
Eisaguirre et al. Movement Ecology           (2024) 12:14  
https://doi.org/10.1186/s40462-023-00442-w

METHODOLOGY Open Access

This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024. Open 
Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, 
distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecom-
mons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Movement Ecology

Rayleigh step-selection functions 
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Abstract 

Background The process known as ecological diffusion emerges from a first principles view of animal movement, 
but ecological diffusion and other partial differential equation models can be difficult to fit to data. Step-selection 
functions (SSFs), on the other hand, have emerged as powerful practical tools for ecologists studying the movement 
and habitat selection of animals.

Methods SSFs typically involve comparing resources between a set of used and available points at each step 
in a sequence of observed positions. We use change of variables to show that ecological diffusion implies certain 
distributions for available steps that are more flexible than others commonly used. We then demonstrate advantages 
of these distributions with SSF models fit to data collected for a mountain lion in Colorado, USA.

Results We show that connections between ecological diffusion and SSFs imply a Rayleigh step-length distribution 
and uniform turning angle distribution, which can accommodate data collected at irregular time intervals. The results 
of fitting an SSF model with these distributions compared to a set of commonly used distributions revealed how pre-
cision and inference can vary between the two approaches.

Conclusions Our new continuous-time step-length distribution can be integrated into various forms of SSFs, making 
them applicable to data sets with irregular time intervals between successive animal locations.

Keywords Change of variables, Continuous-time, Ecological diffusion, First principles, Fokker-Planck, Habitat 
selection, Partial differential equation, Step-selection function, Resource selection function, Space use

Background
The ecological diffusion equation (EDE) is a math-
ematical description of the probability of presence for 
animals in space and time, which can be obtained by 
starting with a simple set of first principles defining 

how an individual animal can move across a landscape 
[17]. Ultimately, a stochastic differential equation for 
individual trajectories gives rise to the Fokker-Planck 
equation, and taking the limit with respect to time and 
space results in the partial differential equation (PDE) 
known as the EDE [35]. A suite of contemporary sta-
tistical modeling approaches have relied on the EDE 
to characterize the growth and spread of animal pop-
ulations [7, 14, 16, 21, 36]. In particular, Hooten et  al. 
[18] recently introduced a mechanistic individual-level 
modeling framework based on ecological diffusion and 
aligned it with step-selection functions (SSFs, or step-
selection analyses; [11, 34]). SSFs are commonly applied 
by practitioners to study the movement and resource 
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selection of animals tagged with modern telemetry 
devices [8].

Fortin et al. [11] coined the term and are often credited 
with implementing the first SSF in an application study-
ing the resource selection of elk (Cervus canadensis). The 
motivation was to overcome challenges associated with 
defining what is ‘available’ to an animal when implement-
ing conventional resource selection functions (RSFs); an 
SSF does so by letting properties of the animal’s move-
ment define the availability function [10, 34], while avail-
ability is often somewhat arbitrary for RSFs [22]. The 
method implemented by Fortin et al. [11] was a first prac-
tical step; however, SSFs have since been studied rigor-
ously, including establishing connections to mechanistic 
home range models [25] and similar differential equation 
models [26, 30], space-time point process (STPP) models 
[19], and other popular contemporary movement mod-
eling approaches, such as certain forms of random walks 
(e.g., [3]). SSFs have also seen development in terms of 
estimation procedures both at the individual-level [2, 32] 
and population-level [24].

As with RSFs, SSFs typically assume an exponen-
tial selection function. This is despite limitations—pri-
marily that inference is restricted to ‘relative’ selection 
strength instead of absolute probability of use, as can be 
inferred with a logistic selection function, for example 
[1, 20]. However, the exponential form permits estima-
tion using a suite of readily available software commonly 
used in conditional logistic regression (recently dis-
cussed by  Muff et  al. [24]). While such convenience 
makes SSFs approachable to practitioners, ecological 
diffusion implies a different form of selection function 
that directly relates resource and habitat selection to 
residence time [18]. Although the EDE SSF presented by 
Hooten et  al.  [18] can still be implemented in a condi-
tional regression framework, the implied link function is 
not standard and thus requires custom algorithms to fit 
the model to data.

Irrespective of the form of selection function, many 
regression-based approaches for fitting SSF models to 
data involve comparing the habitat or resources at ‘used’ 
steps to those at ‘available’ (or ‘control’) steps [2, 10, 
34]. This procedure overcomes the need to evaluate an 
integral in the SSF likelihood that is usually analytically 
intractable. Generating available steps is typically done 
with distributions of step lengths (or distances between 
successive observed locations of the animal) and turn-
ing angles (or the angular deviations between steps; [34]). 
There have been various suggestions for how to choose 
these distributions, including empirical and parametric 
forms. Parametric choices for step lengths include the 
log-normal, gamma, and exponential, and uniform and 
von Mises are common for turning angles [2, 10, 34]. 

Many of these recommendations have resulted from rig-
orous simulation studies [2, 10].

In contrast to common formulations based on polar 
coordinates (i.e., step lengths and turning angles), a 
homogenized version of the EDE SSF implies a multi-
variate normal kernel on Cartesian coordinates for the 
availability distribution [18]. While similarly useful for 
sampling available steps in an SSF procedure, it has been 
used only infrequently (e.g., [5]), and polar coordinate 
formulations have been the focus of SSF developments 
and in application. In large part limited by the polar 
coordinate formulation, conventional SSFs are typically 
restricted to discrete-time frameworks and thus require 
regular sampling intervals in telemetry data [2, 10, 34].

In what follows, we show that first principles of ani-
mal movement and ecological diffusion imply certain 
parametric forms for the step-length and turning angle 
distributions that are not commonly used nor currently 
recommended in the SSF literature. Doing so reveals 
a continuous-time, polar coordinate formulation of 
the movement kernel, which naturally accommodates 
data sets with irregular sampling intervals and/or miss-
ing data, while still maintaining the form familiar to 
practitioners. Additionally, we show how the EDE SSF 
presented by Hooten et  al.  [18] can be implemented by 
generating available steps using step-length and turning 
angle distributions, which further aligns it with other 
familiar SSF estimation procedures. To illustrate advan-
tages of using the continuous-time EDE availability dis-
tributions, we also apply a traditional exponential SSF to 
GPS data collected for a mountain lion in Colorado with 
irregular sampling intervals using both the EDE distribu-
tions and commonly recommended distributions. Finally, 
we discuss how the EDE distributions can be incorpo-
rated into other types of SSFs, including the popular inte-
grated step-selection analysis (iSSA; [2, 32]).

Methods
SSFs, which approximate STPP models, can be expressed 
using a weighted distribution form, such that

where the bracket notation [a|b] represents a prob-
ability distribution of a given b [13], s(ti) is a Cartesian 
coordinate vector of the animal’s location at time ti for 
i = 1, . . . , n steps, fi(s(ti)|s(ti−1)) is a movement (or 
availability) kernel, and g(w(s(ti)),β) weights the move-
ment kernel based on the habitat or resources available 
[17, 18].

The ecological diffusion equation (EDE; i.e., Fokker-
Plank PDE) can be written [35]:

(1)[s(ti)|s(ti−1),β] ≡
g(w(s(ti)),β)fi(s(ti)|s(ti−1))

S
g(w(s),β)fi(s|s(ti−1))ds

,
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where p(s, t) is the probability of presence over the con-
tinuous temporal domain t ∈ (0,∞) and the continu-
ous spatial domain s ≡ (s1, s2)

′ ∈ S , and δ(s) is motility, 
which is inversely proportional to residence time. [18] 
showed that homogenization, a mathematical technique 
commonly used to reduce the computational burden of 
statistical PDE models [6, 12, 14, 16, 21, 36], yields the 
fundamental solution to (2):

where δ̄ is the homogenized motility coefficient and I is 
the identity matrix. Further, δ̄(ti) can be pre-estimated 
with a temporal moving average of the telemetry data, 
such that

where tj ∼ ti is the set of times tj that are temporally close 
to ti , �tj is the time interval between tj−1 and tj , and ni 
is the size of that set [18]. Choosing the temporal span 
of tj will be study dependent, but generally a larger span 
will result in smoother changes to the movement kernel 
through time.

Equation (3) is the product of a multivariate normal 
availability kernel and a non-traditional selection func-
tion that can be interpreted directly in terms of residence 
time (i.e., the inverse of motility; [18]). Specifically,

where, δ(s(ti)) = �s2

4�ti
logit−1

(w′(si)β) , �s2 is the spatial 
grain, and

Based on (6), it is clear that estimating β in this EDE SSF 
with the conventional conditional use-availability scheme 
requires generating available steps from a multivari-
ate normal distribution with mean s(ti−1) and variance-
covariance matrix 2δ̄(ti)�tiI [18]. However, this contrasts 
with most SSF implementations, which use an availabil-
ity distribution parameterized in terms of polar coordi-
nates—combinations of step-length and turning angle 
distributions.

(2)
∂

∂t
p(s, t) =

(

∂2

∂s21
+

∂2

∂s22

)

δ(s)p(s, t),

(3)[s(ti)|s(ti−1),β] ∝
1

δ(s(ti))�ti
exp

(

−
1

2
(s(ti)− s(ti−1))

′(2δ̄(ti)�tiI)
−1(s(ti)− s(ti−1))

)

,

(4)δ̄(ti) ≈
∑

tj∼ti

(s(tj)− s(tj−1))
′(s(tj)− s(tj−1))

4ni�tj
,

(5)g(w(s(ti)),β) =
1

δ(s(ti))�ti
,

(6)fi(s(ti)|s(ti−1)) ∝ exp

(

−
1

2
(s(ti)− s(ti−1))

′(2δ̄(ti)�tiI)
−1(s(ti)− s(ti−1))

)

.

Step lengths and turning angles implied by ecological 
diffusion
Deriving step-length and turning angle distribu-
tions implied by the multivariate normal avail-
ability distribution for the EDE SSF involves 
a change of variables [28, 29]. We first let 
(s(ti)− s(ti−1)) = h(li, θi) = (licos(θi), lisin(θi))

′ , where 
li = ||s(ti)− s(ti−1)|| and θi is the turning angle (i.e., dif-
ference in the animal’s headings between moves from 
s(ti−2) to s(ti−1) and s(ti−1) to s(ti) ); this implies h(li, θi) 
maps step lengths and turning angles to Cartesian 

coordinates. We then seek the joint density [li, θi] . The 
change of variables is

where J is the Jacobian. The Jacobian in this case is 
defined as

and its determinant is

Thus, [li, θi] = [h(li, θi)]li . Therefore, we arrive at [li, θi] by 
substituting h(li, θi) into (6) and multiplying by li , which 
results in

implying li ∼ Rayleigh(σ 2) , where σ 2 = 2δ̄(ti)�ti , and 
θi ∼ Unif(0, 2π) . Therefore, [li, θi] can be substituted for 

(7)[li, θi] = [h(li, θi)]|J(h(li, θi))|,

(8)J(h(li, θi)) ≡

(

∂
∂li
s1(ti)

∂
∂θi

s1(ti)

[1ex] ∂
∂li
s2(ti)

∂
∂θi

s2(ti)

)

,

(9)|J(h(li, θi))| = licos
2(θi)+ lisin

2(θi) = li.

(10)[li, θi] =
li

2δ̄(ti)�ti
exp

(

−l2i
4δ̄(ti)�ti

)

,

fi in (1), and sampling available steps using these distri-
butions is equivalent to sampling from the multivariate 
normal density in (6). A key difference between these 
and other step-length and turning angle distributions 
suggested for SSFs is that (10) depends on �ti , implying 
that this formulation (and the one presented by Hooten 
et al. [18]) is continuous-time and may be applied to data 
collected with unequal time intervals between fixes.
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Continuous‑time movement SSF: case study with mountain 
lion data
To demonstrate the advantages of using the continu-
ous time EDE availability distributions, as well as their 
potential for increasing the flexibility of a wide range of 
SSF models, we applied an exponential SSF to GPS data 
collected for a mountain lion in Colorado using both the 
EDE distributions and a commonly  recommended set 
of distributions. These data were previously analyzed in 
case studies by Hooten et al. [17, 18]. The data consist of 
n = 150 locations spanning 2.5 weeks. The time interval 
( �ti ) between locations varied primarily between 3 hr (83 
steps) and 4 hr (60 steps), but some intervals were up to 
8 hr. Following Hooten et al. [18], we used aspect, eleva-
tion, and slope as covariates in the SSF.

We fit the exponential SSF, where g(w(s(ti)),β) ≡
exp(w(s(ti))

′β) , to the full data set using the Rayleigh 
step-length distribution and uniform turning angle dis-
tribution presented above. We first computed δ̄(ti) fol-
lowing Hooten et al. [18], and then generated a set of 100 
available locations per used location. We also increased 
this to 500, but the results did not change appreciably. 
The computed values of δ̄(ti) are not necessarily intended 
for making ecological inference but rather are used to 
facilitate estimation, similar to conventional SSF fitting 
procedures [34]. Finally, we used the function ‘clogit’ 
from the survival package in R to implement a con-
ditional logistic regression and estimate the selection 
coefficients [27, 33]. Confidence intervals (CIs) for the 
selection coefficients were obtained using the function 
‘confint’.

We also fit the SSF using a conventional set of distri-
butions. However, this required a data set with a regu-
lar sampling interval [34], so we fit this SSF to only the 
steps where �ti = 3 hr. Following Avgar et  al.  [2] and 
Signer et  al.  [32], we chose the gamma distribution for 
step lengths. Investigating the empirical turning angle 
distribution suggested little to no apparent directional 
persistence, so we used a uniform turning angle distribu-
tion, as above. We fit the gamma distribution to the data 
with standard maximum likelihood methods in R using 
‘optim’ and estimated the selection coefficients with 
‘clogit’.

Results
The empirical and fitted gamma and Rayleigh step-length 
distributions are shown in Fig. 1. Availability sets gener-
ated from the distributions varied, in part driven by the 
restricted data set required to meet the discrete-time 
assumptions of the conventional (gamma) step-length 
distribution (Fig. 2).

Using the Rayleigh step-length distribution and full 
data set yielded more precise estimates of β (Fig. 3). Even 
restricting the Rayleigh SSF to the sub-sampled data set 
still yielded slight gains in precision and was a better fit 
than the gamma SSF (Additional file 1: Fig. S1). Although, 
we note that in all cases estimated uncertainty could be 
biased low due to not jointly estimating the movement 
and resource selection parameters.

We also found that ecological inference could be 
affected depending on the distributions and requisite 
data sets used. In particular, a practitioner using the 

Fig. 1 Fitted (curves) and empirical (bars) step-length distributions for the mountain lion tracked in Colorado. Each curve for the Rayleigh 
corresponds to an estimated value of the homogenized motility coefficient δ̄i from the ecological diffusion model and is scaled to �ti = 3 hr
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gamma distribution (and restricted data set) would infer 
elevation having a strong effect on mountain lion space 
use and slope having no significant effect (i.e., because 
the CI overlaps zero; Fig.  3). In contrast, a practitioner 
using the Rayleigh distribution paired with the full data 
set might infer aspect and slope, but not elevation, having 
significant effects (Fig. 3).

Discussion
While the combinations of step-length and turning 
angle distributions—comprising the availability dis-
tributions in SSFs—currently recommended in the lit-
erature have been shown to yield unbiased inference 
about animal movement and resource selection (e.g., 
[2, 10]), we have shown that a first principles view of 
animal movement and ecological diffusion yield a new 
step-length distribution not commonly used in SSFs. 
We found that this new form also naturally accommo-
dates data sets with varying sampling intervals, which 
overcomes a significant limitation of most current SSF 
formulations [15].

Our application to the mountain lion data compar-
ing the continuous-time Rayleigh formulation and the 
conventional gamma formulation revealed notable dif-
ferences. In particular, the Rayleigh SSF yielded greater 
precision associated with the selection coefficients. How-
ever, inferred effects of the covariates were also influ-
enced by the step-length distribution and the restricted 
data set required for the gamma formulation (Figs. 2, 3, 
and Additional file 1: Fig. S1). Furthermore, Hooten et al. 
[17] applied an SSF using a conditional circular availabil-
ity distribution to the same mountain lion data. Although 
they used a Bayesian Poisson regression, their results 
were similar to ours with the Rayleigh distribution, and 
it is possible the Rayleigh implementation yielded better 
precision (Fig. 3).

Fig. 2 Used (black/hue) and available (gray) points for the mountain lion tracked in Colorado generated with gamma and Rayleigh step-length 
distributions. 100 available steps were generated for each used step. Hue for the Rayleigh distribution corresponds to homogenized motility 
from the ecological diffusion model, where higher values correspond to a faster movement rate (and lower residence time)

Fig. 3 Estimated selection coefficients and 90% confidence intervals 
from the exponential SSF fit to data from a mountain lion tracked 
in Colorado using gamma and Rayleigh step-length distributions
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Although the Rayleigh step-length and uniform turn-
ing angle distributions we derived are equivalent to the 
multivariate normal availability distribution presented by 
Hooten et  al. [18], the exponential weighting (or selec-
tion) function we implemented is different than what is 
implied by the EDE, which affected inference. Specifi-
cally, the full EDE SSF represented by (5) and (6) yields 
inference about movement probabilities and thus resi-
dence time directly, whereas the exponential weight-
ing function is limited to relative selection strength. It 
is therefore not surprising that our coefficient estimates 
implied effects in the opposite direction compared to 
EDE SSF estimates from Hooten et  al. [18], who found 
that the mountain lion exhibited higher residence time 
(lower motility) in areas at lower elevation, with steeper 
slopes, and with less exposed aspects. Using the ‘selec-
tion’ terminology, we might infer from our results here 
that the mountain lion ‘selected for’ steeper slopes and 
‘selected against’ exposed aspects and higher elevations, 
which is analogous  to, but less mechanistic, than the 
inference from the EDE SSF.

Although SSFs can be viewed as approximations of STPP 
models, two classes have emerged: one where the move-
ment (or availability) kernel parameters are estimated a 
priori (e.g., [11]), and another where the movement and 
resource selection parameters are estimated jointly (e.g., 
[2]). So-called integrated step-selection analysis (iSSA; 
[2]) has become a popular tool for ecologists studying 
the movement and resource selection of animals. This is 
partly due to how the method “integrates” the movement 
parameters (i.e., parameters of the step-length and turning 
angle distributions) into the conditional logistic regres-
sion, allowing for richer forms of weighting functions (e.g., 
interactions between habitat covariates and movement) 
and recovering the theoretical selection-independent 
movement kernel [2]. Fieberg et al. [8]  discuss some of the 
advantages to this approach. Software developments, such 
as the R package amt [32], have also made the method 
accessible.

Arriving at the iSSA likelihood requires assuming an 
underlying step-length distribution belonging to the 
exponential family, such as the exponential and gamma 
distributions. However, the Rayleigh distribution also 
belongs to the exponential family. It can thus be shown 
that the Rayleigh distribution can be used in iSSA, 
which expands the utility of iSSA to data sets with vary-
ing sampling intervals. Although we did not implement 
an iSSA for our case study, it could be coupled with our 
approach by following the derivation of  Avgar et  al. [2] 
[8]. One could then use a simulation procedure to esti-
mate the underlying utilization distribution [2, 31, 32] 
but accounting for potential irregular sampling intervals 

[9, 15]. Unlike the selection function derived by Hooten 
et al. [18], the exponential selection function we used to 
demonstrate the continuous-time Rayleigh step legnth 
distribution does not imply a fully continuous time SSF. 
Therefore it does not alleviate the issue of “scale-depend-
ence” in SSFs, but rather provides a means to account for 
irregular data [15].

While the Rayleigh step-length distribution has the 
potential to benefit various forms of SSFs, in large part 
due to its continuous-time properties, other forms of 
step-length and turning angle distributions have roots in 
PDEs as well. For example, it can be shown that modeling 
step lengths divided by 

√
�ti with a Rayleigh distribution 

and uniform turning angles would imply plain diffusion, 
which, although simpler than estimating δ̄(ti) , does not 
account for potential spatial variation in motility like the 
EDE availability distributions. Further, Moorcroft and 
Lewis [23] showed that exponentially distributed step 
lengths and turning angles distributed von Mises imply 
a certain form of advection–diffusion PDE. The diffusion 
component of that PDE differs from the EDE in that the 
diffusion coefficient lies outside of the partial derivatives 
(or differential operator), whereas motility lies inside 
both derivatives in the EDE, which affects how the envi-
ronment can drive movement and probability of presence 
[12, 18, 35]. Like the EDE, advection–diffusion PDEs are 
appearing more in recent movement ecology literature 
as connections to SSFs (and their convenient estimation 
methods) are recognized (e.g., [26]). Advection-diffu-
sion PDEs have the advantage of accounting for poten-
tial directional persistence or bias in movement, and 
step length and turning angle distributions for any form 
of PDE can be derived using the change-of-variables 
approach we used here for the EDE.

Conclusions
A first principles view of animal movement establishes 
links between mechanistic models and SSFs, and study-
ing those connections for implied forms of SSFs will 
allow for richer and more rigorous inference. In some 
cases, those forms may already appear in the literature 
(e.g., [23]), but in other cases it may be worthwhile to 
utilize mathematical techniques, such as homogeniza-
tion [18] and change of variables, to identify new ways to 
improve inference about animal movement ecology.
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