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Abstract 

Background Understanding how to connect habitat remnants to facilitate the movement of species is a critical task 
in an increasingly fragmented world impacted by human activities. The identification of dispersal routes and corridors 
through connectivity analysis requires measures of landscape resistance but there has been no consensus on how to 
calculate resistance from habitat characteristics, potentially leading to very different connectivity outcomes.

Methods We propose a new model, called the Time‑Explicit Habitat Selection (TEHS) model, that can be directly 
used for connectivity analysis. The TEHS model decomposes the movement process in a principled approach 
into a time and a selection component, providing complementary information regarding space use by separately 
assessing the drivers of time to traverse the landscape and the drivers of habitat selection. These models are illus‑
trated using GPS‑tracking data from giant anteaters (Myrmecophaga tridactyla) in the Pantanal wetlands of Brazil.

Results The time model revealed that the fastest movements tended to occur between 8 p.m. and 5 a.m., suggesting 
a crepuscular/nocturnal behavior. Giant anteaters moved faster over wetlands while moving much slower over forests 
and savannas, in comparison to grasslands. We also found that wetlands were consistently avoided whereas forest 
and savannas tended to be selected. Importantly, this model revealed that selection for forest increased with tem‑
perature, suggesting that forests may act as important thermal shelters when temperatures are high. Finally, using 
the spatial absorbing Markov chain framework, we show that the TEHS model results can be used to simulate move‑
ment and connectivity within a fragmented landscape, revealing that giant anteaters will often not use the shortest‑
distance path to the destination patch due to avoidance of certain habitats.

Conclusions The proposed approach can be used to characterize how landscape features are perceived by individu‑
als through the decomposition of movement patterns into a time and a habitat selection component. Additionally, 
this framework can help bridge the gap between movement‑based models and connectivity analysis, enabling 
the generation of time‑explicit connectivity results.
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Background
Land-use change is the major driver of biodiversity 
loss in terrestrial and freshwater ecosystems across 
the world [11] and the resulting habitat loss and frag-
mentation has been a central theme for conservation 
biologists [22, 24], particularly regarding how to con-
nect habitat remnants to facilitate the movement of 
wildlife [7, 18]. Identifying wildlife dispersal routes 
and potential corridors through connectivity analysis 
typically requires the quantification of landscape resist-
ance [15, 23, 55] and this is often measured as a func-
tion of proxies of habitat quality, such as the estimated 
presence probability derived from species distribution 
models (e.g., [35]) or derived from habitat selection 
models (e.g., [56]). However, connectivity analyses typi-
cally use arbitrary equations to transform these proxies 
of habitat quality into resistance (but see [25, 50]). For 
example, resistance has been often assumed to be the 
inverse of the predicted probability of presence [56], 
but other transformations have also been applied (e.g., 
[29, 34, 35]). In contrast to focusing on resistance, some 
authors have argued that wildlife corridors should be 
based on areas in which animals move faster and in a 
directed fashion (i.e., exhibit transit behavior) [2, 34] 
instead of areas with higher habitat quality.

Recent work from Hofmann et al. [25] has combined 
habitat selection and speed to generate connectivity 
maps while avoiding these arbitrary transformations 
to calculate landscape resistance. In the first step of 
their analysis, animal movement data is analyzed using 
the integrated Step Selection Analysis (iSSA; [4]), an 
approach that accounts for how habitat characteristics 
influence both speed and selection processes. Then, an 
individual-based movement model is used to simulate 
potential trajectories based on the estimated param-
eters of iSSA. Finally, these trajectories are summa-
rized into various connectivity maps. In this article, 
we propose an alternative approach that also builds on 
the idea that time taken to traverse a particular path 
(or its reciprocal, speed) and habitat selection strength 
are distinct axes that together can help improve under-
standing of dispersal and connectivity across the land-
scape (Box  1) (see also [12, 32]). More specifically, we 
develop a novel habitat selection model that decom-
poses movement in these two processes, enabling a 
better understanding of resource selection. This model 
generates a probabilistic metric of habitat selection that 
can be used in connectivity analysis without requiring 
arbitrary transformations. We provide an example by 
modeling empirical movement data of giant anteaters 
(Myrmecophaga tridactyla) in the floodable savannas of 
Brazil.

Box 1: Conceptual framework
It is important to take into account both selection 
strength and time to traverse the landscape. Relying 
just on selection strength, while ignoring time, limits 
the understanding of animal resource use. For exam-
ple, a selected habitat might be selected for displace-
ment (often resulting in faster movements and shorter 
time in that area; upper left quadrant in Fig.  1) or for 
resource use, such as foraging and shelter (often result-
ing in slower movements and longer time in the area; 
upper right quadrant in Fig. 1; [3, 57]). Similarly, a habi-
tat type might be avoided because it presents a high 
mortality risk (often resulting in faster movements and 
shorter time; lower left quadrant in Fig.  1) or because 
it is a physical barrier to movement (often resulting in 
slower movements and longer time; lower right quad-
rant in Fig. 1; [5, 12, 47]).

Only accounting for the time taken to traverse the 
landscape while ignoring selection strength can also 
be problematic [12]. For example, residence time (i.e., 
the time an individual spends in a given area once it is 
reached) has been used as an indicator of high-quality 
resource areas used by animals (e.g., herbivore forag-
ing patches or carnivore kill site; [49, 51]). However, 
increased time within a particular type of landscape 
could simply indicate the presence of greater biome-
chanical resistance to movement (e.g., due to greater 
number of obstacles/barriers or steeper slopes) [3]. 
Time taken to traverse a landscape can also be related 
to perceptual range (e.g., visually oriented small mam-
mals tend to increase their perceptual range in habitats 
with low vegetation height, which allows for faster and 
more directed movement; [46]) and memory (e.g., prior 
knowledge of resource location can result in faster and 
more directed movement towards a given type of habi-
tat; [14, 42]).

Examining time and selection strength as separate 
axes of movement can help distinguish between different 
motivations for movement. For example, we illustrate in 
Fig.  1 how fast movement and selection can character-
ize a displacement habitat (upper left quadrant) whereas 
slow movement and selection might be the hallmark of 
resource exploration habitat (upper right quadrant). Sim-
ilarly, fast movement associated with avoidance might 
indicate permeable but risky habitat (lower left quadrant) 
whereas slow movement and avoidance suggest resistant 
and risky habitat (lower right quadrant).

In short, selection strength and time required to trav-
erse the landscape can provide complementary insights 
to determine whether a landscape characteristic is per-
ceived as a movement corridor, a source of foraging and 
shelter, or a source of risk, with important implications 
for connectivity.
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Material and methods
Linking habitat selection models with connectivity analysis
Most of the prominent methods used for connectiv-
ity analysis rely on estimates of cost of movement in the 
form of resistance surfaces [15, 33]. In this article, how-
ever, we focus on parameterizing a permeability/con-
ductance matrix (instead of a resistance surface) because 
this enables us to decompose movement patterns into a 
time component and a habitat selection component.

Each cell in the permeability matrix contains the prob-
ability of choosing a particular pixel j given time con-
straint �t and initial pixel i (i.e., p

(

Pt+�t = j|�t,Pt = i
)

 ). 
Using Bayes theorem, this probability is given by:

where N is the number of pixels in the landscape 
(i.e., Pt+�t ∈ {1, . . . ,N }) . Note that the time component 
p �t|Pt+�t = j,Pt = i  quantifies the likelihood that �t 
will be required to reach pixel Pt+�t = j from pixel Pt = i , 
whereas the selection component p

(

Pt+�t = j|Pt = i
)

 
quantifies selection strength for pixel j given initial pixel 
i regardless of time constraints. This expression is simi-
lar to the equations commonly used for habitat selec-
tion models. For example, if p

(

�t|Pt+�t = j,Pt = i
)

 

(1)p
(

Pt+�t = j|�t,Pt = i
)

=
p
(

�t|Pt+�t = j,Pt = i
)

p
(

Pt+�t = j|Pt = i
)

∑N
k=1 p(�t|Pt+�t = k ,Pt = i)p(Pt+�t = k|Pt = i)

,

is a constant for all N pixels, then this quantity cancels 
out in the numerator and denominator and this expres-
sion becomes identical to those used in standard step 
selection (SSF) and resource selection (RSF) functions. 
In short, Eq.  1 decomposes the movement process into 
a time and a selection component. Because this decom-
position relies on a well-accepted mathematical relation-
ship (i.e., Bayes theorem), this model formulation does 
not require the commonly adopted assumption in SSFs of 
separable movement and habitat selection kernels.

Permeability matrices are a key part of popular connec-
tivity models, such as circuit theoretic connectivity anal-
ysis [38] and the spatial absorbing Markov chain (SAMC) 

framework [17]. In this article, we rely on SAMC to link 
habitat selection models to connectivity analysis. This 
framework is based on random walk theory and captures 
the initiation and termination of movement, how the 
environment alters movement behavior, and how these 
processes can impact demographic rates. Aside from the 
permeability matrix (Q), SAMC may also require infor-
mation on the initial distribution of a species ( �) and 
information on factors that may terminate movement 

Fig. 1 Time to traverse the landscape and selection strength are two important axes for characterizing the landscape from the perspective 
of a species. The variable in the x‑axis is time taken to traverse a particular distance and, as a result, shorter or longer periods of time correspond 
to faster and slower movements, respectively
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(e.g., mortality risk from roads and settlement) ( R) . 
Depending on the application, all or only subsets of these 
components might need to be considered. Importantly, 
unlike other common connectivity models such as least-
cost analysis or circuit-theoretic models [13, 38], SAMC 
can provide time-explicit results in addition to long-term 
analytical solutions for multiple connectivity metrics.

The time-explicit nature of SAMC allows us to directly 
relate our movement model results to landscape connec-
tivity. More specifically, we develop a model to explic-
itly estimate p

(

�t|Pt+�t = j,Pt = i
)

 in Eq.  1 (onwards 
simply “time model”) by assuming that �t is the time 
interval between GPS fixes. The results from this model 
are then used together with the selection function 
(

Pt+�t = j|Pt = i
)

 , yielding the Time-Explicit Habi-
tat Selection (TEHS) model. As described in Box 1, this 
decomposition of movement into a time component and 
a selection component can improve the understanding of 
how animals use the landscape and disperse to new areas. 
Once the parameters from the time model and the selec-
tion function have been estimated, they can be used to 
calculate the movement probabilities that are part of the 
transition matrix Q (i.e., qij = p

(

Pt+�t = j|�t,Pt = i
)

 ) in 
SAMC and the permeability matrix of other connectiv-
ity models. Below, we start by first describing the time 
model to then describe the habitat selection component 
within the TEHS model.

Time model
We illustrate the main concepts underlying the time 
model using a simple hypothetical example (Fig. 2). Fig-
ure 2a depicts the path taken by a hypothetical individual 
in a given step (i.e., the path defined by two consecutive 
GPS fixes) where step length is 6 pixels and the animal 
takes 7 min overall to traverse these pixels. The first three 
pixels are comprised of grasslands and the animal takes 
0.8, 0.6 and 0.7 min to traverse these pixels whereas the 
next three pixels are traversed much more slowly (i.e., 
1.6, 1.7, and 1.6 min per pixel) because they are forested 
pixels. Importantly, only the time taken to traverse all 6 
pixels is known when using location data (i.e., the time 
taken to traverse individual pixels is latent and therefore 
must be estimated).

We start by assuming that the time taken to traverse 
pixel i in step j ( �tij ) is given by

where we assume that E
[

�tij
]

=
aij
b
= Dij exp

(

xTi β
)

 . In 
this expression, Dij is the distance traveled in pixel i in 
step j, xTi  is a vector of covariates associated with pixel i, 
and β is a vector of regression coefficients. In this gamma 
regression, time taken to traverse a pixel is assumed to 

�tij ∼ Gamma
(

aij , b
)

,

be proportional to the distance traveled but the propor-
tionality constant depends on the characteristics of the 
pixel. As a result, these slope parameters determine how 
the mean time taken to traverse a pixel is associated with 
pixel-level variables such as land-use/land-cover (LULC), 
elevation, distance to road, or normalized difference veg-
etation index (NDVI).

Let �t.j =
∑nj

i=1�tij be the total amount of time in 
step j, where nj is the number of pixels traversed within 
step j. Notice that using standard GPS tracking data, 
we only observe �t.j while the individual times for each 
pixel �tij are latent. For example, in Fig.  2a, the total 
time taken to traverse these 6 pixels was equal to 7 min, 
but we do not know the time required to cross each 
individual pixel. Nevertheless, because of the Gamma 
distribution assumption, it can be shown that

This model can be viewed as representing a 
gamma process in which, because individual incre-
ments arise from gamma distributions, the sum of 
increments is also gamma distributed. Unfortu-
nately, it can be cumbersome to repeatedly calculate 
E
[

�t.j
]

=

∑
nj
i=1 aij
b

=
∑nj

i=1 Dij exp
(

xTi β
)

 within our 
model fitting algorithm. To enable this model to be fit 
in a straightforward fashion, we approximate this quan-
tity by using the mean of the covariates values for the 
pixels traversed in step j ( xTj  ) as well as the overall dis-
tance in this step ( Dj):

nj
∑

i=1

Dij exp
(

xTi β
)

≈ Dj exp

(

xTj β
)

.

The accuracy of this approximation is likely to be 
higher if the pixels that characterize the environment 
are large relative to the step lengths and/or if there is 
little spatial heterogeneity in the landscape. We test this 
approximation using simulated data and find that our 
model works well (see Additional file  1: Appendix  1). 
As a result of this approximation, our model becomes 
�t.j ∼ Gamma

(

bDj exp
(

xTj β
)

, b
)

.

An extension of this basic model allows us to account 
for additional variability associated with missed fixes. 
Although tracking devices are often programmed to 
collect GPS coordinates at regular time intervals, �t.j 
can be substantially different from the programmed 
time interval due to missing GPS fixes. When GPS fixes 
are missed, it is likely that there will be even greater 
uncertainty regarding the exact path traveled by the 
animal. For this reason, we modify the above model to 
allow the variance to potentially increase when GPS 
fixes are missed

�t.j ∼ Gamma

( nj
∑

i=1

aij , b

)

.
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where Mj is a binary variable, equal to 1 if GPS fixes were 
missing in step j and equal to zero otherwise. In this 
expression, the variance is given by 

Var
[

�t.j
]

=
Dj exp

(

xTj β
)

exp (γ0+γ1Mj)
 . If missed GPS fixes increase 

the variance, we expect that γ1 < 0 because the denomi-
nator will be smaller when Mj = 1 and therefore the vari-
ance will be larger.

Besides providing inference on how landscape vari-
ables (e.g., land use) influence time to traverse a pixel, 
this model also estimates the probability of reaching 

�t.j ∼ Gamma
(

exp
(

γ0 + γ1Mj

)

Dj exp
(

xTj β
)

, exp
(

γ0 + γ1Mj

)

)

, different parts of the landscape in a particular time inter-
val, assuming an initial location. For example, Fig.  2b 
displays the probability that the animal requires 7  min 
to reach each pixel in the landscape assuming the animal 
starts at the center black dot and moves in a straight line. 
Areas close to the starting point (e.g., point A in Fig. 2b) 
have low probability because much less than 7  min are 
needed to reach these pixels. On the other hand, point 
C in Fig. 2b also has low probability because much more 
than 7 min is required to reach this pixel given that it is 
very far away from the starting point. Notice that Fig. 2b 
is asymmetric because, in this example, time taken to 
traverse the landscape is influenced by the LULC classes 

Fig. 2 Conceptual description of the time model and habitat selection function within the TEHS model. a A hypothetical landscape illustrating 
the time taken to traverse a particular path. Traversed pixels are shown with black squares and the time (in min) taken to traverse each pixel 
is shown above the corresponding pixel. b Time model results regarding the probability of taking 7 min to reach each pixel of the landscape 
given the initial starting point. c Selection strength for the different landscape characteristics, where values > 1 indicate selection and values < 1 
indicate avoidance relative to grassland. d Movement probabilities based on the TEHS model once the results of the time model and selection 
strength are taken into account. In panels b–d we show four potential endpoints for the step (points A–D) in this landscape
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along the path. For instance, the probability of taking 
7 min to reach point B is similar to that of reaching point 
D, despite the fact that point B is closer to the starting 
point when compared to D. This occurs because the ani-
mal moves faster over the path required to reach D (due 
to the lower proportion of forests and presence of wet-
lands) whereas the animal moves slower over the path 
required to reach B (due to the higher proportion of for-
ests and absence of wetlands).

Habitat selection function within TEHS
To illustrate how the Time-Explicit Habitat Selection 
(TEHS) model works, it is useful to refer back to Fig. 2. 
Figure  2c reveals that the animal might have moved 
from the starting point to point B but other steps would 
also have been possible (e.g., the path from the starting 
point to point D). Irrespective of its movement capabil-
ity, in this example, individuals tend to select forests and 
savanna in relation to grassland while avoiding wetlands. 
Figure  2d shows that the step ultimately chosen by the 
animal is driven by a combination of the likelihood of the 
animal reaching that pixel within a given time interval 
(estimated by the time model) and selection strength for 
that path irrespective of movement constraints (habitat 
selection function).

To more clearly explain the TEHS model, assume that 
the fix rate from our GPS tracking device is �t , that the 
animal is currently in pixel i (i.e., Pt = i ), and that the 
landscape contains N pixels (i.e., Pt+�t ∈ {1, . . . ,N }) . 
Furthermore, recall that we are interested in estimating 
the probability of choosing pixel j given time constraint 
�t and starting point i (i.e., qij = p

(

Pt+�t = j|�t,Pt = i
)

 ) 
(Eq. 1). In this equation, p

(

�t|Pt+�t = j,Pt = i
)

 quanti-
fies the likelihood that �t will be required to traverse the 
path between Pt = i and Pt+�t = j and can be calculated 
based on the time model described previously.

We assume that the habitat selection model (i.e., 

p
(

Pt+�t = j|Pt = i
)

 in Eq.  1) is given by 
exp

(

xTij α
)

∑N
k exp

(

xTij α
) , 

where xTij  is a vector that contains the mean covariate val-
ues in the path from i to j and α is a vector containing the 
corresponding slope parameters. We rely on average 
covariate values in order to be consistent with the time 
model formulation, but this is not required (i.e., just the 
covariate values at the destination pixel j could have been 
used). Our model calculates the probability of moving 
from pixel i to pixel j by first specifying the marginal hab-
itat-selection probability and multiplying it by the condi-
tional time probability. This conditional time probability, 
given by the time model, will automatically distinguish 

pixels that are available from ones that are not. For 
instance, a pixel that is too far away for the animal to 
reach within a particular time interval �t will be essen-
tially removed from Eq.  1 because 
p
(

�t|Pt+�t = j,Pt = i
)

≈ 0.
To fit the habitat selection model, we start by noting 

that the denominator in Eq.  1 is similar to that in SSF 
models, except that the integral is replaced by a sum 
because we are assuming discrete (rather than continu-
ous) space. As in SSF models, it can be computationally 
expensive to calculate this denominator because, in the 
case of Eq. 1, the sum is over all potential destination pix-
els in the study area (i.e., N might be very large) (e.g., [1, 
39, 44]). Various approaches to calculate the SSF denomi-
nator are reported in the literature, including Monte 
Carlo with known movement kernel, uniform Monte 
Carlo, importance sampling, and uniform quadrature 
[39].

Instead of attempting to approximate these denomina-
tors, we rely on the approach described in Manly et al. [, 
chapter 8] for SSFs. Assuming space is discrete, we write 
our likelihood as:36

where yt+1 is a vector of length N (the number of grid 
cells within the study region) comprised of 0 s except for 
one element which is equal to 1, representing the chosen 
grid cell. The elements of the vector p are the individual 
probabilities of moving to each grid cell, given by Eq. 1. 
Next, we partition yt+1 into two mutually exclusive sets: 
(a) y(1)t+1 is the set which includes the chosen grid cell and 
a sample of other cells that were not chosen; and (b) y(0)t+1 
is the set with all the remaining grid cells, all of which 
were not chosen. Similarly, we also partition the prob-
ability vector p into the corresponding vectors p(1) and 
p(0) . Using basic properties of the multinomial distribu-
tion, the conditional distribution of y(1)t+1 given y(0)t+1 is 
given by:

where 1T is the transpose of a vector comprised of ones 
and 1Tp(1) is just the sum of all probabilities within the 
vector p(1) . This expression is useful when fitting the 
TEHS model (and when fitting other SSF models) 
because the challenging denominator in Eq. 1 disappears 
when calculating p(1)

1Tp(1)
 . We rely on this conditional likeli-

hood (i.e., Eq.  3) instead of the likelihood in Eq.  2 to 
obtain unbiased parameter estimates.

It is important to note that this conditional likelihood is 
valid regardless of how yt+1 is partitioned (i.e., regardless 

(2)yt+1 ∼ Multinom(n = 1,p)

(3)y
(1)
t+1|y

(0)
t+1 ∼ Multinom

(

n = 1,
p(1)

1Tp(1)

)



Page 7 of 17Valle et al. Movement Ecology           (2024) 12:19  

of how “available sites” are selected). Therefore, one does 
not need to use samples from the empirical distribu-
tions of turning angles and step lengths to determine the 
available habitat, as is traditionally done in step selection 
models. We confirm that the approach used to select step 
lengths does not influence parameter estimates using 
simulations (see Additional file  2: Appendix  2). How-
ever, using the conditional likelihood in Eq.  3 instead 
of the original likelihood in Eq. 2 results in information 
loss, ultimately resulting in decreased precision of the 
parameter estimates. This reveals the important tradeoff 
between computational speed (afforded by selecting only 
a subset of the available pixels) and precision in param-
eter estimates.

Empirical analysis: giant anteater case study
Movement data
The data were collected between 2013 and 2017 in a 350-
km2 area in the Brazilian Pantanal (19° 16′ 60ʺ S, 55° 42′ 
60ʺ W). The landscape is a mosaic of habitats that include 
forests, open grassland, pasture, savannas, and wetlands 
(Fig. 3). Historical mean temperature is 25.4  °C and cli-
mate is classified as semi-humid tropical (“Aw” in Köp-
pen’s climate classification). Traditional extensive cattle 

ranching is practiced in the area, but overall anthropo-
genic impacts and threats are relatively low.

Anteaters were captured, immobilized, and sedated 
following the procedures described in Kluyber et  al. 
[31]. Each individual was sexed, weighed, and equipped 
with a global positioning system (GPS, TGW-4570, Tel-
onics) harness. None of the tracking devices exceeded 
3% of the animals’ body mass. The GPS devices were pro-
grammed to record location points at 20 or 30-min inter-
vals (depending on the animal). However, because some 
GPS fixes failed to be acquired, the time interval between 
fixes was sometimes greater than 20 or 30  min. As the 
time interval increases due to an increase in the number 
of failed GPS fixes, the assumption of a straight-line path 
becomes less reliable. For this reason, we removed obser-
vations for which the time interval was greater than 1 h 
and, whenever the time interval was greater than 35 min 
(to allow for some tolerance around the 30  min time 
interval), we allowed for increased variance in our time 
model by setting Mj to one.

We also removed observations with speeds unlikely 
to be achieved by the species (> 0.33  m/s, approx. the 
99th percentile of speed). Taken together, the removal 
of observations with very large time intervals or with 

Fig. 3 Land‑use land‑cover (LULC) classification of the study region for the year 2016 according to Mapbiomas (https:// mapbi omas. org/ en). Three 
individual giant anteaters (Myrmecophaga tridactyla) were monitored through GPS telemetry (semi‑transparent circles) in the Brazilian Pantanal 
wetlands (green polygon on the inset)

https://mapbiomas.org/en
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unrealistic speeds resulted in the elimination of 2% of 
the data. Also, an important observation is that our time 
model is not defined when distances are exactly equal 
to zero. Therefore, whenever the distance between two 
GPS fixes was equal to zero (0.2% of our observations), 
we set distance to the smallest non-zero distance that 
was recorded (i.e., 1  m). The final movement dataset 
contained ~ 65,000 observations from three individuals 
(Table 1).

To characterize the habitat, we relied on Collection 5 
of land-use land-cover classification (LULC) provided by 
Mapbiomas for the Pantanal ecosystem (https:// mapbi 
omas. org/ en) for each year between 2013 and 2017. Pixel 
size of this LULC product is 30 × 30 m. We also relied on 
hourly temperature data collected by the nearest auto-
matic meteorological station of the National Institute of 
Meteorology of Brazil (INMET). Given that these tem-
perature data occasionally exhibited abnormal temporal 
patterns (e.g., sudden drops followed by sudden increases 
of temperature) and there were some missing data, we 
decided to rely on the median temperature for each hour 
in each month and each year as a more robust measure 
of temperature that reflects both within day variation as 
well as seasonal variation.

Fitting the time model
For each step, defined as the straight line between two 
consecutive locations, we extracted the proportion of 
each LULC cover within a 30  m buffer of the path to 
account for GPS location and individual path uncertainty 
[56]. We combined the grasslands and pasture classes 
(hereafter grasslands), and then used it as the baseline 
LULC. As a result, we only include the proportion of 
forest, savanna, and wetland as covariates in our time 
model. Finally, to account for diel patterns in movement, 
we relied on cyclic cubic B splines to characterize how 
time taken to traverse a particular path depends on time 
of day, where the knots were set to 6 a.m., 12 p.m., and 
6 p.m.

We fit this model in a Bayesian framework using JAGS 
[43]. Separate models were fit for each individual. Vague 
priors were adopted for γ0, γ1, and β0 whereas we used 
more conservative priors for the slope parameters βp 
(p = 1, …,P):

A tutorial describing how to prepare the data and fit the 
time model is provided in Additional file 3: Appendix 3.

Fitting the habitat selection model
As described above, one does not have to rely on the 
empirical distributions of turning angles and step lengths 
to create the potential steps that the animal could have 
taken. Instead, we chose to create four potential steps of 
the same length as the observed step, one for each car-
dinal direction (i.e., east, west, north, and south from 
where the step started). Similar to the analysis for the 
time model, the proportion of each LULC class in the 
area surrounding each step was calculated by creating a 
30-m buffer around the straight line that connects two 
consecutive locations and determining the proportion 
of pixels associated with each LULC class. Furthermore, 
although grasslands/pastures are present in the study 
region, we did not include this LULC class as covariate 
in the model because they act as the baseline LULC class. 
Finally, we removed observations with missing tempera-
ture data and steps for which LULC was identical for the 
observed and available steps (see sample size for each 
individual in Table 1). The reason for this last procedure 
is that there is no information on selection strength if 
the habitat information is the same for the observed and 
available steps because these cancel out when calculating 
the SSF ratio [37, 52].

We also fit this model in a Bayesian framework using 
JAGS [43]. Separate models were fit for each individual 
using the following conservative priors for the slope 
parameters:

γ0, γ1,β0 ∼ N(0, 10), and

βp ∼ N(0, 1) for p = 1, . . . ,P.

Table 1 Summary of the movement data used by the time and the habitat selection models. F and M stand for female and male, 
respectively

ID Sex Monitoring period Duration (days) Number of observations

Start End Time model TEHS

Berenice F Oct 2015 Nov 2016 386 26,996 15,577

Brigite F Jul 2013 Jul 2014 340 11,233 7510

Fergus M Jul 2016 Aug 2017 407 27,010 13,115

Total 1133 65,239 36,202

Average 378 21,746 12,067

https://mapbiomas.org/en
https://mapbiomas.org/en
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A tutorial describing how to incorporate the time 
model results and fit the TEHS model is provided 
together with this article (Additional file 3: Appendix 3).

Connectivity implications
Recall that once the parameters of the TEHS model (i.e., 
the time model and the habitat selection model) have 
been estimated, they can be used to calculate the move-
ment probabilities qij = p

(

Pt+�t = j|�t,Pt = i
)

 in Eq. 1 
and create the permeability matrix Q, one of the key 
components of circuit theoretic connectivity analysis and 
SAMC. In this section, we examine the implications of 
the TEHS results in terms of characterizing permeabil-
ity in heterogeneous and fragmented landscapes using 
SAMC.

To estimate the amount of flow of individuals through 
heterogeneous landscapes, the expected number of indi-
viduals in each pixel after t time steps was calculated as 
N�TQt , where T denotes the transpose operation and 
N� characterizes the initial distribution of individuals in 
each pixel of the landscape [17]. To illustrate these time-
explicit calculations, we created a hypothetical landscape 
composed by a large wetland surrounded by grasslands 
with two patches of savanna and estimated the flow of 
individuals at different points in time. We assume that 

αp ∼ N(0, 1) for p = 1, . . . ,P. 100 individuals start at one savanna patch at the begin-
ning of the simulation aiming to reach the other savanna 
patch. To set a savanna patch to be the destination, we 
selected a pixel i∗ at the center of this patch and we 
modified the Q matrix by setting qi∗j = 0 for i∗ �= j and 
qi∗i∗ = 1.

Results
Time model results
The results for the time model applied to the simulated 
data showed that our model was able to estimate the 
true parameters well despite relying on an approxima-
tion where covariates are averaged along each step, even 
for landscapes that are more spatially heterogeneous 
(Additional file  1: Appendix  1). The results for the time 
model applied to the giant anteater data show that indi-
viduals consistently moved slower when traversing for-
ests and savannas and faster when traversing wetlands, 
in comparison to the time taken to traverse grasslands 
(the baseline LULC) (Fig. 4a). Furthermore, based on our 
cyclic splines, we also find that giant anteaters tended to 
move much slower during daytime, from approximately 
5 a.m. to 8 p.m., indicating that this species tends to have 
a nocturnal/crepuscular activity pattern (Fig. 4b). Finally, 
as expected, the γ1 coefficients associated with the 
missed GPS fixes were consistently estimated to be nega-
tive, revealing that missed GPS fixes resulted in greater 

Fig. 4 Results from the time model. a Estimated mean time (in min) taken to traverse 50 m in different types of habitat at 8 p.m. Each circle 
represents the result for a given animal and LULC category. Circles connected by the same line correspond to posterior median results 
from the same individual. Blue and red circles denote statistically positive (i.e., p(β>0|D) > 0.975) and negative effects (i.e., p(β<0|D) > 0.975), 
respectively, whereas grey circles show results that are not statistically discernible from grasslands (the baseline LULC class). In these equations, D 
denotes the dataset used to fit the model. Vertical lines are 95% credible intervals. b Estimated mean time required to traverse 50 m in the baseline 
LULC class (grasslands) throughout the day, showing that animals moved slower and were more likely to be inactive during the daytime. Each line 
corresponds to the posterior median for an individual animal and gray ribbons are the corresponding 95% pointwise credible intervals
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uncertainty in our time model (see Additional file  4: 
Appendix 4).

Habitat selection function results
The results for the TEHS model, when applied to the 
simulated data, reveal that it can estimate well the habitat 
selection parameters, regardless of the number of avail-
able steps and the method used to choose these steps 
(Additional file  2: Appendix  2). Using the time model 
results described above, the TEHS model applied to the 
giant anteater data reveals that wetlands are avoided 
by all individuals relative to grasslands (the baseline 
LULC class) at the mean temperature of 25  °C (Fig. 5a). 
Although the selection for forests and savanna is ambigu-
ous relative to grasslands, there is a consistent pattern of 
increased selection strength from wetlands to forests to 
savannas at mean temperature. Interestingly, the param-
eter estimates for the interaction between forest and 
temperature were consistently positive (Fig. 5b), indicat-
ing that selection strength for forests in relation to grass-
lands tends to increase with increasing temperatures. A 
similar pattern seems to hold for savanna, but generally 
the interaction is less strong and the result for one of the 
individuals was not statistically discernible from zero.

Combining the time model with the habitat selec-
tion model results enabled the characterization of land-
scape permeability and selection strength under different 
temperature scenarios. Figure  6 reveals that giant ant-
eaters consistently move faster and avoid wetlands rela-
tive to grasslands, regardless of temperature (lower left 

quadrant). Furthermore, the individuals in our dataset 
generally selected for forests and savannas relative to 
grasslands, particularly at higher temperatures (upper 
right quadrant). These results suggest that animals rely 
on forests and savannas for slower behaviors (e.g., resting 
or foraging) and are more likely to increase their selec-
tion for these habitats as temperatures rise.

Implications for connectivity
Recall that the simulated landscape (Fig.  7) contains a 
large wetland (ellipse) surrounded by grasslands with 
two patches of savanna (rectangles) and that individuals 
start at the upper left patch (origin patch) and end up in 
the patch to the right of the wetland (destination patch). 
After parameterizing the SAMC permeability matrix 
with the TEHS estimates, our time-explicit predictions 
reveal that individuals do not use the shortest path to the 
destination patch because that would have required them 
to traverse the wetland, an avoided habitat type. Instead, 
these individuals tend to move around the wetland to 
eventually reach the destination patch (Fig.  7a). Impor-
tantly, our results suggest that approximately 49 days are 
required for 90% of the individuals to reach the destina-
tion patch (Fig. 7b).

Discussion
In this article, we have proposed the time model which, 
when used together with a habitat selection function, 
yields the Time-Explicit Habitat Selection (TEHS) model. 

Fig. 5 Estimates of (a) selection strength for different types of habitat at mean temperature (calculated as exp
(

xTj α
)

 ) and (b) the effect 

of the interaction between LULC and temperature on selection strength. The horizontal grey line depicts the results for grasslands (the baseline 
LULC category) in panel A. Each circle represents the posterior median result for a given animal and LULC category and lines connect results 
from the same animal. Blue and red circles denote statistically positive (i.e., p(α>0|D) > 0.975) and negative effects (i.e., p(α<0|D) > 0.975), respectively, 
whereas grey circles indicate estimates that are not statistically discernible from zero. In these equations, D denotes the dataset used to fit 
the model. Vertical lines are 95% credible intervals
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We have shown how these models can provide comple-
mentary information by explicitly distinguishing the 
drivers of time from the drivers of habitat selection in 
animal movement. Furthermore, we have shown how the 
TEHS model can be integrated into frameworks focused 
on estimating landscape connectivity, resulting in time-
explicit predictions. Below we compare the TEHS model 
to previous habitat selection models and discuss our 
findings based on the giant anteater data from the Pan-
tanal region.

Comparison with previous modeling approaches
The time model proposed in this study is different 
from earlier approaches because it focuses on mod-
eling time required to traverse a particular path (e.g., 

7 min. to traverse 6 pixels; see Fig. 2) rather than dis-
tance, speed, or velocity. Although similar ecological 
insights are likely to be gained by modeling step length 
or speed, focusing on time is an important modeling 
choice for two reasons. First, many connectivity prob-
lems inherently require time-explicit solutions (e.g., 
if species can track a changing climate) and linking 
movement model results to a time-explicit framework 
(e.g., SAMC) requires a model for time (not distance, 
speed, or velocity) to be able to calculate the elements 
qij = p

(

Pt+�t = j|�t,Pt = i
)

 in the permeability matrix 
Q. Second, assuming a gamma process and a straight-
line assumption, this model enables inference on how 
characteristics of individual pixels influence time taken 
to traverse these pixels. On the other hand, speed (or 

Fig. 6 Characterization of landscape use by giant anteaters relative to time and selection strength (calculated as exp
(

xTj α
)

 ) at two temperature 

scenarios. Each point represents the result for a particular individual in a given temperature scenario, and each panel shows the results for a LULC 
category. Estimated mean time value for each individual refers to the time taken to traverse 50 m of the LULC category at 8 p.m. Arrows indicate 
how selection strength is likely to change with increasing temperatures, connecting selection strength values at the mean temperature (25 °C; solid 
circles) and at 1.5 standard deviation above the mean (32 °C; open circles). The dashed vertical line represents the mean of the time estimates 
to traverse all LULC categories, whereas the dashed horizontal line represents the selection strength for grasslands (the baseline LULC category)
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velocity) at the step scale is not easily translated into 
speed (or velocity) at the pixel level, precluding the 
understanding of how speed (or velocity) relates to 
pixel-level characteristics.

The TEHS model contains a landscape-dependent ker-
nel (i.e., the time model), which describes the probability of 
requiring a given amount of time to cross a heterogeneous 

landscape. As a result, this kernel can capture the fact that 
some landscape characteristics may facilitate faster move-
ments while other characteristics may impede these move-
ments. The TEHS model is most similar to the integrated 
step selection analysis (iSSA) described in Avgar et al. [4] 
but there are important differences. In iSSA, it is assumed 
that the probability of moving to a new location Pt+1 given 
the present location Pt is given by: 

(4)

Fig. 7 Connectivity implications of the inferred time and selection processes for a simulated landscape. This landscape consists of a wetland 
(ellipse with “W”) and patches of savanna (rectangles with “S”) within a grassland matrix (rest of the area). One hundred individuals start in the upper 
left savanna patch at time 0 and each panel in (a) shows the predicted abundance of individuals on each pixel after 1, 20, 40, and 60 time steps, 
where each time step corresponds to 20 min. The color gradient indicates predicted abundance of individuals, but note that the scale is not the 
same across different panels. Results in (b) show the estimated percentage of individuals in the destination patch as a function of time. Horizontal 
and vertical dashed lines highlight that approximately 49 days are required for 90% of the individuals to have reached the destination patch. All 
results are based on the estimated parameters for a single individual, assuming movement patterns at 8 p.m. and at mean temperature (25 °C)
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where � is the study region, w(Pt ,Pt+1) is the habitat 
selection function, and φ(Pt+1|Pt) accounts for movement 
constraints [4, 39]. The assumption that the probability of 
moving from one location to another can be expressed as 
being proportional to the multiplication of a selection func-
tion and a movement kernel (i.e., a separable model; [4]) is 
an important assumption of iSSA and other SSFs as well 
[39].

In the TEHS model, we rely on Bayes theorem to describe 
the probability of moving to a new location Pt+�t given the 
present location Pt:

This expression is similar to the one in iSSA in that 
both p(�t|Pt+�t ,Pt) and φ(Pt+1|Pt) account for move-
ment constraints and that p(Pt+�t |Pt) and w(Pt ,Pt+1) 
are the habitat selection functions. However, despite the 
similarities in eqns. 4 and 5, we believe that our model is 
more principled because it relies on a mathematical fact 
(i.e., Bayes theorem, not to be confused with Bayesian sta-
tistics) instead of the separable assumption from iSSA [4], 
an assumption that may or may not be valid. Critically, it 
is because of Bayes theorem that we focus on modeling 
time taken to traverse the path instead of the more usual 
approach of modeling step lengths.

Finally, we note that standard statistical models typi-
cally adopt link functions to avoid obtaining non-sensical 
parameter values. For example, a logit link for the success 
probability in a logistic regression ensures that this proba-
bility is always between zero and one whereas a log link for 
� in a Poisson regression ensures that � (the mean of a Pois-
son distribution) is always positive. Unfortunately, because 
a conditional logistic regression is used to estimate the 
iSSA parameters, the estimated parameter values for the 
step length and turning angle distributions might be non-
sensical (e.g., negative values for parameters of a Gamma 
distribution used for step lengths). This is exemplified in 
Additional file 5: Appendix 5. Although non-sensical values 
may or may not arise for any given dataset, the possibility 
that this might happen is an important limitation regarding 
how the iSSA parameters are currently estimated. Finally, 
the developers of iSSA noted that the “movement compo-
nents of the iSSA are inherently ‘correlation-prone’ and are 
hence vulnerable to estimability issues” [4]. Our simulation 
results in Additional file 6: Appendix 6 and results based on 
the empirical data in Additional file 7: Appendix 7 corrobo-
rate this statement. On the other hand, the TEHS model 
and the adopted two-stage model fitting approach are able 
to avoid both of these problems.

(5)

Giant anteater case study and connectivity implications
The time model applied to data from giant anteaters in 
the Pantanal region revealed that individuals tended 
to be most active between 8  p.m. and 5 a.m. Noctur-
nal behavior has been recorded for this species, espe-
cially on warmer days [10, 40]. Furthermore, we found 
that individuals tended to consistently move faster over 
wetlands, possibly because these environments are rela-
tively poor in feeding resources when flooded and pro-
vide little vegetation cover, which increases predation 
risk. This hypothesis seems to be corroborated by the 

TEHS results, which revealed that wetlands were con-
sistently avoided relative to all other land cover classes. 
In contrast, giant anteaters tend to move slowest over 
forests and savannas. This slower movement might 
be associated with not only increased biomechanical 
resistance offered by more vegetation, but also the fact 
that these habitats are used for foraging and resting [8, 
20]. Indeed, the TEHS model showed increased selec-
tion strength for forests and savannas, particularly at 
higher temperatures. Previous studies suggest that for-
ests may act as a thermal shelter for giant anteaters, not 
only when temperatures are high and above their ther-
moneutral zone, but also when temperatures are very 
low [10, 19]. One of the challenges of determining the 
effect of temperature on animal behavior is that it is 
highly correlated with the time of the day. In this study, 
we chose to incorporate hour of day in the time model, 
whereas temperature was included in the habitat selec-
tion function. However, a more complete understand-
ing of the effect of temperature on individual behavior 
will require additional studies to better disentangle 
these processes.

By interpreting time and selection strength as distinct 
axes that govern animal behavior, we were able to char-
acterize each LULC class in a biologically meaningful 
way (see Box  1) that can have important implications 
for conservation. For example, wetlands consistently 
fell in the “fast, avoided” quadrant, regardless of tem-
perature. In contrast, we find that forests and savannas 
tend to fall in the “slow, selected” quadrant, particu-
larly with higher temperatures. This suggests that while 
these habitats might not favor fast movement, they may 
be critical for the foraging and resting of giant anteat-
ers, being good representatives of slow corridors [5]. 
Interestingly, none of our estimates fell in the “fast, 
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selected” quadrant (upper left quadrant), which could 
potentially be the prime target when designing wildlife 
corridors [34]. We hypothesize that this might be due 
to the fact that all of the individuals in our dataset were 
resident individuals and dispersing individuals might 
have important differences in terms of speed and habi-
tat selection when compared to resident individuals [6].

Similar to some recent work (e.g., [25, 45, 50]), this 
article contributes to the incipient literature that uses 
step-selection model results to inform connectiv-
ity analysis. More specifically, we show that the TEHS 
model results can be used to directly populate models 
for connectivity assessments rather than using resist-
ance maps that require arbitrary decisions to relate 
measures of habitat quality (e.g., resource selection 
strength) to landscape resistance. Critically, using the 
TEHS model together with SAMC allows us to generate 
time-explicit predictions of dispersal patterns, some-
thing that many connectivity models cannot repre-
sent. We note, however, that our dispersal example has 
several limitations. First, this example is based on just 
one individual, not all three individuals in our dataset. 
Second, our results are based on the TEHS parameter 
estimates for a particular time of day and temperature. 
Similar to many connectivity analyses [33], our results 
do not account for individual or temporal variability 
(e.g., diel patterns and seasonal changes in activity level 
and temperature) but it has long been acknowledged in 
the literature that landscape connectivity is dynamic 
[53, 54]. Third, we do not take mortality risk or ener-
getics into account even though this is a critical piece 
of information for more realistic connectivity analysis 
[17, 27]. Finally, it can be computationally challenging 
to scale up our connectivity analysis because we allow 
for transitions beyond the 8 nearest neighbors, result-
ing in a much denser (i.e., less sparse) matrix than most 
connectivity applications [16].

Model limitations and future improvements
Our proposed models are better suited for shorter time 
intervals because we assume a linear path between GPS 
fixes. This linear path assumption is arguably the strong-
est assumption that our models make, and this assump-
tion directly influences (a) the landscape covariate values 
that are used within the model; and (b) our estimate of 
the distance traversed. To take into account the fact that 
the exact path between two GPS fixes is unknown and 
therefore the environmental characteristics may not cor-
respond to those in a straight line, we used a 30-m buffer 
around this straight line. One could also potentially use 
Brownian motion/diffusion to better characterize the 
environment [28]. This would be particularly useful when 
one or more GPS fixes are missing because, in these 

cases, a much larger area would have to be considered 
to properly characterize the environment. Alternatively, 
a potential path taken by the animal could be sampled 
after fitting a continuous-time model [26, 30, 48]. Finally, 
a third option would be to restrict the analysis of the time 
model to steps that occur in relatively homogeneous 
landscapes. In this situation, there is much less ambiguity 
regarding the characteristics of the environment that was 
traversed.

In relation to traversed distance, the assumption of a 
straight-line path almost certainly leads to an underes-
timate of this distance, but there are relatively limited 
options to circumvent this problem at the moment. Aside 
from sampling a potential path from a continuous time 
movement model [26, 30, 48], another option would be to 
use a dead-reckoning approach to better approximate the 
actual path taken by the individual [9, 41]. Unfortunately, 
this approach relies on specialized sensors (e.g., accel-
erometers and magnetometers) that are still relatively 
uncommon in the field, requires estimation of speed (e.g., 
as a function of dynamic body acceleration [DBA]), and 
the required calculations can be challenging to imple-
ment (but see [21]). Nevertheless, if and when dead-
reckoning becomes a more commonly adopted method, 
the time model will still be useful and will yield more 
realistic results by not having to rely on a straight path 
assumption.

Another important limitation is that, similar to the dis-
tributions that are often used to model step length (e.g., 
gamma distribution) in Hidden Markov Models and iSSA 
[4], the time model assigns zero probability for distances 
that are equal to zero. This is not a problem from the 
perspective of model fitting because very few observa-
tions had distances exactly equal to zero. Indeed, even 
if the monitored individual is not moving, the distance 
between two GPS fixes is typically positive because of 
geolocation error. However, this characteristic can be 
problematic when inferring dispersal and connectivity 
patterns because it assumes that the monitored individ-
ual never stays in the same location for two consecutive 
time-steps. To circumvent this issue, the time model 
could be modified to include a two-stage process. In the 
first stage, the animal decides to either stay in the same 
location or move. If the animal decides to move, then the 
time model can be used to understand the time needed 
to traverse landscapes with different characteristics. 
Such a model would require distinguishing from the GPS 
tracking data when the animal is not moving from when 
the animal is exhibiting limited movement. Extending the 
time model to account for this two-stage process is an 
important area for future research. Finally, it is important 
to note that Eq.  1 does not explicitly represent turning 
angles. Modifying the TEHS model to enable the explicit 
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representation of directional persistence is an important 
area for future research.

Conclusions
Landscapes across the world are changing at ever 
increasing rates due to habitat degradation and loss 
associated with land use change. Connectivity analysis 
plays a central role in mitigating these impacts by iden-
tifying potential dispersal routes and corridors but bet-
ter connecting these analyses with movement data is 
paramount to ensure the reliability of its results. Further-
more, time-explicit predictions of the flow of individuals 
through the landscape are critical to many connectivity 
problems but few modeling frameworks can generate 
such predictions. The methods proposed here can help 
characterize the ecological and functional roles of dif-
ferent habitat features, deepening our understanding of 
animal habitat selection patterns, and can improve how 
movement-based modeling results are incorporated into 
connectivity analysis, resulting in time-explicit landscape 
connectivity predictions.
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