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models to multi-state capture-recapture data 
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Abstract 

Background Hidden Markov Models (HMMs) are often used to model multi-state capture-recapture data in ecology. 
However, a variety of HMM modeling approaches and software exist, including both maximum likelihood and Bayes-
ian methods. The diversity of these methods obscures the underlying HMM and can exaggerate minor differences 
in parameterization.

Methods In this paper, we describe a general framework for modelling multi-state capture-recapture data via HMMs 
using both maximum likelihood and Bayesian methods. We then apply an HMM to invasive silver carp telemetry data 
from the Illinois River and compare the results estimated by both methods.

Results Our analysis demonstrates disadvantages of relying on a single approach and highlights insights obtained 
from implementing both methods together. While both methods often struggled to converge, our results show 
biologically informative priors for Bayesian methods and initial values for maximum likelihood methods can guide 
convergence toward realistic solutions. Incorporating prior knowledge of the system can successfully constrain esti-
mation to biologically realistic movement and detection probabilities when dealing with sparse data.

Conclusions Biologically unrealistic estimates may be a sign of poor model convergence. In contrast, consistent 
convergence behavior across approaches can increase the credibility of a model. Estimates of movement probabili-
ties can strongly influence the predicted population dynamics of a system. Therefore, thoroughly assessing results 
from HMMs is important when evaluating potential management strategies, particularly for invasive species.

Keywords Bayesian methods, Hidden Markov model, Invasive species, Maximum likelihood, Multi-state capture-
recapture, Population ecology, Telemetry

Background
Ecologists are embracing ever-expanding frontiers in 
data science to analyze data [1]. But the diversity of 
approaches often obscures the underlying mathemat-
ics shared among packages, programming languages, 
software, and terminology [2]. For example, ecologists 
often use multi-state capture-recapture studies to esti-
mate movement rates among geographic locations while 
accounting for survival and imperfect detection [3]. But 
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a modeler may select either a maximum-likelihood or 
Bayesian approach to fit these models. Additionally, a 
variety of packages in the R programming language or 
point-and-click software such as Program MARK can 
execute these approaches [2–4]. Despite each approach 
relying on HMMs as the underlying model, these vari-
ous implementations often require their own specialized 
knowledge. A strong understanding of HMMs would 
benefit modelers before selecting computational meth-
ods. Such knowledge could improve one’s ability to cor-
rectly interpret the results of these analyses.

The history of capture-recapture models stems from 
the work of Cormack [5], Jolly [6], and Seber [7]. These 
studies produced the Cormack–Jolly–Seber (CJS) 
model, which estimates detection and survival rates 
through recaptures or re-encounters of individuals in 
repeated surveys. This model, and other capture-recap-
ture models more generally, come in the form of a state-
space model [3]. The CJS model is a state-space model 
with a single observable state, in which tagged indi-
viduals may be observed only in the ‘alive’ state. Multi-
state models include more than one state representing 
observable characteristics such as geographic locations 
or disease status. Because these states are discrete and 
finite, such multi-state models can be classified as a 
sub-type of the state-space model: the Hidden Markov 
Model (HMM) [2, 8].

In this paper, we formulate HMMs with respect to both 
the maximum likelihood and Bayesian approaches. Our 
description emphasizes the HMM parameterization in 
both approaches and examines the effect of any special 
considerations that arise. We apply our study to an inva-
sive silver carp (Hypophthalmichthys molitrix) telemetry 
dataset from the Illinois River. Previously, Coulter et  al. 
[9] presented an analysis of these data using Program 
MARK. Although many studies use these models and 
methods to analyze capture-recapture data [9–12], few 
compare implementations of both the maximum likeli-
hood and Bayesian approaches on the same dataset (as 
notable exceptions, refer to Kéry and Royle [3]; Kéry and 
Schaub [13]).

Understanding the spatial dynamics of invasive spe-
cies is a vital step in managing and limiting their spread 
[14]. Advances in the development of widespread and 
low-cost sensor arrays have greatly improved the feasi-
bility of monitoring spatial dynamics of aquatic invasive 
species, such as silver carp [1]. For example, several insti-
tutions monitor and prevent the movement of invasive 
bigheaded carps (Genus: Hypophthalmichthys) from the 
Illinois River into the Laurentian Great Lakes [9, 15]. 
Collaborators are particularly interested in determining 
where innovations such as movement deterrents, tar-
geted removal, and further monitoring would be useful to 

better manage and understand the effects of invasive carp 
in the Illinois River system [16].

Many studies use capture-recapture models to estimate 
the spatial dynamics of invasive species [9, 12, 14, 17]. 
HMMs can model the movement of aquatic species in 
rivers that are segmented into reaches or pools by dams. 
These models estimate the probability an individual 
moves from one pool to another over time [9, 12]. The 
existing dams in the Illinois River limit movement but are 
not impermeable barriers to invasive carp and other fish 
[18, 19]. Thus, estimating movement probabilities among 
pools in the Illinois River may help to determine loca-
tions where the installation of deterrents and targeted 
removal may be most effective [9, 18, 20, 21]. Figure  1 
shows the dams in the Illinois River, and Section “Data” 
provides further description of this system.

In this paper, we estimate parameters similar to an 
HMM described in Coulter et al. [9]. Our primary objec-
tive is to compare parameter estimates among three 
methods for fitting this model (1) maximum likelihood 
in R; (2) Bayesian Markov-chain Monte Carlo (MCMC) 
estimates via an R Interface to CmdStan; and (3) the 
Coulter et  al. [9] results using Program Mark. Our goal 
is to show how estimated population dynamics can vary 
across approaches and how this variability could influ-
ence ecological management decisions depending on the 
parameter estimates produced by each method. Through 
this exploration of various methods for fitting HMMs we 
discuss how to overcome computational challenges that 
may be inherent in HMMs due to weak parameter iden-
tifiability given sparse data. Specifically, we explain that 
under some parameterizations, both the maximum like-
lihood and Bayesian MCMC approaches produced poor 
convergence, so we used informative priors and initial 
values to guide convergence toward biologically realis-
tic solutions. This paper provides a foundation for other 
scientists looking to study their own telemetry data with 
HMMs and provides awareness of the particular chal-
lenges that may arise in these analyses.

Methods
Hidden Markov models
HMMs mathematically represent sequential observa-
tions. Ecologists often apply HMMs to repeated obser-
vations of individuals over time. Various methods for 
tracking individuals exist including tagging, marking, or 
recording unique patterning to render each individual 
uniquely identifiable. For example, acoustic receivers 
can track the presence of tagged individuals across geo-
graphic states over time [22].

The mathematics of HMMs represent such data well 
due to several ecological phenomena: (1) an individual 
might die but its death is not directly observed; and (2) 
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an individual might survive but remains undetected for 
one or more survey periods. HMMs account for these 
phenomena through two processes: the state process 
and the observation process. The state process is a hid-
den (i.e., latent) variable. The state process represents 
the true but generally unknown states of the individuals 
in the sequence, and the observation process records 
the state process in an imperfect manner. For example, 

an individual might be present at location ‘A’ during 
a survey occasion, but the researcher or receiver fails 
to detect this individual. In this case, the true state of 
the individual is ‘A,’ but the true state is unknown and 
recorded as a non-detection in the observation pro-
cess. This is an example of imperfect detection known 
as a false-negative, a common event in ecological stud-
ies. False-positives, where an individual is incorrectly 
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Fig. 1 A geographic description of the Illinois River and the locations of the Lock & Dams (L & D) that separate the pools. The Illinois River flows 
downstream toward the Mississippi River from the Dresden Island Pool, which starts at Dresden Island L & D. Upstream the Brandon Road L & 
D and several other structures act as additional barriers between the Dresden Island Pool and Lake Michigan. Each pool downstream is named 
after the L & D where it starts, except for the most downstream pool, Alton, which is named after the town near the confluence of the Illinois 
and Mississippi Rivers. The Dresden Island, Marseilles, and Starved Rock dams are each gated dams, whereas Peoria, La Grange, and L & D 26 are 
wicket dams. Figure adapted from Coulter et al. [9]
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recorded as being in a state different than its true state, 
are another type of imperfect detection. The HMM 
plays a fundamental role in most multi-state capture-
recapture studies due to its ability to model such eco-
logical phenomena.

To represent such datasets, we now formulate the 
HMM based on the descriptions by Kéry and Royle 
[3] and Kéry & Schaub [13]. Consider a group of N  
tagged individuals that move among a set of M discrete 
geographic locations or areas. Over a set of T  occa-
sions, each individual i ∈ 1, 2, . . . ,N  has a state pro-
cess Si = Si,1, Si,2, . . . , Si,T  that represents the true but 
unknown state (i.e., location) of the individual at each 
occasion. Si,t may be any geographic state 1, 2, . . . ,M , 
but may also be state M + 1 , which occurs when the 
individual is no longer alive. At each occasion t , we 
record an observation Yi,t , which may be equal to any 
state 1, 2, . . . ,M , or a non-detection event, which is 
recorded as M + 1 . Even though Yi,t may be equal to 
M + 1 this is not necessarily equivalent to Si,t = M + 1 . 
In the observation process, a non-detection 
Yi,t = M + 1 may occur because the individual has not 
survived ( Si,t = M + 1 ) or it simply was not detected 
despite the true state Si,t being one of 1, 2, . . . ,M.

The HMM is also built on two additional assump-
tions: (1) the probability of the state process being in 
Si,t depends only on the previous state Si,t−1 ; and (2) the 
probability of observing Yi,t at any occasion depends 
only on the state process value Si,t . Formally, the first 
assumption is known as the Markov Property where 

can set the probability of the known state to 1 and all oth-
ers to 0.

Additionally, we consider the state transition prob-
ability matrix that specifies the probability of mov-
ing from state j at time t − 1 to state k at time t as 
ψj,k = Pr(Si,t = k|Si,t−1 = j) . We require 

∑M+1
k=1 ψj,k = 1 . 

The state M + 1 occurs when the individual is no longer 
alive; therefore, movement to other states must be set 
to 0 and Pr(Si,t = M + 1|Si,t−1 = M + 1) = 1 , because 
these individuals can no longer move to another state 
(refer to Eq. 2). We consider ψj,k for j, k ∈ 1, 2, . . . ,M to 
represent movement and the parameter φj to represent 
survival in state j before movement to state k.

We can also consider a matrix of the transition probabili-
ties ψj,k for j, k ∈ 1, 2, . . . ,M alone to represent move-
ment rates without accounting for survival as shown in 
Figs. 2, 3 and 5.

Finally, consider the observation probability matrix 
P(Yi,t) in Eq. 3. We parameterize the observation prob-
ability matrix P(Yi,t) as a function of the observed value 
Yi,t at each survey occasion and the function that deter-
mines the detection probability parameter as function 
of time pk(t) for k ∈ 1, 2, . . . ,M.

Note that all of the survival, movement, and detection 
parameters may be estimated as a function of time or 
considered constant across time depending on the goals 
or context of the model. For example, in our application, 
we consider the detection parameters ρk ,s to be deter-
mined by a function of time pk(t) such that s ∈ 1, 2, . . . , 4 
based on four seasons as described in Eq. 4.

(2)

� =
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ρk ,1 if month(t) ∈ {Dec, Jan, Feb}
ρk ,2 if month(t) ∈ {Mar, Apr,May}
ρk ,3 if month(t) ∈ {Jun, Jul, Aug}
ρk ,4 if month(t) ∈ {Sep,Oct, Nov}

Pr(Si,t |Si,t−1, Si,t−2, . . .) = Pr(Si,t |Si,t−1) . To specify these 
probabilities, consider a parameterization of the HMM 
with the following components.

The initial distribution is a vector that describes the 
probability of the first observation belonging to each 
state, given below in Eq. 1.

In a multi-state capture-recapture study, the initial dis-
tribution is considered known when an individual is cap-
tured, tagged, and released in a specific state, because we 

(1)
δi = (Pr(Si,1 = 1), . . . , Pr(Si,1 = M), Pr(Si,1 = M + 1))
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These matrices are multiplied together via the forward 
algorithm to form the likelihood (Eq. 5) as a function of 
the unknown parameters θ = (φ,ψ , ρ) and the obser-
vation process Yi = Yi,1, . . . ,Yi,T of each individual 
i ∈ 1, 2, . . . ,N .

There are two common approaches to estimating the 
parameter values θ and fitting an HMM: the classi-
cal, maximum likelihood approach and the Bayesian 
approach via MCMC. In both cases, the likelihood func-
tion plays a fundamental role in estimating the param-
eters θ , which describe the rates of survival, movement, 
and detection across the sampled individuals in the 
system.

Maximum likelihood approach
The maximum likelihood approach comes from the 
classical or “frequentist” perspective of statistics. We 
estimate the parameters by finding the values θ̂ that 
maximize L(θ;Yi) . The function L(θ;Yi) is an expres-
sion of the HMM’s likelihood in the form of the forward 
algorithm. We can use both numerical and theoretical 
methods to solve for maximum likelihood estimates, 
but complex likelihood functions often prevent deriv-
ing these estimates theoretically. Numerical algorithms 
can optimize the parameters of a likelihood function to 
find the maximum likelihood estimate even if the partial 
derivatives of the likelihood function are mathematically 
intractable.

Bayesian MCMC approach
Bayesian statistics describe the posterior distribution. 
The likelihood L(θ;Yi) is incorporated into the calcula-
tion of the posterior (Eq. 6), but this distribution is inter-
preted differently than the likelihood.

The posterior p(θ |Yi) represents the probability of the 
parameters θ given the observed data Yi . The posterior 
is numerically proportional to the product of the likeli-
hood L(θ;Yi) and the prior distribution p(θ) . The prior 
distribution is a joint distribution on the parameters θ , 
which describes “prior knowledge” about the distribu-
tions of these parameter values. The posterior distribu-
tion of each parameter is influenced by prior selection, 
so modelers often desire relatively uninformative priors 
[23]. In some cases, however, informative priors may be 
selected to help guide inference for computational or 
statistical purposes [23–25]. We discuss the selection of 

(5)L(θ;Yi) =

N
∏

i=1

δi�P(Yi,2)�P(Yi,3) . . . �P(Yi,T )1

(6)p(θ |Yi) ∝ L(θ;Yi)p(θ)

priors for our model in Sect.  “Bayesian Markov-chain 
Monte Carlo”.

The theoretical form of the posterior distribution for 
our model is mathematically intractable. Therefore, we 
use a computational technique to approximate the pos-
terior distribution and estimate the parameters θ . We use 
MCMC to simulate a large sample of observations drawn 
randomly from the posterior. This distribution can then 
be used to calculate the mean value and other statistics 
for each parameter in θ.

Data
In this paper, we reanalyzed acoustic telemetry data 
of invasive silver carp in the Illinois River previously 
described in Coulter et  al.   [9]. These tagged individuals 
pass by receivers in the Illinois River and can be uniquely 
identified, making it possible to track movement of these 
fish among discrete sections of the river over time. The Illi-
nois River is divided into pools, including Dresden Island, 
Marseilles, Starved Rock, Peoria, La Grange, and Alton by 
dams that preserve the navigability of the river for barges 
and other large vessels. The uppermost pool in our study 
is Dresden Island, which is 23 river kilometers (rkm). This 
pool flows into Marseilles (39 rkm) and subsequently 
Starved Rock (26 rkm). The lower pools follow, includ-
ing Peoria (118 rkm), La Grange (125 rkm), and Alton 
(129rkm), which starts at L & D 26 on the Mississippi 
River [26]. Refer to Fig. 1 for a map of the locations of these 
structures. The Dresden Island Pool is considered the cur-
rent invasion front for bigheaded carp [16], where invasive 
carp are beginning to invade but have not yet established 
large populations. Monitoring has shown the upper pools, 
Marseilles and Dresden Island, have notably lower big-
headed carp abundance than the lower pools [27].

A stationary acoustic telemetry array tracked big-
headed carp movement from the Illinois-Mississippi 
River confluence to the Dresden Island Pool between 
March 2012 and August 2015 [9]. Vemco receivers (VR2, 
VR2W, VR2Tx; Vemco, Bedford, Nova Scotia, Canada) 
were placed in each pool in locations designed to detect 
movement among pools and through L & D structures 
[9]. Gated dams separate the upper pools whereas wicket 
dams separate the lower pools, which results in lower 
movement rates among the upper pools except during 
open water conditions [26]. Some receivers were also 
placed in lateral habitats to the main channels to increase 
the probability of detection in areas that fish congregate. 
Program MARK was used in Coulter et al. [9] to param-
eterize multi-state capture-recapture models for these 
telemetry data from the Illinois River.

In this paper, we reanalyzed the raw silver carp data-
set from Coulter et al. [9]. We repeated many of the same 
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processing and formatting steps, but we implemented the 
process programmatically in R to ensure reproducibility. 
These steps generated capture histories for N = 525 sil-
ver carp. Each capture history had monthly redetection 
periods between March 2012 and August 2015 with vari-
able initial capture-tag-release dates. We considered only 
the final detection of each fish per month to represent 
observations. Non-detection values were included when 
a fish was not detected during the entire month. The 
final capture histories generated via this programmatic 
approach differed slightly from the data used in Coul-
ter et al.  [9]. We recovered histories for eight additional 
individuals and included several months of data that were 
left out of the original analysis. Although the datasets are 
not identical between this paper and the previous work, 
we expect the discrepancies to have only a minimal effect 
on the overall analysis and comparison.

Table  1 describes the number of recorded transi-
tions between each pool after removing all non-detec-
tions. Additionally, Table 2 provides the total number of 
tagged fish starting in each pool. From these values, we 
hypothesize the transition and detection rates among 
pools should vary strongly. The maximum likelihood and 
MCMC approaches will each provide an interpretation 
of the movement and detection dynamics that under-
lie these raw data, but it will also be important to con-
sider whether the estimates describe our prior biological 
knowledge of the system appropriately.

Model parameterization
Consider the six pools in the Illinois River: S1 = Alton , 
S2 = La Grange , S3 = Peoria , S4 = Marseilles , 
S5 = Starved Rock , S6 = Dresden Island , and S7 signifies 
the individual has died, permanently emigrated, or the bat-
tery in the tag has died. Therefore, the parameter φ does 
not represent true survival, rather ‘apparent’ survival (as it 
is in most capture-recapture models where movement out 
of the population cannot be distinguished from mortality) 
because φ may represent permanent emigration or other 
situations where the individual can no longer be detected 
in the system for reasons other than death. Addition-
ally, a value Yt = 7 indicates a non-detection for month t . 
The initial state that each fish was captured, tagged, and 
released was considered known and represented as such in 
δi . In Coulter et al.   [9], battery failure was considered an 
additional state, but we found it unnecessary to separate a 
battery failure state from our apparent survival parameter 
φ for the purposes of this analysis, which focuses on move-
ment and detection probabilities. In this case, the apparent 
survival parameter can be interpreted as the rate fish drop 
out of the study due to either battery failure, emigration, 
or death. All other parameters have a directly comparable 
counterpart between the HMM described in this paper 
and those previously described in Coulter et al. [9].

Based on the top model fit of the silver carp model in 
Coulter et  al. [9], we parameterized the model in this 
paper with a constant apparent survival probability φ 
across time and all pools, separate transition probabilities 
among each pool but constant across time, and detec-
tion probabilities varying by pool and season. A four 
season structure was implemented by grouping observa-
tions in months Dec–Feb, Mar–May, Jun–Aug, and Sep–
Nov.  This parameterization is given by the function for 
the detection probability parameters in Eq. 4.

Estimation methods
Maximum likelihood
In this paper, we numerically optimized the likelihood 
function L(θ;Yi) with the R programming language 

Table 1 After removing all non-detection events from the capture histories, this table provides the frequency of observed silver carp 
transitions between subsequent detections

Transitions occur from rows to columns. For example, 42 silver carp were detected moving from La Grange to Alton, but there may have been zero, one, or more non-
detection events that occured between the detections in these pools

Alton La Grange Peoria S. Rock Marseilles Dresden

Alton 78 23 4 1 0 0

La Grange 42 34 4 2 0 0

Peoria 5 13 93 4 0 0

S. Rock 1 3 39 578 0 0

Marseilles 0 0 2 15 381 5

Dresden 0 0 0 0 4 5

Table 2 The frequency of capture histories of silver carp (n) that 
begin in each of the six pools of the Illinois River

Pool n

Alton 72

La Grange 54

Peoria 111

Starved rock 151

Marseilles 133

Dresden Island 4
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(v4.2.1) using the optim function [28]. Several modi-
fications to the original likelihood function (Eq. 5) were 
necessary to estimate the parameters in our model, 
however. Because each parameter is a probability, we 
restricted each optimization range to the values in 
[0, 1] via box constraints. Box constraints enforce an 
upper and lower bound on each parameter using the 
‘L-BFGS-B’ algorithm [29]. Additionally, the sum of 
the probabilities from one pool to all others must equal 
∑M

k=1 ψj,k = 1 . In the maximum likelihood model, we 
enforced this constraint by setting each movement 
parameter where j = k to be equal to 1−

∑

j �=k ψj,k 
for each j and all k ∈ 1, 2, . . . ,M . For example, we let 
ψ1,1 = 1− ψ1,2 − ψ1,3 − ψ1,4 − ψ1,5 − ψ1,6.

Alternatively, we could have used multinomial-logit 
link functions to transform the range of the parameters 
between −∞ and ∞ , but we found this had little effect 
on the final estimates and made calculating the variance 
of the estimates considerably more complex. Optimiza-
tion in R is often performed as a minimization proce-
dure rather than maximization. Therefore, we multiplied 
the likelihood by −1 and used a log-transform for com-
putational stability. Using optim with the ‘L-BFGS-B’ 
method and box constraints, we minimized the nega-
tive log likelihood − log(L(θ;Yi)) to find the parameter 
values that optimized this function, which produced the 
maximum likelihood estimates θ̂.

The variance of the parameter estimates under the 
maximum likelihood approach may be estimated as the 
inverse of the Hessian estimator. However, computation-
ally solving for the inverse of this matrix may produce a 
matrix with negative quantities, which cannot be used 
to represent a covariance matrix. We used a method 
described by Gill & King [30] to calculate a pseudo-var-
iance matrix due to negative covariances approximated 
by the inverse Hessian matrix. Following this guidance, 
we calculated the nearest positive definite matrix to the 
inverse Hessian, which allowed us to approximate the 
standard error of all estimated parameters. Additionally, 
for the constrained movement parameters ψj,k where 
j = k as described above, we used the delta method to 
calculate their standard error as a function of estimated 
parameters. Of note, the standard errors for the move-
ment probabilities where no movement between pools 
was observed would be expected to have poor estimabil-
ity due to sparse data.

Bayesian Markov‑chain Monte Carlo
In this paper, we performed Bayesian MCMC estima-
tion using the cmdstanr package (v2.30.1) in R (v4.2.1) 
[28, 31]. We chose CmdStan as our MCMC sampling 
software due to its computational efficiency. Recently, 

Yackulic et al. [32] showed marginalized sampling meth-
ods can greatly improve sampling efficiency, especially 
when implemented with Stan based samplers compared 
to JAGS and BUGS. Sample code from Yackulic et  al. 
[32] and Kéry & Schaub [33] helped us implement this 
approach.

As described in Sect.  “Bayesian MCMC approach”, 
Bayesian analyses require the selection of priors for each 
parameter. The priors can describe the distribution of the 
parameters in a manner ranging from uninformative to 
strongly informative. Uninformative priors have mini-
mal influence on the posterior distribution. In contrast, 
we can select an informative prior to influence the poste-
rior distribution if there is pre-existing knowledge of the 
probability distribution of the parameters or the MCMC 
algorithm does not converge under weaker priors [23–
25]. In this analysis, we selected priors and constraints 
that could become increasingly informative to ensure 
convergence to biologically realistic solutions.

We assigned Beta priors to the detection and survival 
parameters, φ and ρ , initially with α = 1,β = 1 (cor-
responding to a uniform distribution). To constrain the 
transition probabilities to sum to one, we considered a 
ratio of a Gamma prior to the sum of Gamma(σj,k , θj,k) 
priors for each movement probability. For example, 
ψ1,1 = γ1,1/

∑6
k=1 γ1,k and each γ1,k ∼ Gamma(σ1,k , θ1,k) . 

Under these priors, one Markov chain did not behave 
like the others and produced unique estimates for 
several movement and detection probability param-
eters. We discuss the implication of this finding in 
Section “Discussion”.

To encourage convergence among chains via our Bayes-
ian MCMC approach, it was necessary to select more 
informative priors [23]. We decided to choose biologi-
cally informative priors for the movement and detection 
parameters to guide convergence toward a biologically 
realistic solution. In the Illinois River system, each pool 
connects only to the pools immediately adjacent in a lin-
ear fashion. If a fish moves from one pool to another that 
is several pools upstream, this fish would have to move 
through several L & D structures. Given these barriers 
to fish movement, we expect most fish to stay in a single 
pool during a one-month time step or move to an adja-
cent pool with lower probability. We expect it is even less 
likely a fish will move through two or more pools in a sin-
gle month.

Therefore, we selected priors and initial values for the 
movement probabilities to reflect the generally higher 
probability an individual would remain in the same 
pool from one month to the next (~ 63%), with a mod-
erate probability of entering an adjacent pool (~  16%), 
and a low probability of entering any non-adjacent pool 
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(~  1.5%). These percentages are a result of the values 
selected for the parameters of the Gamma prior distribu-
tions on the movement probabilities. We selected these 
values by incrementally decreasing the probability an 
individual would move between non-adjacent pools until 
convergence among all chains was observed.

Selecting the priors in this manner allowed us to guide 
convergence based on our prior knowledge of the biologi-
cal system using increasingly informative priors [23–25]. 
In essence, these assumptions are similar to an adjacency 
matrix constraint but our structure includes the possibil-
ity that a fish may travel across multiple pools in a single 
month, given some individuals are known to travel a long 
distance [17, 34]. Refer to Section “Biologically informative 
priors and intial values guide convergence toward realistic 
solutions” for a comparison between the movement prob-
abilities estimated under non-informative priors versus the 
informative priors described above, which produce param-
eter estimates that are biologically realistic across all chains 
compared to those under the non-informative priors.

Additionally, we assumed a Beta(2, 1) prior for each 
detection and survival probability to specify a relatively 
weak belief that survival and detection probabilities 
should generally be higher rather than lower. For full 
specification of the priors and initial values, refer to the 
Additional file 1: Section 9.1.

Results
Our estimation of the seasonal detection probabili-
ties were generally similar to those reported in Coulter 
et  al. [9] for both the maximum likelihood and Bayes-
ian approaches. Detection probabilities were consist-
ently among the lowest in Dresden Island Pool and high 
in both Starved Rock and Marseilles. On the other hand, 
our models reported higher detection probabilities for 
La Grange Pool rather than Alton, and our estimated 
detection probabilities were slightly lower for Peoria 
Pool than those reported in Coulter et  al. [9]. Refer to 
the Additional file 1: Section 9.2 for detailed summaries 
of all parameter estimates. Similar to Coulter et  al. [9], 
throughout the rest of this analysis we described our 
results focusing on the movement probabilities.

Maximum likelihood
The maximum likelihood approach generated esti-
mates in under an hour, but successful convergence 
was dependent on algorithm selection. Figure  2 reports 
estimated maximum likelihood transition probabili-
ties between each pool and the standard error of each 
estimate in parentheses. Successful convergence was 
reported by the ‘L-BFGS-B’ algorithm within 1000 itera-
tions. Convergence is achieved when the magnitude 
of the largest element in the projected gradient is less 

Fig. 2 Estimates for the monthly transition probabilities of silver carp among pools in the Illinois River via maximum likelihood estimation. 
Movement is represented from row to column. Standard errors are reported in parentheses. Additionally, the color intensity of each cell indicates 
the magnitude of the estimated movement probability
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the pre-determined tolerance level [29]. Investigating 
whether the algorithm converges to the same parameter 
estimates under a variety of initial values is important to 
check for convergence to the global solution rather than a 
local optimum.

Bayesian Markov‑chain Monte Carlo
Each of the 4 chains for the final Bayesian model ran for 
5000 warm-up iterations and 10,000 sampling iterations. 
These samples create an empirical posterior distribu-
tion for each parameter—a process that required several 
hours. Figure  3 reports the transition probability esti-
mates between each pool and a standard error for each 
estimate in parentheses.

Convergence of the Bayesian MCMC estimation can be 
assessed via Gelman-Rubin ( ̂R ) and Effective Sample Size 
(ESS) statistics across all parameters. Refer to the Stan 
User Manual [35] for a description of how R̂ and ESS are 
calculated and Vehtari et al. [36] for additional discussion 
on these metrics. We report these values in the Addi-
tional file 1: Section 9.2. Under the final model (includ-
ing informative priors) all R̂ values were less than 1.001 

and the minimum ESS was 12349. Recommended cutoffs 
for these statistics range between less than 1.01–1.1 for 
the Gelman-Rubin statistic and at least 100 to several 
thousand bulk and tail ESS per chain [35, 37]. The con-
vergence statistics for our final model using informative 
priors outperformed all of these recommendations, but 
the model using uninformative priors did not achieve 
convergence; many R̂ values were greater than 1.1 (at 
maximum 1.52) and many ESS values were less than 100.

Our final Bayesian MCMC model was likely run for 
more iterations than needed to reach convergence. This 
should be taken into account when comparing the com-
putational burden of the Bayesian MCMC method to 
the maximum likelihood approach. Equivalent param-
eter estimates with lower but still acceptable ESS 
could likely have been achieved with a reduced num-
ber of total sampling iterations to lower the run time. 
With this in mind, consider the total run time for each 
method reported in Table 3. Despite these caveats, it is 
reasonable to conclude the Bayesian MCMC approach 
required more time and resources than the maximum 
likelihood approach.

Fig. 3 Estimates for the monthly transition probabilities of silver carp among pools in the Illinois River via Bayesian Markov-chain Monte Carlo 
estimation. Movement is represented from row to column. Standard errors are reported in parentheses. Additionally, the color intensity of each cell 
indicates the magnitude of the estimated movement probability
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Discussion
Achieving convergence is difficult with both methods
The model we have described has many parameters. 
Each pool has a transition parameter between itself and 
all other pools, and each pool has a detection parameter 
for each season. Additionally, a constant parameter esti-
mates apparent survival. Even the most constrained ver-
sion of our model includes 55 variables to optimize.

The movement matrix could be constrained to an 
adjacency matrix to improve the estimability of the 
movement parameters. Similarly, we could set selected 
movement probabilities equal to 0 if there is no expected 
movement between distant pools within a month given 
the raw data. Evidence indicates, however, that bigheaded 
carp may migrate over long distances in short time peri-
ods [17, 34]. Additionally, managers are particularly 
interested in estimating movement probabilities to and 
from the Dresden Island Pool, which is considered the 
invasion front for bigheaded carp in the Illinois River. 
Therefore, constraining the model to reduce the number 
of movement parameters would simplify the biological 
system to an unreasonable degree.

After minimizing the parameter space as much as pos-
sible, there are 55 parameters to optimize in the maxi-
mum likelihood model. We investigated a variety of 
optimization approaches including various algorithms 
(for example: ‘Nelder-Mead’, ‘BFGS’, ‘L-BFGS-B’, ‘SANN’), 
link functions (for example: identity versus multinomial-
logit), and various initial value schemes. Each method 
had its own challenges and trade-offs. Several optimiza-
tion approaches converged in relatively few iterations, 
but calculating estimates of standard error was often 
notably more difficult or numerically challenging due to 
errors when inverting the Hessian matrix. For this reason, 
we selected a standard algorithm with box-constraints to 
estimate the parameters as probabilities directly, with-
out a link function. The ‘L-BFGS-B’ algorithm required 
nearly 1000 iterations to reach relative convergence, but 
this approach is still notably more efficient than sampling 
all parameters via Bayesian MCMC estimation.

Due to its dependence on the data alone, the maximum 
likelihood approach optimizes toward a movement prob-
ability equal to zero for movement parameters between 
pools where no movement was observed. Given the lack 
of observations, the estimability of these parameters is 
poor, which results in high variability. On the other hand, 
the Bayesian approach estimates small but non-zero 
probabilities of movement between distant pools with no 
observed movement due to dependence on prior distri-
butions and stochastic sampling via MCMC. That being 
said, practitioners would ideally limit the strength of such 
priors with care to prevent the posterior distribution 
from being inadvertently biased.

Running a Bayesian MCMC estimation for many itera-
tions can help ensure convergence has been achieved. 
While fitting our Bayesian HMM via MCMC, we noticed 
the efficiency varied greatly depending on the implemen-
tation and sampling software. We initially programmed 
our sampling algorithm in JAGS, but found that sam-
pling for even a few-hundred iterations required several 
hours. Following the guidance of Yackulic et al. [32], we 
designed a marginalized sampling method in cmdstanr 
that greatly improved the efficiency of the MCMC sam-
pling [31]. With this approach we could test the conver-
gence of various parameterizations over several thousand 
iterations within an hour. However, we found evidence 
that informative priors were necessary to produce con-
vergence across all chains to a single solution. Selecting 
biologically informative priors can help guide conver-
gence toward realistic solutions [23, 25], which we dis-
cuss in the following section.

Biologically informative priors and intial values guide 
convergence toward realistic solutions
HMM states with few observations may result in weak 
identifability among the associated movement and detec-
tion probability parameters in the model. Identifiabil-
ity is the ability to achieve unique parameter estimates 
given the nature of the data, model, and objective func-
tion [38]. In our application, multiple parameter esti-
mates could empirically explain the sparse observations 
in some states. For example, few observations may indi-
cate the detection probability for a state is relatively low 
but movement to this state could still occur at a high rate 
without detection. On the other hand, the state could 
have a relatively high probability of detection but few 
individuals move into this state.

From the data alone, it is difficult to determine the 
reality of each situation. To improve the identifiabil-
ity of the parameters under sparse data, the model can 
be constrained either through assumptions under the 
maximum likelihood framework or by using informative 

Table 3 The total computation time and computing resources 
used to produce the final parameter estimates for the maximum 
likelihood and Bayesian MCMC approaches

The Bayesian MCMC approach required more time and resources, but equivalent 
parameter estimates with lower but still acceptable effective sample sizes could 
likely have been achieved with a reduced number of total sampling iterations to 
lower the run time

Method Computation time Parallelized Resources

Maximum likelihood 34 min No 1 CPU

Bayesian MCMC 7 h 16 min Yes 4 CPUs
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prior distributions in the Bayesian context. Maximum 
likelihood inference is a function of the data alone, but 
model constraints and initial values can be chosen to 
guide parameter estimation. In contrast, the Bayesian 
approach requires priors, which we can specify in either 
an uninformative manner or to reflect prior knowledge in 
the probability distributions of the parameters [23–25]. 

The Bayesian approach gives us slightly more flexibil-
ity to guide convergence based on prior knowledge of 
the biological system, but implementing these assump-
tions without careful thought may inadvertently bias the 
posterior.

With the Bayesian approach under uninformative 
priors, the MCMC chains optimized to two different 

Fig. 4 A graphical depiction of movement probabilities via an arc diagram comparing results from maximum likelihood (MLE) and Bayesian 
Markov-chain Monte Carlo (MCMC) with informative priors to the results from Coulter et al. [9]. Thick lines represent stronger movement probability. 
Lines in blue (left) represent upstream movement between pools, and lines in red (right) represent downstream movement between pools

Fig. 5 A comparison of movement probability estimates between several Markov-chain Monte Carlo chains that converged to different 
solutions. The color intensity of each cell indicates the magnitude of the estimated movement probability. Chains 1–3 converged to a solution 
that is biologically realistic (Scenario A); strong movement occurs only between adjacent pools on a monthly timestep. On the other hand, Chain 
4 converges to a biologically unrealistic local optimum with a high probability of movement from Peoria directly into Dresden Island with very low 
movement probability among the pools in between (Scenario B)
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solutions. In some chains, the detection probabilities 
reflected low movement and high detection probabilities, 
whereas others estimated high movement, low detec-
tion. These conflicting estimates occurred most notably 
in relation to detection and movement into the Dresden 
Island Pool, which has a very low number of observations 
(refer to Table  1). Compare the sets of transition prob-
abilities estimated by separate chains in Fig.  5. For sce-
nario A, strong movement occurs only between adjacent 
pools. For scenario B, movement is strong from Peoria 
directly into Dresden Island and very low among adjacent 
pools upriver of Peoria. Scenario B seems to be a very 
unlikely depiction of the true nature of this system given 
the effect of L & D structures on limiting fish movement 
in the river.

After biologically informative priors were included in 
the Bayesian approach and appropriate initial values were 
selected for the maximum likelihood estimation, both 
models produced similar parameter estimates. These 
constraints greatly improved the identifiability of the 
parameters and produced unique, biologically realistic 
estimates, and successful convergence was reported by a 
variety of statistics (refer to Section  “Results”). Figure  4 
gives a graphical depiction of these results, and these 

parameter estimates are also reported for direct compari-
son in the Additional file 1: Section 9.2.

Convergence issues due to weak identifiability may exist 
as a common issue among HMMs used for multi-state 
capture-recapture analyses. Due to these convergence 
challenges, modelers may want to consider whether 
parameter estimates correspond with prior knowledge 
of the biological system. Using informative priors for 
Bayesian methods and initial values for maximum likeli-
hood methods may be used to guide model optimization 
toward biologically informed solutions when weak iden-
tifiability is an issue. Likewise, examining estimates care-
fully and questioning biologically inconsistent results can 
assist modelers in obtaining reliable results.

Predicted spatial dynamics vary between estimation 
method
Estimates of movement probabilities may be used to 
model population dynamics over time. We compared the 
expected stable distribution based on movement alone 
(i.e., ignoring births, deaths, and immigration/emigration 
outside of the system) using dominant eigenvectors of 
the system for each parameterization [39]. The distribu-
tion in Fig.  6 represents the expected proportion of the 

Fig. 6 A comparison of the expected stable distributions based on movement alone for each method. Each bar represents the expected 
proportion of an initial silver carp population that would stabilize in each pool based on the maximum likelihood (MLE), Bayesian Markov-chain 
Monte Carlo (MCMC), and Coulter et al. [9] movement probability estimates. The totals of these bars for each method sum to one. There are notable 
differences in the expected stable distribution at the invasion front (Dresden Island) between these estimation methods, where no fish reach 
according to the MLE estimate but over 15% of all fish reach a stable state according to the previous Coulter et al. [9] results
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population that would eventually stabilize into each pool 
over many iterations.

These results indicate the estimation of movement 
probabilities strongly influences predicted population 
dynamics. Particularly in the Dresden Island Pool, dif-
ferences in the predicted stable distribution are notable 
between models. The movement probabilities estimated 
in the previous work by Coulter et  al. [9] predict over 
15% of the silver carp population is expected to stabilize 
into this pool. Figure 4 shows the Coulter et al. [9] results 
indicate strong movement probability from Starved Rock 
into Dresden Island, but no movement from Starved 
Rock into Marseilles. This is a biologically unrealis-
tic result, as all of the fish moving into Dresden Island 
from Starved Rock would first have to travel through 
Marseilles, which may be a sign the previous results suf-
fer from weak identifiability. In contrast, our maximum 
likelihood results predict no silver carp will reach Mar-
seilles or Dresden Island. The Bayesian MCMC approach 
estimates a small, but nonzero proportion of the popu-
lation will stabilize in Marseilles and even fewer will 
reach Dresden Island. This result is most consistent with 
empirical studies of abundance in these pools [27].

Dresden Island is considered the current invasion front 
for silver carp in the Illinois River [16]. Using the results 
from the maximum likelihood analysis alone, a manager 
could conclude there is no risk of silver carp movement 
into the Dresden Island Pool. On the other hand, the pre-
vious Coulter et al.  [9] results may indicate that reducing 
movement from downstream pools into Dresden Island by 
deterrents or removal would be beneficial. While the input 
data and model parameterization differed slightly between 
our HMM and the model presented in Coulter et al. [9], 
this comparison shows modeling decisions can have large 
implications on management needs and strategies.

Tandem maximum likelihood and Bayesian MCMC 
estimation can improve model insight and credibility
We struggled to achieve convergence via both maxi-
mum likelihood and Bayesian MCMC estimation, but 
eventually produced similar estimates across both meth-
ods. The HMM is an appropriate model for multi-state 
capture-recapture movement data, but low frequency 
of observations in one or more HMM states can lead to 
poor convergence due to weak identifiability. Although 
the final maximum likelihood and Bayesian MCMC 
approaches return approximately equivalent estimates 
in terms of overall trends, a paucity of data still affects 
the maximum likelihood and Bayesian approaches in 
slightly different but influential manners. Given a lack 
of observations of movement between two pools, the 
maximum likelihood approach will likely return a move-
ment probability equal to 0 between these pools, whereas 

the Bayesian MCMC approach will more likely return 
a small, but non-zero movement probability. This is an 
effect of the maximum likelihood optimization as a func-
tion of the data alone, whereas the Bayesian MCMC 
approach includes information from prior distributions.

We find that the implementation of tandem maximum 
likelihood and Bayesian analyses paired with a thor-
ough examination of the results from both these meth-
ods can lead to a better understanding of the challenges 
and insights that may arise in any particular multi-state 
capture-recapture study. Similar convergence between 
both the maximum likelihood and Bayesian approaches 
increases the credibility of model results. When unin-
formative priors were used in the Bayesian MCMC 
approach there were not unique parameter estimates 
among the chains. Compared to the raw data, maximum 
likelihood estimates, and prior biological knowledge 
of the system, some of these parameter estimates were 
biologically unrealistic. Biologically informative pri-
ors ensured convergence across all MCMC chains and 
resulted in concordance between the maximum likeli-
hood and Bayesian approaches.

In the end, however, the Bayesian approach handles 
the paucity of data among states with no observed move-
ment in a slightly more realistic manner than the maxi-
mum likelihood approach. The Bayesian MCMC estimate 
reveals strong movement probabilities among adjacent 
pools and small, but nonzero probability that invasive 
carp move long distances over short time periods. Finally, 
we showed that incorporating these probabilities into a 
spatial prediction of population dynamics over time may 
lead to different management conclusions, especially 
when the maximum likelihood approach estimates no 
probability of movement into the invasion front and bio-
logically unrealistic estimates of movement probability 
overestimate movement into the invasion front between 
distant pools.

We understand that some practitioners may find it 
difficult to fit both approaches due to a lack of previous 
experience and/or data limitations, but understanding 
the difficulties of fitting HMMs in general along with the 
underlying assumptions of either approach is critical to 
achieving reasonable parameter estimation. There is little 
evidence that either the maximum likelihood or Bayes-
ian approach will always produce results that are more 
valid than the other. But a tandem implementation of 
both approaches can improve the credibility of parameter 
estimates when there is concordance between the results 
of both approaches. This is especially useful when a prac-
titioner encounters difficulties in achieving convergence 
via either approach due to the identifiability challenges 
we have shown are present when fitting HMMs to multi-
state capture-recapture studies with sparse data.
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Conclusions
HMMs represent multi-state capture-recapture data 
by modeling ecological phenomena, such as survival, 
movement, and imperfect detection. We described the 
fundamental nature of the HMM for both the maximum 
likelihood and Bayesian MCMC methods for fitting such 
models. However, our analysis of silver carp telemetry 
data in the Illinois River, along with the previous work 
by Coulter et  al. [9], demonstrates several challenges 
that may be inherent in HMMs for multi-state capture-
recapture studies. Computational methods for estimat-
ing model parameters in large models may have poor 
convergence when there are few observations of move-
ment among one or more states due to weak parameter 
identifiability. Fitting these models may require con-
straining the model either through assumptions under a 
maximum likelihood framework or by using informative 
prior distributions in a Bayesian context.

We demonstrate these challenges may have a substan-
tial effect on the conclusions and management recom-
mendations drawn from these models. Implementing 
tandem maximum likelihood and MCMC approaches for 
fitting HMMs to multi-state capture-recapture data can 
improve model credibility when biologically realistic con-
vergence patterns are achieved across approaches. How-
ever, we understand practitioners may find it difficult to 
fit both approaches due to a lack of previous experience 
and/or data limitations, but understanding the difficul-
ties of fitting HMMs in general along with the underly-
ing assumptions of either approach is critical to achieving 
reasonable parameter estimation.

This paper provides a foundation for scientists looking 
to implement multiple approaches for fitting HMMs to 
multi-state capture-recapture data. We discuss common 
challenges that may be encountered and the solutions 
that we found by studying silver carp telemetry data in 
the Illinois River. Investigating continuous time capture-
recapture methods and neural network-based approaches 
may be beneficial for analyzing telemetry data [40, 41]. In 
this paper, we reduced the raw capture history for each 
individual to monthly time-steps, but continuous time 
models may be more compatible with capture-recapture 
data derived from acoustic telemetry arrays. Transition-
ing capture-recapture models from discrete time to con-
tinuous time models could further advance movement 
ecology as a big-data science [1].
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