in [25]).

The experiments of the second set, with radiotracking, 
were conducted in a nearby location, in forest fragments 
varying from 5 to less than 10000 ha area, immersed in a 
matrix of pastures near the Reserva Ecológica Guapiaçu 
- REGUA ( 22◦25′ S, 42◦44′W). Linear distances between 
opposing edges of forest fragments varied between ca. 
200  m to dozens of kilometers. The original forest of 
these fragments was disturbed by different degrees of 
anthropogenic activities. Canopy is 20  m high approxi-
mately, but varying in continuity between forest frag-
ments. Subcanopy is fairly open (details of the structure 
of forest fragments in [26]).

The first experiment recorded movements of Didelphis 
aurita, a small marsupial released in the forest of PAR-
NASO. Individuals were equipped with a spool-and-line 
device [27], which consisted in a bobinless cocoon, con-
taining up to 480  m of thread, wrapped in a PVC film. 
This device was glue to the back of animals with synthetic 
resin, and the end of the thread was attached to a mecha-
nism [28] which marked the starting point of the animal 
path. Trajectories were tracked following the thread and 
measuring the azimuth angles corresponding to a pro-
nounced change in the direction of motion (a deviation 
greater than 5◦ ), and the distances between these turning 
points. Note that the use of a spool-and-line device is a 
better replacement for GPS tracking when, as in our case, 
the considered species lives in region of dense forest and 
intricate topography, which cause low reliability in GPS 
positioning.

In the second experiment, performed in REGUA, 
individuals of D. aurita were equipped with a radio-
tracking device, released at the same site of capture, and 
tracked for one night every week. Individuals were cap-
tured-recaptured from 2014 to 2015 as part of a popu-
lation ecology study in forest fragments near REGUA 
[29]. A total of 14 D. aurita (subadults or adults of both 
sexes) were selected for tracking based on good physi-
cal condition. The chosen individuals were taken to the 
laboratory of the REGUA located in the study area, and 
kept in a plastic cage ( 41× 34 × 18  cm) for no more 
than 24  h, with ad  libitum food and water, and cov-
ered to reduce disturbance and stress. Early in this 24 h 

period the individual had a radiotag tracking device 
with an active sensor (VHF radio tracking, Telenax 
inc.) attached on its back at a point just below the scap-
ulas. The radiotag was fixed with flexible and water-
resistant glue (Super Bonder Power Flex, LoctiteTM), 
and ranged between 4 and 10 g, depending on the ani-
mal weight, representing a maximum five percent of its 
total weight. After receiving the radiotag, the individual 
remained under observation overnight to detect any 
apparent disturbances in behavior, and to evaluate if the 
radiotag was fixed and working properly. Animals were 
released the next day on the same site of capture. After 
release, they were tracked for a whole night once a 
week using the homing-in technique [30]. As marsupi-
als are nocturnal, monitoring took place mainly during 
the night, when signal location was determined every 
two hours. A receiver TR-4 and an antenna RA-14K 
(Telonics, Mesa, USA) were used to detect and close in 
the signal of individuals until we were sure the animal 
was less than 5 m away, based on the quality and inten-
sity of the signal. Only when an individual moved more 
than 20 m a new location was georeferenced. Individu-
als were monitored until their radiotag fell, the animal 
died, or the signal was lost for two consecutive weeks. 
From these data, the geographical distances traversed 
in a week time were extracted.

A graphic representation showing the typical spa-
tial scales covered by the two experiments is shown in 
Fig. 1.

Fig. 1 Colored continuous curves represent some trajectories 
tracked at small scales with the spool‑and‑line technique. The 
black dashed straight line represents the mean distance travelled 
by an individual after 1 week, as estimated from the dataset 
obtained using radiotelemetry techniques. The typical animals size 
is comparable with the width of this line
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Methods
Small scales
For the data collected during one night of activity, we 
quantify the distribution of the step-lengths ℓ , defined as 
the distances between two successive turning points of a 
given trajectory. The turning points can be identified as 
the points with a change in the direction of motion larger 
than a fixed minimal angle. However, such an ad-hoc 
discretization is arbitrary and the estimated distribution 
P(ℓ) would strongly depend on this choice [31]. We over-
come this problem following a recent approach intro-
duced in [2]. In analogy with that procedure, a trajectory 
is projected on one axis and the projected step is defined 
as the distance between two inversions in the direction 
of the movement of the projected trajectory. It was ana-
lytically proven that in the presence of a power law dis-
tribution for the original path in 2D, the distribution for 
the projected paths preserves the same power law rela-
tionship [2]. In the case of an exponential distribution, 
the projected data maintain the exponentially decaying 
behaviour. Following this method, we are able to rigor-
ously investigate the shape of the P(ℓ) distribution using 
a segmentation procedure which does not depend on any 
arbitrary choice. As pointed out in [2, 31], there is only an 
important detail to be taken into account. The operation 
of projection causes the proliferation of spurious data 
corresponding to steps similar or even smaller than the 
smallest step-length present in the original dataset. These 
data must be excluded from the final analysis. Moreover, 
as the last measured step-length can have a length influ-
enced by the ending of the spool, they were eliminated 
from the data set too.

Once obtained P(ℓ) , we look for the best supported 
model for describing our data. We are interested in distin-
guish if the distributions present power law or exponen-
tial behaviors. For the power law behaviour we consider 
the Pareto distribution: f (x) = (µ− 1)aµ−1x−µ , for 
x ≥ a , and the truncated Pareto distribution, defined 
as: g(x) = (1− µ)/(b1−µ − a1−µ)x−µ , for a ≤ x ≤ b . 
Finally, the exponential distribution is defined as: 
h(x) = � exp(�a) exp(−�x) , for x ≥ a . As already com-
mented in the introduction, the use of a truncated Pareto 
distribution is essential. In fact, the direct physical lim-
its characteristic of a realistic animal movement produce 
inevitable truncation effects. For this reason, it is impor-
tant to consider an upper limit for the ℓ values.

The best estimation of the parameters of these distri-
butions can be obtained using the Maximum Likelihood 
Estimation (MLE) technique. This technique has shown 
to be the most reliable compared to classical least squares 
methods [16, 32, 33]. For the truncated Pareto distribu-
tion, the estimation of the µ parameter must be realized 
numerically; details can be found in [19, 33, 34].

Finally, a quantitative selection between the three 
considered fitting models is obtained using the Akaike 
information criterion (AIC), which compares mod-
els likelihoods, penalizing models with more param-
eters [35]. The AIC is defined as: AIC = 2K − 2L . L 
corresponds to the maximum log-likelihood, which is 
estimated following Edwards [8]; K is the number of 
parameters of the model, which is 2 for the exponential 
and Pareto distribution and 3 for the truncated Pareto. 
The best supported model is the one which displays the 
lowest AIC.

Large scales
The data collected during the radiotracking field study 
were filtered, considering only movements of individu-
als which do not leave the fragment where they where 
first detected. In fact we considered only the movement 
behavior of settled animals, disregarding animals that left 
the forest fragment for dispersal. We measured the geo-
graphical distance between the first animal position (the 
vector x̄1 ) and the secondary location ( ̄x2 ), measured 1 
week later: r = |x̄2 − x̄1| . From these data it is possible to 
quantify the frequency of traveled distances of individu-
als as a function of geographical distance r. Our aim is to 
distinguish if the data are better described by a classical 
distribution expected for a normal diffusive behaviour, or 
by a distribution generated by Lévy walks.

The first situation corresponds to a Rayleigh distribu-
tion, which is the one expected for a Brownian process. 
The distribution has the following aspect:

and the best estimation of its single parameter is obtained 
using the Maximum Likelihood Estimation technique. A 
simple calculation gives: σMLE = [ 1n

n
i=1 r

2
i /2]

1/2 , where 
n is the sample size, and its approximate variance is: 
σ 2
MLE/4n.
For testing if the data are well described by distribu-

tions generated by Lévy walks, we should consider the 
family of L-stable distributions, characterized by power-
law tails [13]. Unfortunately, most members of the L-sta-
ble family have no closed form and they are characterized 
by four parameters. For these reasons, they are not well 
suited for a direct goodness-of-fit test. However, in order 
to consider the L-stable family as an alternative model, 
the crucial aspect is to demonstrate that data present a 
clear power law upper tail. In fact, it is the tail the most 
important portion of the distribution for determining if 
the central limit theorem applies or not. For this reason, 
it is reasonable to focus on determining how heavy is the 
upper tail of the distribution. If we assume that our dis-
tribution decays as F(x) ∝ x−α for x > M , where M is the 

(1)P(r) =
r

σ 2
exp(−r2/2σ 2),
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median of the distribution and α > 0 , the distribution is 
heavy-tailed if α < 3 . The estimation of the tail index α is 
obtained by using the conditioned maximum likelihood 
estimator introduced by Hill [36].

This approach has some important advantages over 
popular models comparison or specific test based on 
general distributions. In fact, distributions with two 
power law tails are used in the literature [37, 38], but, 
despite they may present some convenience in the sta-
tistical description of the dataset, these general prob-
ability distributions do not have any plausible theoretical 
connection with movement models. Moreover, in gen-
eral, a comprehensive fitting of the data has the greatest 
descriptive power for the central region, but it says less 
about the tails of the distribution.

Exploring the connection between small and large 
temporal scales
Based on the results of the analysis of the data at small 
and large scales, we will explore the connections between 
these two regimes. Our aim is to test the robustness of 
our results and to clarify the relationships linking the two 
scales. In particular, we want to show how it is possible to 
obtain the principal statistical features of the large scale 
distribution as an emergent behavior generated by the 
properties of the small scale walks. For achieving these 
goals, we implement some simulations, based on discrete 
walks, for synthetical reproducing the empirical P(r) 
distribution. The discrete walks are parametrized using 
the results obtained from the analysis of the small scale 
data of Didelphis aurita. Fixed the number of steps n, 
for each walk, we calculate the related traveled distance 
ri . By generating a large amount of walks we can obtain 
the distribution Pn(r) . In dependence of n, this distribu-
tion presents very different characters. In fact, a small n 
generates a distribution with a well defined heavy upper 
tail; increasing the n value produces a shape change 
towards a typical Rayleigh distribution. This evolution in 
the shape of the distribution can be described by meas-
uring the tail index α defined previously. Alternatively, 
we can measure the maximum of the log-likelihood of 
the dataset of the ri , which are generated by the simula-
tions, considering a Rayleigh distribution ( L(ri|σMLE) ) 
and the maximum of the same log-likelihood of a dataset 
of equal size, but composed by independent, identically-
distributed draws ( di ) from a Rayleigh distribution with 
the same parameter σ ( L(di|σMLE) ). For our setting, the 
ratio R =

L(ri|σMLE)
L(di|σMLE)

 , will be very close to one when the 
distribution of the ri is practically represented by a Ray-
leigh distribution, and it will decrease towards zero the 
more the distribution Pn(r) departs from this shape. Note 
that we do not use the logarithm of the likelihood-ratio 
but the ratio of the log-likelihoods because its numerical 

output can more easily provide a rough description of the 
similarity between the two distributions.

Finally, we will shed light on the diffusion properties of 
these stochastic walks depicting the dependency of the 
typical value of these distributions on n.

Results
Small scales
We analysed 141 different trajectories, where each trajec-
tory is the whole track of a single individual movement. 
These data generated a sample size of 2239 steps, which 
corresponds to the number of regressed data after elimi-
nating the spurious l. The calculation of the AIC values 
shows that the Pareto-truncated distribution presents the 
lowest AIC, which indicates that it is the best model for 
the description of the data (see Table 1). This fact can be 
visually appreciated in Fig. 2, where we plot the data with 
the best estimated model. The Pareto-truncated distribu-
tion obtained using the MLE approach is quite satisfac-
tory. The exponent µ of the Pareto-truncated distribution 
is equal to 1.36± 0.02 and the parameter a and b are 
respectively 0.8 and 103.1 meters.

Large scales
The histogram of the collected data with the best esti-
mated Rayleigh distribution is plotted in Fig. 3. A visual 

Fig. 2 Log‑binned data with the best estimated Pareto‑truncated 
distribution (continuous lines) and exponential distribution 
(dashed line). Step‑lengths are expressed in meters. Analyzed data 
consider steps coming from the projections onto the two axis (x 
and y) together. In fact, as expected, the two projections present 
indistinguishable behaviors

Table 1 Models selection between Pareto‑truncated, Pareto and 
exponential distribution. �AIC is the difference of the AIC values 
and wAIC is the weighted value of the AIC of the considered 
models

Pareto-truncated Pareto Exponential

Loglikelihood − 6712 − 6937 − 6965

AIC 13431 13879 13934

�AIC 0 448 503

wAIC 1 0 0
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inspection suggests that data are well described by this 
model, in particular considering that the Rayleigh dis-
tribution depends only on a single parameter. The best 
estimated parameter obtained by means of the MLE is: 
σMLE = 54 ± 4 m. A Kolmogorov–Smirnov test of our 
observations against the fitted Rayleigh distribution gives 
a p value of 0.166, which suggests that we cannot reject 
the hypothesis that the field data come from the fitted 
distribution.

The estimation of the tail index α , as obtained using 
the Hill’s estimator, obviously depends on the fraction of 
observations used in the tail estimation. For every sub-
set of observations which satisfies r > M , the estimated 
α is always greater than 3, and it increases with decreas-
ing subsets, rejecting the hypothesis of a power law tail ( α 
should be < 3 ). In particular, a subset corresponding to 
the largest 58% of the original dataset gives α = 3.3± 0.5 . 
Diminishing the subset size the tail index increases, 
reaching 4.1± 0.9 when the 30% of the observations are 
used.

Exploring the connection between small and large 
temporal scales
Individual movements are simulated performing a dis-
crete walk which implements a Pareto truncated step-
length distribution with isotropic directions of motion. 
Once fixed the number of steps n, we measure the dis-
tance ri between the starting point and the final indi-
vidual position. We run 200,000 different simulations of 
the walk and we obtain the histogram of the ri for that 
n. We can observe that by changing the value of n, these 
histograms undergo a change in their shape. When the 

number of performed steps is small, a power law tail 
is clearly recognizable, but increasing the number of 
steps it disappears, generating a distribution character-
ized by a Rayleigh-like shape. This phenomenon is well 
described in Fig. 4, where we plot the tail index α and R, 
as measured from the different distributions Pn(r) . In 
this case, the α are measured selecting an upper-order 
statistics corresponding to the 40% of the original data-
set. This value is chosen because it produces a consist-
ent estimations of α for small n. For n < 40 , α is smaller 
than 3, which implies the presence of heavy upper tails. 
This fact finds a correspondence in the small R values, 
which suggests that a Rayleigh distribution is a poor 
description of the data. In contrast, for n > 40 , α is 
larger than 3, revealing the disappearance of the power 
law tail. The R value comes close to 1, suggesting that 
now the Rayleigh distribution can well approximate our 
data. For values of n larger than 100, effectively R ≈ 1 
and Pn(r) becomes indistinguishable from a Rayleigh 
distribution.

These simulation data can also characterize, in a clear 
and intuitive way, the diffusion properties of these 
walks. In Fig. 4 we display the typical value rt.v.n  of the 
Pn(r) as a function of n. For n large enough, the behav-
iour predicted by the central limit theorem, where 
rt.v.n ∼ n1/2 , is recovered. In this regime r is the sum of 
a sufficient large number of ℓ and the maximum values 
reached by these ℓ are directly determined by the cut-
off value b. For small n, we can observe a superdiffu-
sive behaviour ( rt.v.n ∼ nk , with k > 1/2 ). In this regime 
the number of sorted step lengths ℓ is reduced. It fol-
lows that the maximum values reached by these ℓ are 
generally small compared to the cut-off and its effect 
can be partially neglected. If we could effectively for-
get the cut-off and consider the distributions as power 
laws with exponent δ , the typical values should grow as 
n1/(δ−1) [13]. As in our case the cut-off is very sharp and 
the µ exponent is relatively close to 1, even if a power 
law can be detected, it is difficult to robustly estimate 
the corresponding exponent. The transition between 
the two regimes is quite smooth and the progressive 
convergence towards the normal diffusion set in for n 
close to 100, in accordance with the previous analysis of 
the Pn(r) shape.

Finally, we estimated the best n value which repro-
duces the P(r) of the field work dataset. This is deter-
mined by looking for the σMLE value which best 
approximates the one of the empirical data. For a num-
ber of steps fixed to 68, σMLE = 54 , exactly the same of 
the empirical case. In Fig. 5, it is possible to appreciate 
how the histograms of the simulated and experimental 
dataset are effectively very similar.

Fig. 3 Histogram of P(r) as obtained from the telemetry 
measurements, with the best estimated Rayleigh distribution 
(continuous line). The sample size is 43, which corresponds 
to the number of 1‑week distances measured, combining data 
from all individuals
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Fig. 4 Top: Tail index α normalized by 3, and R, as measured from the different distributions Pn(r) . Continuous lines are just a guide for the eyes. In 
the inboxes, the histograms represent the Pn(r) for n = 30, 70, 200 , as obtained from the simulation of 200,000 different walks. The continuous lines 
are the corresponding best estimated Rayleigh distributions. Bottom: typical values of the Pn(r) as a function of n. As a measure of typical value we 
use the geometric mean, which better characterizes the distributions when they are close to power laws. For large n we can observe that rt .v .n ∼ n

1/2 
(continuous line)
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Discussion
In the literature it is common to find works which 
describe the geometry of paths followed by different spe-
cies of animals, characterized by a variety of body sizes 
and, conversely, geographical scales. In general, these 
analysis collect data on short temporal scales (hours or 
daily scales) and use different specific methods of trac-
ing and segmentation of the paths. When large tempo-
ral scales are considered, studies are more interested in 
describing dispersion properties, and, for illustrating 
long-distance migration and dispersal, other methodolo-
gies, like biotelemetry techniques and satellite tagging, 
are typically used. In contrast, analyses which focus on 
a single species and describe movements at all relevant 
scales, relating the small to the large ones, are few [22–
24]. These studies are very important for the development 
of the movement ecology paradigm [39], which presents 
the goal of unifying organismal movement research also 
from the perspective of temporal scales: from a single 
step toward the entire lifetime track, eventually charac-
terizing the presence of different movement phases. In 
this work we have explored these ideas from a particu-
lar point of view. We do not emphasize the importance of 
different biological processes, but we just scrutinize the 
statistical effects generated on movements by crossing 
through different temporal scales, without introducing 
any scale-dependent ecological effect or mechanism.

In order to fully describe the statistics of general move-
ments, in principle, it would be necessary to typify the 
distribution of the movement steps at every time scale; in 
fact, the distribution of the daily steps could be different 

from the weekly or monthly ones. In simplified cases, it 
is possible to reconstruct the distributions corresponding 
to large time scales only knowing the one describing the 
short time scales. In fact, from a theoretical perspective, 
if the short time scale distributions are Gaussians or Lévy 
ones, the situation is particularly favorable. In this case, 
as these distributions are stable, at all time scales the step 
distributions will be described by the same stable law, 
with their parameters values appropriately tuned. This 
well known result can be generalized to the case when 
movement steps are summed from independent distribu-
tions with finite variance. Then, the central limit theorem 
assures that the distribution describing long times steps 
converges towards a Gaussian, if the number of steps is 
sufficiently hight. Depending on the rate of convergence, 
this result can be of greater or lesser interest, and, for 
example, a Lévy flight with truncation can lead to Gauss-
ian behaviors.

These theoretical results can be applied to real-world 
data, implying that whether a truncated Lévy flight or a 
Brownian motion apply will depend on the scale of aggre-
gation of the paths of the considered animals. By resa-
mpling at smaller scales and retesting the model at each 
scale, discernible truncated Lévy or Brownian modes may 
come into focus at the appropriate scale. In our case, at 
the scale of 1-day paths, a truncated Lévy flight fits very 
well steps length data. Zooming out, however, we would 
expect a truncated Lévy flight model to be falsified when 
the scale matches a sufficient large sum of steps. Indeed, 
our analysis shows that the Lévy truncated distribution 
which characterizes the daily movements of Didelphis 
aurita converges towards a Brownian model after only 1 
week. This means that the effect of the rude truncation 
present in the daily data generates a fast rate of conver-
gence towards Brownian behaviors. For this reason, Lévy 
flights become of scarce interest in describing the disper-
sion properties of these animals inside the considered 
fragments, which result described by a normal diffusion 
process, and not a fast, anomalous one. This result has a 
clear ecological relevance, as normal diffusion processes 
produce shorter typical translation distances than the 
anomalous ones, generated by Lévy flights. This implies 
a lower propensity to explore regions further away from 
the origin of the movement.

Our study presents some connections with the cur-
rent growing interest in describing the crossover from 
superdiffusive to normal-diffusive dynamics in different 
particles systems such as, for example, in actively mov-
ing biological cells. However, with the exception of a 
study on aphids [17], this phenomenon has not yet been 
quantitatively recorded in the case of animal movements. 
Note that this crossover is generally characterized by 
looking at the temporal dependence of the mean squared 

Fig. 5 The blue histogram represents the distances r generated 
by a simulation which uses a Pareto truncated distribution 
with the parameters calibrated from the empirical dataset when it 
implements walks of 68 steps. Data are obtained from 200,000 
different walks. The red histogram illustrates the field data as obtained 
from the telemetry measurements
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displacement. A linear dependence corresponds to the 
normal diffusion law; super-linear relations, in the form 
of a power-law, correspond to superdiffusive behaviors. 
In our study we are not able to describe this phenomenon 
by looking directly at the mean squared displacement 
since our trajectories did not present temporal tracking 
and did not entirely span the considered time scales.

Finally, it is important to note that the effect of sum-
mation of enough different steps is sufficient for generat-
ing the Rayleigh distribution. Here it is not necessary to 
introduce other biological or ecological constraints, such 
as fragment size, aversion to densely occupied regions, 
feeding spots, and home range, nor to typify a variety of 
ecological processes operating at diverse spatio-temporal 
scales, for producing different movement phases [39]. 
In this way we are able to predict movements over large 
temporal scales through simulations calibrated from 
empirical results obtained over short time periods [40, 
41], without the necessity of introducing other effects. 
Of course, ecological constraints on movement behavior 
do exist, in general and for Didelphis aurita in particular 
[27–29]. Home range area and location is frequently con-
sidered one such ecological constraint, that could limit 
superdiffusive movement, generating subdiffusive or nor-
mal-like diffusion (review in [42]). However, home range 
actually is more a consequence of interactions between 
individual behavior and their environment, not an envi-
ronmental factor itself. Our results suggest that factors 
determining home ranges are more likely to be affecting 
short term responses, manifest in the distributions of 
step lengths and turning angles. Long term normal-like 
diffusion could be just a consequence of these short-term 
effects.

This study shows how very simple models like tradi-
tional discrete walks may be adequate for describing 
movement data at many temporal resolutions, producing 
results that are not obvious, but can be easily interpreted. 
Even when a Lévy flight results not to be appropriate 
for describing large scales behaviors, it provides a refer-
ence point for a parsimonious explanation of the overall 
process of movement. In this sense a Lévy flight can be 
seen, together with the Brownian motion, as an appropri-
ate null model, which acts as a more useful starting point 
than other more elaborated models.

Lévy processes have been accepted as appropriate 
models describing movement paths of a variety of organ-
isms [43], but conflicting views remains on the processes 
they represent. Some argue that they are mostly limited 
to describe movements at large spatial scales, and Lévy 
processes would be a result of a series of random walk 
processes acting at different spatial scales [42, 44]. Con-
versely, truncated Lévy processes may approximate ran-
dom walks, or Brownian motion, as the number of steps 

increases between points where positions are registered 
[20]. Our results presents evidence that the latter occurs 
in nature, in the paths of the marsupial Didelphis aurita. 
More than one mechanism could result in a Lévy process 
[43]. The realization of this connection between Lévy 
and Brownian regimes in the modeling of animal paths is 
essential to understand what mechanism is determinant 
in a particular system.
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