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Abstract 

Background  Studying animal movement in the context of the optimal foraging theory has led to the development 
of simple movement metrics for inferring feeding activity. Yet, the predictive capacity of these metrics in natural 
environments has been given little attention, raising serious questions of the validity of these metrics. The aim of this 
study is to test whether simple continuous movement metrics predict feeding intensity in a marine predator, the 
southern elephant seal (SES; Mirounga leonine), and investigate potential factors influencing the predictive capacity of 
these metrics.

Methods  We equipped 21 female SES from the Kerguelen Archipelago with loggers and recorded their movements 
during post-breeding foraging trips at sea. From accelerometry, we estimated the number of prey encounter events 
(nPEE) and used it as a reference for feeding intensity. We also extracted several track- and dive-based movement 
metrics and evaluated how well they explain and predict the variance in nPEE. We conducted our analysis at two 
temporal scales (dive and day), with two dive profile resolutions (high at 1 Hz and low with five dive segments), and 
two types of models (linear models and regression trees).

Results  We found that none of the movement metrics predict nPEE with satisfactory power. The vertical transit 
rates (primarily the ascent rate) during dives had the best predictive performance among all metrics. Dive metrics 
performed better than track metrics and all metrics performed on average better at the scale of days than the scale 
of dives. However, the performance of the models at the scale of days showed higher variability among individuals 
suggesting distinct foraging tactics. Dive-based metrics performed better when computed from high-resolution dive 
profiles than low-resolution dive profiles. Finally, regression trees produced more accurate predictions than linear 
models.

Conclusions  Our study reveals that simple movement metrics do not predict feeding activity in free-ranging marine 
predators. This could emerge from differences between individuals, temporal scales, and the data resolution used, 
among many other factors. We conclude that these simple metrics should be avoided or carefully tested a priori with 
the studied species and the ecological context to account for significant influencing factors.

Keywords  Accelerometry, Area-restricted search, Diving behavior, Foraging behavior, Marine predator, Prey 
encounter events

Background
Foraging has a central role in the evolution of species as 
it directly affects the fitness of individuals via the prob-
ability of survival and reproduction [1]. A key question 
behavioral ecologists have been interested in is how 

*Correspondence:
Hassen Allegue
h.all@disroot.org
1 Département des Sciences Biologiques, Université du Québec à 
Montréal, Montréal, QC, Canada
2 Centre d’Etudes Biologiques de Chizé,  UMR7372 CNRS-La Rochelle 
Université, Villiers en Bois, France

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40462-022-00361-2&domain=pdf
https://orcid.org/0000-0001-9357-9151
http://orcid.org/0000-0002-0419-7125
http://orcid.org/0000-0001-9565-9446
http://orcid.org/0000-0003-2481-6947


Page 2 of 19Allegue et al. Movement Ecology            (2023) 11:3 

organisms adopt a hierarchical decision-making process 
to improve foraging efficiency [2]. For instance, forag-
ers can increase their energy intake rate while minimiz-
ing some costs, such as the time searching, capturing, 
and handling prey, or the risk of predation. In conser-
vation, understanding the spatiotemporal variation of 
foraging behavior in response to resource distribution 
is fundamental for the protection and management of 
endangered species [3, 4]. And yet, direct observations of 
the interaction between predators and their prey in free-
ranging species are often challenging or impossible for 
a variety of reasons such as remoteness and large home 
ranges. The development of bio-logging technologies in 
the last decades has helped address some of these chal-
lenges [5].

Recent developments in bio-logging devices allow 
researchers to collect accurate empirical observations of 
feeding behavior [6, 7]. Feeding events can be directly 
observed using animal-borne cameras [8], or indirectly 
from physiological measurements such as changes in 
stomach temperature [9]. Feeding attempts can also 
be inferred from high-resolution data of animal move-
ment measured by accelerometers [10, 11]. Although 
these technologies have considerably contributed to our 
understanding of the foraging behavior of captive and 
free-ranging animals, they come with several logistic 
and methodological limitations [7]. For example, acceler-
ometers deployed on harbor seals (Phoca vitulina), with 
16  Hz sampling frequency, were limited to a recording 
period between one and two months due to the high bat-
tery consumption of the devices [12]. In addition, high-
resolution data requires physical recovery as the data 
is generally too large to be transferred through satellite 
communications [12–14]. Consequently, researchers 
often rely on lower-resolution data, such as summarized 
dive profiles [15], from which they use movement proxies 
to infer feeding behavior [reviewed in 7, 16].

Movement metrics inferring feeding behavior have 
been developed based on the optimal foraging theory, 
which posits that foraging animals improve their fitness 
when adjusting their behavior in a way that maximizes 
their net rate energy intake in response to environmen-
tal constraints [17]. One aspect of the optimal forag-
ing theory focuses on movement patterns that animals 
adopt while foraging [17]. Animals should adopt an area-
restricted search (ARS) to maximize resource encoun-
ter rate and minimize costs of movement [18]. The ARS 
has two distinct search modes. First, an intensive search 
mode, triggered by resource encounters or environ-
mental cues, that is characterized by slow speeds and 
large turning angles (i.e., tortuous movement). In the 
intensive search mode, foragers remain in the same area 
and thus increase the probability of encountering and 

consuming additional food items. Second, foragers switch 
to an extensive search mode after repeated unsuccessful 
resource encounters for which they increase speed and 
move in a relatively straight line to find another resource 
patch [19]. Therefore, movement metrics infer feeding 
intensity by quantifying search intensity along the track 
assuming a high correlation between feeding and search 
behavior [7].

Along with the ARS hypothesis, several track-based 
metrics (i.e., on the horizontal dimension of the animal 
movement) have been used to quantify foraging search 
intensity from which feeding activity can be inferred [7]. 
For example, transit rate and turning angle are assumed 
to correlate with resource encounter [13, 20–23]. The 
move persistence metric captures the autocorrelation in 
both transit rate and turning angle along the track’s tra-
jectory [24, 25]. Low movement correlation (high per-
sistence) represents high variation in speed and turning 
angle over time, which reflects an ARS behavior. In con-
trast, high correlation in movement results from constant 
and directional movements, which represents a transiting 
behavior [26]. Other metrics rely on the time the forager 
resides in an area, where higher residence time values 
should reveal higher search intensity due to higher prey 
density [27–29].

Air-breathing diving marine predators such as marine 
mammals, seabirds, and sea turtles face additional chal-
lenges when foraging due to physiological constraints 
(e.g., related to oxygen stores, [30]) and to searching for 
heterogenous and difficult to predict resource patches 
[31]. The feeding behavior of these species can be 
inferred from metrics associated with the vertical dimen-
sion of their movements, using data of diving profiles in 
addition to the horizontal dimension [7]. As diving pred-
ators must repeatedly return to the surface to breathe, 
they have been studied under the framework of the cen-
tral place foraging theory, where foragers travel back and 
forth from a home base (e.g., a nest) to a distant forag-
ing location [32]. In the context of diving predators, the 
surface is acting as the central place and oxygen is the 
resource to maximize [33]. This modification of the origi-
nal central place foraging theory led to the development 
of the optimal diving theory [30].

The optimal diving theory posits that predators adjust 
their diving behavior to maximize the time at the bot-
tom phase of the dive, where prey capture is assumed to 
occur [34–36]. Feeding behavior can be inferred from 
dive-based metrics that reflect the improvement of dive 
efficiency during more successful dives—i.e., the ratio 
between the duration of the dive bottom phase and the 
total dive duration, which includes the dive duration 
and the post-dive surface duration [35–37]. For exam-
ple, Brünnich’s guillemots (Uria lomvia) increase bottom 
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duration [38, 39], penguins shorten transit duration by 
increasing swimming speed or reducing body angle [40–
43], and southern elephant seals shorten the recovery 
surface time [44, 45] in response to an increase of feeding 
activity during dives.

The ARS hypothesis has also been used to infer feeding 
behavior on the vertical dimension by identifying prey 
patch exploitation periods from dive profiles [46–48]. 
Diving predators are thus assumed to decrease their ver-
tical speed and increase vertical sinuosity when encoun-
tering prey patches [13]. In several free-ranging penguin 
species, wiggles (or undulations) in the bottom phase of 
the dive correlate with feeding events as measured from 
drops in esophageal temperatures [49], beak openings 
[50], and video records [51]. Additionally, Heerah et  al. 
[48] found that 77% of prey capture attempts in south-
ern elephant seals, inferred from accelerometry, occurred 
during dive segments with high vertical sinuosity. The 
cumulative time of these high vertical sinuosity dive seg-
ments were defined as the hunting time [48].

Although several track- and dive-based metrics have 
been validated in (semi-)controlled experimental setups 
[52–54], they have rarely been tested on free-ranging 
species in natural conditions, which raises questions on 
their reliability as general proxies for feeding activity [45, 
55–57]. The theoretical models developed from the opti-
mal foraging and diving theory do not account for many 
ecological and physiological factors that may modulate 
predator movements. For example, optimal diving theory 
models assume that prey patches are uniformly distrib-
uted and have the same quality [30, 34]. Since this is typi-
cally not the case, maximizing time at the bottom of the 
dive may not always represent the most efficient foraging 
tactic [36]. Thums et  al. [58] found that southern ele-
phant seals reduce the dive bottom duration but increase 
descent and ascent rates in regions of higher quality 
which were inferred from changes in the seal body condi-
tion. The accuracy in the relationship between movement 
metrics and direct observations of feeding attempts may 
vary between species, habitats, and temporal scales [8, 
39, 44, 56, 59–61]. Watanabe et al. [61] found that Adélie 
penguins (Pygoscelis adeliae) increase dive duration at 
the scale of dives but decrease it at the scale of bouts as 
the krill density increases.

Many studies that investigated the relationship 
between movement metrics and feeding behavior in free-
ranging species did not explicitly test the capacity of the 
metrics to predict feeding intensity [13, 21, 44, 48, 58, 
61]. For the studies that did test the predictive capacity 
of the metrics, they included all the metrics into a sin-
gle model, as it improves the overall model predictive 
performance [45, 56, 62]. However, researchers typically 
use only one metric to infer feeding intensity, likely for 

the sake of simplicity [15, 22, 26]. When using one met-
ric, only a simple linear interpolation of the metric value 
is needed. In contrast, when combining multiple met-
rics within the same model, the relative contribution of 
each metric in explaining feeding intensity variance is 
required. This statistical information is generally not 
available to researchers for the species or the ecological 
context they are studying. Therefore, there is a clear mis-
match between how the metrics are tested and how they 
are used. In addition, previous studies have assumed that 
the relationship between movement metrics and feeding 
intensity is the same for all individuals [13, 45, 56, 62]. 
Nonetheless, variation among individuals in response to 
environmental conditions (i.e., plasticity) is commonly 
found in behavioral ecology [63, 64]. Due to these limita-
tions, there is a real need for additional validation of the 
capacity of movement metrics to infer feeding behavior.

The aim of this study is to quantify and compare the 
predictive capacity of several continuous track- and dive-
based metrics previously proposed to infer feeding inten-
sity (Table  1 provides a descriptive list of the metrics). 
We conducted this study on female southern elephant 
seals (SES) from the Kerguelen Archipelago during their 
post-breeding foraging trips at sea. Female SES undertake 
foraging trips up to multiple months, which can extend 
several thousands of kilometers from their haul-out sites 
[65]. They predominantly forage pelagically in the inter-
frontal oceanic zone [66–68], where they target oceanic 
features of higher prey density [69–71] such as (sub)mes-
oscale eddies and fronts [72–75], the eastward Kerguelen 
plume [76, 77], and areas with shallower Circumpolar 
Deep Water [15]. SES exhibit a high segregation among 
individuals in their core foraging areas characterized by 
distinct topographic and oceanic features [66, 68, 78] to 
which they are highly faithful at adult age [79–81]. The 
diet of SES is predominantly composed of squid and fish 
[82–85] for which the relative proportion could vary with 
sex [82], age [86, 87], habitat type [80, 85], season [84], 
and year [88]. Cherel et  al. [89] and Ducatez et  al. [90] 
conducted stable isotope analyses on blood samples of 
adult female SES from the Kerguelen Islands and con-
cluded that their diets during pre-breeding foraging trips 
were dominated by a family of small pelagic fish (Myc-
tophidae) regardless of the zones they were foraging in.

We used the number of prey encounter events (PEE), 
defined as high bursts of the animal head acceleration, 
as the reference for feeding attempts from which we 
infer feeding intensity [10]. The detection of PEE from 
accelerometry has been a very popular method due 
to its simplicity, affordability, and minimum invasive-
ness on animals compared to other available methods 
[10, 11]. The performance of PEE as a proxy for feeding 
attempts was initially tested in captivity on hooded seals 
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(Cystophora cristata) [10] and Steller sea lions (Eumeto-
pias jubatus) [11] by comparing the occurrence of PEE 
with the true feeding events recorded from video cam-
eras. PEE from accelerometry were also validated on 
free-ranging animals, for example, on Australian sea lions 
(Arctocephalus pusillus doriferus) [91] and chinstrap 
(Pygoscelis antarcticus) and gentoo penguins (Pygos-
celis papua) [92]. It was concluded that recorded PEE 
from accelerometry efficiently detect true PEE but failed 
to differentiate among prey types and between success-
ful and unsuccessful feeding events [91, 92]. Since then, 
PEE have been commonly used as a proxy for feeding 
attempts with numerous marine predators such as SES 
[44, 70], harbor seals [12], Australian sea lions [8], Ant-
arctic fur seals (Arctocephalus gazella) [56], and little 
penguins (Eudyptula minor) [93].

We conducted our analysis on two temporal scales 
(dive and day), and on two dive data resolutions. We used 
high-resolution dive profiles sampled at 1 Hz, which we 
also reduced into five segments (low-resolution dive pro-
files) using the broken stick method to match dive pro-
files transmitted by the commonly deployed CTD-SRDL 
loggers [94]. We also conducted our analysis using two 
types of models: linear models and regression trees.

Methods
Instrument deployment and data collection
Between 2010 and 2019, 65 breeding female SES from 
the Kerguelen Islands (49°20’S, 70°20’E) were equipped 
by the field crew with loggers before leaving for their 
post-breeding foraging trips at sea (Fig.  1). Individuals 

were captured with a head-bag canvas and intravenously 
sedated with a 1:1 combination of Tiletamine and Zolaz-
epam [Zoletil 100, 95]. All seals were weighed (precision 
of 0.1  kg) and measured from nose to tail while posi-
tioned flat on the ground. After cleaning the fur with 
acetone, loggers were glued to seals using a quick-setting 
epoxy [Araldite AW 2101, Ciba, 96]. Individuals were 
equipped with different logger types and combinations 
(see Additional file 1 for all details). The data for each seal 
included either Argos (n = 35) or GPS (n = 30) locations, 
dive depth (at 0.5 or 1 Hz), and tri-axial acceleration (at 
12.5 or 16  Hz). We excluded all data from the first and 
last day of the trip of each seal.

Dive data
A dive is defined as any change in depth exceeding 
15  m and lasting more than 5  min. We excluded from 
the analysis any dives with recording errors and outlier 
behaviors. Although dives with outlier values are not 
necessarily caused by recording errors, we excluded them 
as they do not represent the general behavior of the ani-
mal and likely have an influential effect on the estima-
tion of the model parameters [97]. A dive is excluded 
if (1) one or more depth records are missing from the 
depth profile, (2) two or more depth records occur at the 
same time, (3) the vertical speed exceed 4.0  m.s−1, (4) 
the dive lasts more than 2800 s, (5) the maximum depth 
reaches > 1200  m, or (6) the surface time is longer than 
300 s. These values were suggested by Cox et al. [98] to 
identify outlier dives and were confirmed in this study by 

Table 1  Description of the track and dive-based metrics at the scale of dives

All dive metrics are calculated from the high-resolution dive profiles (i.e., at 1 Hz) and the ones marked with a * are also calculated from the low-resolution dive profiles 
(i.e., simplified to five segments using the broken stick method similar to data transmitted by CTD-SRDL loggers)

Metric Description

Descent rate* ddescent
tdescent

Where ddescent is the sum of the vertical distance swam during the descent phase and tdescent the duration of the descent 
phase

Ascent rate* dascent
tascent

Where dascent is the sum of the vertical distance swam during the ascent phase and tascent the duration of the ascent 
phase

Bottom duration* Duration of the bottom phase

Surface duration Duration of the post-dive surface phase

Efficiency* tbottom
tdive+tsurface

Where tbottom is the duration of the dive bottom phase, tdive the dive duration, and tsurface the post-dive surface duration

Sinuosity dbottom
ldbottom

Where dbottom is the total vertical distance swam by the seal at the bottom phase and ldbottom the sum of the linear verti-
cal distance from the start of the bottom phase to the maximum depth and from the maximum depth to the end of the 
bottom phase

Hunting time* Sum of the duration of the dive segments during which the seal is considered as hunting [48, 101]

Horizontal speed �d

�t
Where �d is the distance between the current and the previous dive and �t is the time duration between the current 
and the previous dive

Turning angle Turning angle between the previous, the current, and the next dive

FPT The first-passage time method [27]

Move persistence Correlation in transit speed and turning angle over time [26]



Page 5 of 19Allegue et al. Movement Ecology            (2023) 11:3 	

inspecting the histogram of each variable. We separated 
dive profiles into three phases: the descent, the bottom, 
and the ascent phases.

High‑resolution dive profiles
Using the high-resolution dive profiles (sampled at 1 Hz), 
we delimited the descent phase from the start of the dive 
to the first time the vertical speed of the seal reached 
0.75  m.s−1 [45, 99]. The ascent phase is delimited from 
the last time the vertical speed of the seal is < 0.75  m.
s−1 to the end of the dive [45, 99]. The bottom phase is 
delimited from the end of the descent phase to the start 
of the ascent phase [45]. From each dive, we extracted 
the descent and ascent rates, the bottom duration, the 
post-dive surface duration, the dive efficiency, the bottom 
phase (vertical) sinuosity, and the hunting time.

The dive efficiency is calculated as the ratio between 
the bottom phase duration over the sum of the dive and 
the post-dive surface duration [34]. The bottom phase 
sinuosity is calculated as the ratio between the total verti-
cal distance traveled by the seal over of the linear vertical 
distance from the start of the bottom phase to the maxi-
mum depth, and from the maximum depth to the end of 
the bottom phase [45]. Finally, the hunting time is defined 
as the total time within a dive during which the seal is in 
hunting mode. Hunting segments are distinguished from 
transit segments using the method proposed by Heerah 
et  al. [48]. Briefly, the dive profile is segmented using 
the broken stick method where the number of segments 
is defined by optimizing the dive zone index [100]. Div-
ing segments are considered as hunting segments when 
the vertical sinuosity is higher than 1/0.9 and are oth-
erwise defined as transit segments (for all details about 
this method see [48]). The vertical sinuosity of each 
dive segment is calculated as the ratio between the total 

vertical distance traveled by the seal over the linear verti-
cal distance.

Low‑resolution dive profiles
We reduced the high-resolution dive profiles into five 
dive segments by identifying four characteristic inflec-
tion points via the broken stick algorithm. This reduction 
in dive profile resolution is intended to match the dive 
profiles transmitted by CTD-SRDL loggers via the Argos 
satellite system [94]. From each dive, we extracted (1) 
the descent and ascent rates, as the ratio between depth 
and time differences for the first and last dive segments 
respectively [98], (2) the bottom time as the time between 
the first and last segments, (3) the dive efficiency, and (4) 
the hunting time, defined as the total time of all hunting 
segments. A dive segment is considered a hunting seg-
ment when the vertical rate is < 0.4 m.s−1, as suggested by 
Heerah et al. [101]. Dives with inflection points occurring 
at the same time are removed [98].

Track data
We estimated the location of each dive along the seal 
track by filtering observed locations with a correlated 
random walk state-space model that accounts for error in 
the GPS and Argos system [R package foieGras, 102]. We 
calculated the following track-based metrics at each dive 
location: (1) the horizontal speed  between the current 
and the previous dive, (2) the turning angle between the 
previous, the current, and the next dive, (3) the first-pas-
sage time (FPT) as the time required to a seal to exit an 
area of a given radius [27] for which we set a fixed radius 
of 25 km to avoid any bias due to between-individual dif-
ferences in sampling effort, and (4) the move persistence 
as the autocorrelation in movement (horizontal speed 
and turning angle) using a state-space model as described 

Fig. 1  Map of the post-breeding foraging trips of the equipped southern elephant seals (with at least an average of 15 locations per day). The left 
figure shows the tracks of the seals that were included in the analysis and the right one shows the tracks of the seals that were excluded from the 
analysis
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in Jonsen et al. [26] with the foieGras R package (Fig. 2). 
Move persistence models did not always converge when 
fitted on dive locations; thus, we fitted these models with 
locations set at a 4  h time step and assigned move per-
sistence values to each dive by linearly interpolating pre-
dicted values.

Prey encounter event
We used prey encounter events (PEE) as reference for 
feeding attempts which represents feeding activity. PEE 
are defined as high bursts of head movement that seals 
perform when attempting to capture a prey [11]. Note 
that PEE do not distinguish between successful and 
missed prey captures [91]. We extracted PEE from the 
raw acceleration data as follow: (1) we separated the 
dynamic acceleration of the 3 acceleration axes (the ani-
mal movement) from the static acceleration (due to grav-
ity) by applying an order 3 high-pass digital Butterworth 
filter with a normalized cut-off frequency of 0.33  Hz 
[70]; (2) we reduced and smoothed the resolution of the 
resulting time series by computing the standard deviation 
at each second followed by a running standard devia-
tion over a time window of 5  s; (3) we then performed 
a 2-mean clustering on each axis and defined PEE when 
the three axes continuously displayed a signal in the clus-
ter with the highest mean value. We considered a PEE 
distinct from the preceding PEE when separated by at 
least one second [45].

Data analysis
To test the capacity of each of the movement metrics 
(Table 1) to predict nPEE, we fitted a model with each of 
the metrics. We additionally fitted a model with all the 
dive-based metrics, one with all the track-based metrics, 
and one with all the metrics to investigate how the cumu-
lative effect of the metrics impacts the predictive capacity 
of the model. We conducted our analysis at the scale of 

dives and days as animals can adjust their behavior differ-
ently at short and long temporal scales [61]. At the scale 
of days, we averaged all the metric values across each 
day. We used two different types of models to predict 
nPEE: generalized linear mixed-effect models (GLMM) 
and boosted regression tree models (BRT). GLMM are 
widely used in ecology to model behavior (e.g., [45, 62]) 
and allow to decompose the total phenotypic variance 
into different hierarchical levels, e.g., among and within 
individuals [103]. BRT are popular for their predictive 
robustness as they are not restricted by any distributional 
or independency assumptions of the data and implicitly 
account for nonlinearity and interactions in the relation-
ships between predictors and the response variable [104].

We fitted the GLMM using the R package glmmTMB 
[104] with nPEE as the response variable and the metrics 
as fixed effects. We used a Poisson distribution with a log 
link function. We allowed the intercepts and the slopes 
between nPEE and the metrics to vary among individuals 
(i.e., random effects). All metrics were normalized (i.e., 
mean-centered and unit variance). All details about con-
structing and checking the GLMM are presented in the 
Additional file 2.

Based on the framework described in Rights & Sterba 
[105], we partitioned the proportion of the total variance 
in nPEE explained by the GLMM (i.e., the coefficient 
of determination; R2 ) into the proportion explained by 
the predictors via the fixed slope variance ( R2

F , R2(f1)
t  in 

[105]), the proportion explained by the individual-spe-
cific means via the random intercept variance ( R2

I  , R
2(m)

t  
in [105]), and the proportion explained by the predic-
tors via the random slope variance/covariance ( R2

S , R2(v)
t  

in [105]). We computed the total variance for a Poisson 
GLMM following Nakagawa et al. [106].

We fitted the BRT using the R package xgboost [107] 
with nPEE as the target variable and the metrics as the 
predictors. We used the tweedie distribution as the objec-
tive of the model as it is suitable for modeling dispersion 
and accounting for zero-inflation [108]. To improve the 
model predictive performance, we tuned several hyper-
parameters of each of  the models (see all details in the 
Additional file 3).

The predictive capacity of each of the models was eval-
uated from the accuracy and the correlation between 
the predicted and the observed nPEE for each individual 
using a leave-one-individual-out cross-validation pro-
cedure (e.g., [45, 62]). We iteratively excluded each indi-
vidual seal from the dataset, refitted the model with the 
remaining individuals, and calculated the accuracy and 
the correlation between the observed and the predicted 
values of the excluded individual. We quantified the 
accuracy of the models using the root-mean-square error 
(RMSE) such as:

Fig. 2  Seal track example color coded according to move 
persistence from low values (i.e., low movement autocorrelation) 
in dark blue to high values (i.e., high movement autocorrelation) in 
yellow
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where y is the predicted value, y is the observed value, 
and n is the number of observations. To compare the 
accuracy of the models at the scale of dives with the 
models at the scale of days, we also computed two nor-
malized versions of RMSE: the mean-based normalized 
RMSE ( mRMSE = RMSE/y ) and the standard-devia-
tion-based normalized RMSE ( sdRMSE = RMSE/σy ). 
We then compared the models such as the models with 
the highest predictive capacity have the lowest RMSE, 
mRMSE, sdRMSE, and the highest positive correlation 
coefficients. When the model is fitted with GLMM, the 
model performance is also represented by a large amount 
of the variance in nPEE explained by the fixed effects 
while minimizing the among-individual variance. We 
conducted our analysis on R 4.1.3 [109].

Results
As most of the devices stopped recording before the end 
of the foraging trips, seals varied substantially in the dura-
tion of the recorded data, ranging from 11 to 84  days. 
To minimize any bias in representing the behavior of 
the seals, we retained in our analysis only the seals with 
at least 30 days of recording data. We ended up using 21 
out 65 of the female SES, for which we had on average 
71 ± 8 days of data (range: 53–83 days). The seals weighed 
289 ± 63 kg (mean ± sd; range: 200–413 kg) and measured 
2.39 ± 0.21 m (range: 2.06–2.84 m, Additional file 1). After 
filtering the data, we analyzed 100,931 dives, from which 
88 ± 4% had at least one PEE. Seals performed 9 ± 8 (max: 
45) PEE per dive and 653 ± 315 (max: 1,755) PEE per day. 
Some seals had a low number of locations per day; there-
fore, we excluded these individuals (n = 2) from all mod-
els that involved track-based metrics by using a threshold 
of an average of 15 locations per day. This threshold was 
defined visually from the histogram of the mean number 
of locations of all the seals (Additional file 4).

Model predictive performance
Regardless of the temporal scale, the dive profile resolu-
tion, and the type of the model used, the model including 
the ascent rate best predicted nPEE ( R2

F(dive) = 33% at the 
scale of dives and R2

F(day)
 = 37% at the scale of days), 

closely followed by the model including the hunting time 
( R2

F(dive) = 28% and R2

F(day)
 = 28%), and the descent rate 

( R2

F(dive) = 19% and R2

F(day)
 = 21%, Fig.  3, Fig.  4, Table  2, 

and Table 3).

RMSE =

√∑n
t=1

(
ŷt − yt

)2

n

GLMM vs BRT
All BRT models were more accurate and generally had 
higher correlations than GLMM. However, at the scale of 
days, it was not clear whether BRT or GLMM performed 
better based on the mean correlation values (Fig. 5, Fig. 6, 
Table  2, and Table  3). The model including the hunting 
time had extreme high values of RMSE for some individ-
uals when fitted with GLMM and not when fitted with 
BRT (Fig.  5). Output estimates of all GLMM are pre-
sented in the Additional file 5.

Single vs multiple metrics
Models that included all the dive-based metrics 
( R2

F(dive) = 45% and R2

F(day)
 = 46%) performed better than 

the model that included all the track-based metrics 
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Fig. 3  Partitioning of the variance in the number of prey encounter 
events (nPEE) explained by each of the GLMM (on the y-axis) at 
the scale of dives (A) and days (B). The proportion of the variance 
explained by the predictors via the fixed slope variance ( R2F ; grey bar), 
by the individual-specific means via the random intercept variance 
( R2I  ; yellow bar), and by the predictors via the random slope variance/
covariance ( R2

S
 ; blue bar). The dive model includes all the dive-based 

metrics, the track model includes all the track-based metrics, and the 
all model includes all the metrics. Dive metrics are calculated from 
the high-resolution dive profiles (i.e., at 1 Hz)
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( R2

F(dive) = 7% and R2(day)
F  = 24%) and any model that 

included a single metric. The model that included all the 
metrics performed similarly to the model that included 
all the dive-based metrics (Fig.  3, Fig.  5, Table  2, and 
Table 3).

Low vs high‑resolution dive profiles
All dive-based metrics computed from the low-resolu-
tion dive profiles explained less or similar mean effect 
variance ( R2

F ) than the models including the metrics 
computed from the high-resolution dive profiles (Fig. 3, 
Fig.  4, & Table  2). The models that included the ascent 
rate, the descent rate, or the hunting time showed the 
most pronounced decrease in the predictive capacity 
when computed with the low-resolution dive profiles 
compared to the high-resolution dive profiles.

Scale of dives vs days
GLMM with a single metric explained between 0 and 
33% of the variance in nPEE at the scale of dives, and 
between 0 and 37% of the variance in nPEE at the scale 
of days (Table  2). At the scale of days, all variance 
components tended to increase (Fig.  3 and Table  2). 
This increase in variance components was particu-
larly marked in the among-individual variances ( R2

I  
and R2

S ). Higher variation among individual at the 
scale of days resulted in higher variability among indi-
viduals in the correlation values (Fig.  5, Table  2, and 

Table  3). The models that included the dive bottom 
duration, the post-dive surface duration, and the hunt-
ing time were the only models that did not show a sub-
stantial increase in R2

F  at the scale of days compared 
to the scale of dives (Fig.  3 and Table  2). At the scale 
of days, the GLMM including hunting time computed 
from high-resolution dive profiles had the largest value 
of R2

I  = 45% compared to other models (Fig.  3). Mod-
els including one of the dive-based metrics increased 
more in R2

S from the scale of dives to the scale of days 
compared to the models including one of the track-
based metrics. For all models, mRMSE values at the 
scale of dives were larger than mRMSE at the scale of 
days, whereas sdRMSE values at the scale of days were 
larger than sdRMSE at the scale of dives for GLMM 
and similar for BRT.

Discussion
We tested and compared a series of track- and dive-based 
movement metrics in how well they predict feeding 
intensity in SES, which was inferred from nPEE meas-
ured with accelerometry. We found that none of the met-
rics predicted nPEE with a high accuracy and correlation 
(i.e., > 0.5) with the observed nPEE in all individual seals. 
The performance of the metrics varied largely among 
individuals, especially at the scale of days, where some 
individuals had high positive correlations and others 
had low or negative correlations between the observed 
and predicted nPEE. Most of the metrics explained a 
small proportion of the population variance, in addition 
to a substantial among-individual variance. Although 
our results may not be representative of other situations 
involving different species or ecological contexts, we 
advocate that the complexity of factors driving animal 
movement is likely ubiquitous [7, 70, 110]. We therefore 
stress that the utilization of simple movement metrics to 
infer feeding activity, in particular with diving predators, 
should be carefully tested a priori (e.g., in pilot studies 
with high resolution data) during which the most influ-
ential factors should be identified and accounted for in 
subsequent studies, or otherwise highly biased inferences 
should be expected.

Dive‑based metrics
Among all metrics tested, both transit rate metrics (i.e., 
ascent rate and descent rate) were the best metrics in pre-
dicting the variance of nPEE, regardless of the temporal 
scale, the resolution of the dive profiles, and the model 
type used. This important contribution of transit rates in 
the seal behavioral response to prey encounter was also 
found in other studies on SES [13, 45, 58, 62] and other 
diving species [8, 40, 51, 54, 56]. This result is consistent 
with optimal diving theoretical models predicting that 

RF
2 RI

2 RS
2

A

Dive

0% 25
%

50
%

75
%

10
0%

Hunt. time

Efficiency

Bottom dur.

Asc. rate

Desc. rate

Variance 
 explained (%)

B

Day

Low
−

resolution dive

0% 25
%

50
%

75
%

10
0%

Variance 
 explained (%)

Fig. 4  Partitioning of the variance in the number of prey encounter 
events (nPEE) explained by each of the GLMM (on the y-axis) at 
the scale of dives (A) and days (B). The proportion of the variance 
explained by the predictors via the fixed slope variance ( R2F ; grey bar), 
by the individual-specific means via the random intercept variance 
( R2I  ; yellow bar), and by the predictors via the random slope variance/
covariance ( R2

S
 ; blue bar). Dive metrics are calculated from the 

low-resolution dive profiles, i.e., simplified to five segments using the 
broken stick method similar to data transmitted by CTD-SRDL loggers
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the transit time has a substantial effect on diving suc-
cess [111]. However, the dive efficiency metric predicted 
nPEE poorly, at least at the scale of dives, which suggests 
that the main motivational objective of the seals at short 
temporal scales may not be to maximize time at the bot-
tom phase over the total dive cycle as predicted by the 
optimal diving theory [34, 36]. Then, why do seals alter 
their vertical transit behavior in response to prey density 
if it is not to maximize time at the foraging phase, i.e., the 
dive bottom phase?

One possible explanation is that seals increase tran-
sit rates to avoid losing contact with a prey patch 
previously found [112]. In several diving species, indi-
viduals increase vertical transit rates by steeper descent 
and ascent angles, rather than higher swimming speeds, 
when encountering higher prey density, allowing them 
to return more rapidly to the same foraging spot with 
minimal energy expenditure [13, 40, 42]. Sato et al. [41] 
hypothesized that macaroni penguins (Eudyptes chrysolo-
phus) adopt steep body angles during descent and ascent 
phases and increase time at the bottom of the dive when 
encountering prey patches, and otherwise adopt shallow 
body angles and short bottom times to move horizontally 

more efficiently and increase the probability of locating a 
good prey patch. Nonetheless, the behavior of divers dur-
ing the transit phase depends on different factors, which 
makes it hard to tease apart all sources of variance. For 
example, swimming speed during transit phases in grey 
seals increased with distance to prey patches [113] but 
decreased in northern elephant seals with depth [114]. 
Moreover, buoyancy affects swimming speed, stroke rate, 
and gliding behavior during transit phases both in north-
ern [115] and southern elephant seals [116].

Although the dive bottom duration has been used as a 
proxy for feeding activity [117–119], we found in SES that 
the bottom duration is a poor predictor for nPEE. This 
could be explained by the multiple factors affecting how 
divers adjust their dive bottom duration. For example, 
divers may alter their dive bottom duration in response 
to the interaction between body buoyancy and mass, prey 
distribution in space and time, and the depth at which prey 
patches are found [53, 57, 58, 61, 99]. As SES dive continu-
ously during their time at sea, they also perform non-feed-
ing dives, such as rest and exploration dives [120], which 
may add noise in the variation of the dive bottom duration, 
reducing its power to predict nPEE during feeding dives. 

Table 3  Performance output of the track- and dive-based metrics using BRT in explaining and predicting nPEE at the scale of dives 
and days

The root-mean-square error (RMSE; mean ± sd), the mean-based normalized RMSE (mRMSE), the standard-deviation-based normalized RMSE (sdRMSE), and the 
correlation coefficient (Corr.) are computed between the observed values of nPEE for each seal and the predicted values by the model fitted without the focal 
individual (i.e., leave-one-individual-out cross-validation). The dive model includes all the dive-based metrics, the track model includes all the track-based metrics, and 
the all model includes all the metrics. Dive metrics are calculated from the high-resolution dive profiles (i.e., at 1 Hz; upper section) or from the low-resolution dive 
profiles (lower section), i.e., simplified to five segments using the broken stick method similar to data transmitted by CTD-SRDL loggers

Model RMSE mRMSE sdRMSE Corr RMSE mRMSE sdRMSE Corr
Dive Day

Descent rate 6.7 ± 1.8 0.72 ± 0.10 0.96 ± 0.05 0.35 ± 0.08 242.6 ± 125.4 0.36 ± 0.11 0.98 ± 0.16 0.38 ± 0.29

Ascent rate 6.4 ± 1.8 0.69 ± 0.11 0.91 ± 0.06 0.49 ± 0.07 245.0 ± 131.6 0.37 ± 0.11 0.98 ± 0.17 0.49 ± 0.19

Bottom duration 7.0 ± 1.8 0.75 ± 0.11 0.99 ± 0.03 0.22 ± 0.08 260.6 ± 127.7 0.39 ± 0.11 1.05 ± 0.13 0.16 ± 0.28

Surface duration 7.1 ± 1.7 0.76 ± 0.09 1.01 ± 0.02 0.10 ± 0.14 259.2 ± 115.7 0.39 ± 0.09 1.07 ± 0.08 0.10 ± 0.23

Efficiency 6.9 ± 1.6 0.75 ± 0.10 0.99 ± 0.04 0.22 ± 0.15 239.0 ± 100.6 0.37 ± 0.09 1.00 ± 0.15 0.35 ± 0.31

Sinuosity 6.8 ± 1.9 0.73 ± 0.10 0.97 ± 0.05 0.31 ± 0.12 256.6 ± 127.8 0.38 ± 0.10 1.04 ± 0.13 0.29 ± 0.28

Hunting time 6.6 ± 1.9 0.71 ± 0.10 0.94 ± 0.06 0.50 ± 0.07 258.7 ± 120.7 0.39 ± 0.10 1.06 ± 0.14 0.02 ± 0.45

Horizontal speed 7.2 ± 1.8 0.76 ± 0.10 1.00 ± 0.03 0.18 ± 0.10 245.7 ± 123.6 0.37 ± 0.11 0.96 ± 0.15 0.51 ± 0.23

Turning angle 7.3 ± 1.8 0.77 ± 0.10 1.01 ± 0.03 0.03 ± 0.04 262.4 ± 115.1 0.39 ± 0.09 1.04 ± 0.11 0.28 ± 0.19

FPT 7.1 ± 1.7 0.75 ± 0.10 0.99 ± 0.03 0.22 ± 0.09 231.8 ± 110.8 0.35 ± 0.10 0.91 ± 0.14 0.56 ± 0.22

Move persistence 7.3 ± 1.7 0.77 ± 0.11 1.01 ± 0.02 0.14 ± 0.10 250.5 ± 100.2 0.38 ± 0.09 1.00 ± 0.09 0.43 ± 0.26

Dive 5.6 ± 1.2 0.61 ± 0.09 0.81 ± 0.07 0.62 ± 0.10 174.1 ± 83.1 0.27 ± 0.09 0.73 ± 0.17 0.74 ± 0.13

Track 7.2 ± 1.7 0.76 ± 0.10 1.00 ± 0.03 0.22 ± 0.07 234.7 ± 90.9 0.36 ± 0.08 0.95 ± 0.13 0.49 ± 0.25

All 5.8 ± 1.3 0.61 ± 0.09 0.81 ± 0.06 0.62 ± 0.09 183.6 ± 76.6 0.28 ± 0.08 0.74 ± 0.14 0.74 ± 0.15

Descent rate 7.0 ± 1.9 0.75 ± 0.10 1.00 ± 0.04 0.22 ± 0.10 255.8 ± 133.3 0.38 ± 0.11 1.03 ± 0.16 0.24 ± 0.26

Ascent rate 7.0 ± 1.9 0.74 ± 0.10 0.99 ± 0.05 0.26 ± 0.11 265.8 ± 133.2 0.40 ± 0.10 1.07 ± 0.14 0.03 ± 0.25

Bottom duration 7.0 ± 1.9 0.75 ± 0.11 1.00 ± 0.03 0.21 ± 0.09 262.4 ± 127.2 0.39 ± 0.11 1.06 ± 0.13 0.06 ± 0.33

Efficiency 7.0 ± 1.7 0.76 ± 0.10 1.01 ± 0.03 0.14 ± 0.14 242.1 ± 111.9 0.37 ± 0.10 1.00 ± 0.16 0.30 ± 0.35

Hunting time 6.9 ± 1.7 0.74 ± 0.10 0.98 ± 0.03 0.26 ± 0.10 261.0 ± 127.2 0.39 ± 0.10 1.06 ± 0.12 0.14 ± 0.22
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However, the dive  bottom duration seems more reliable 
in distinguishing feeding versus non-feeding dives rather 
than the density of prey encountered [44, 57, 99].

In contrast, the hunting time computed from high-res-
olution dive profiles, which captures the variability of the 
vertical movement of the seal at the bottom phase, 

Fig. 5  Performance of each of the models (on the y-axis) in predicting the number of prey encounter events (nPEE) at the scale of dives (A and B) 
and days (C and D). Each of the models is fitted with a generalized linear mixed-effect model (GLMM; in black) and with a boosted regression tree 
(BRT; in grey). The root-mean-square error (RMSE) and the correlation coefficient are computed between the observed values of nPEE for each seal 
and the predicted values by the model fitted without the focal individual (i.e., leave-one-individual-out cross-validation). The dive model includes all 
the dive-based metrics, the track model includes all the track-based metrics, and the all model includes all the metrics. Dive metrics are calculated 
from the high-resolution dive profiles (i.e., at 1 Hz)
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performed better than the bottom duration, the dive effi-
ciency, or the overall bottom dive sinuosity. This result is 
consistent with several previous findings [13, 49, 50]. For 
example, SES exhibit horizontally and vertically sinuous 
movements at the bottom phase when encountering prey 
items [13]. However, the performance of the hunting 
time metric in explaining the variance in nPEE remains 
poor ( R2

F(dive) = 28% and R2

F(day)
 = 28%). SES adopt differ-

ent hunting modes involving either active-swimming 
approaches or passive-gliding approaches from above the 
prey [121]. Jouma’a et  al. [121] found, in six Kerguelen 
female SES, that passive-gliding approaches occurred ca. 
30% of the prey capture attempts, which may weaken the 
relationship between the hunting time and nPEE.

We found that the ascent rate is a better predictor for 
nPEE than the descent rate. This can be explained by 
the effect of the seal buoyancy on its swimming behav-
ior. After the breeding period on land, female SES are in 
poor condition (i.e., low in fat composition), and hence, 
they are negatively buoyant when leaving the Kerguelen 
islands [116, 122]. When negatively buoyant, seals tend 
to glide down to the bottom of the dive while swim-
ming actively to return to the surface [13, 114–116, 
122]. Seals may adjust the duration of the ascent phase 

more to improve foraging output while minimizing 
the cost of transport during the descent phase [115], 
which lead to more variability in descent rate compared 
to ascent rate [116]. For example, the buoyancy of 
elephant seals affects swimming speed variability dur-
ing the descent phase and not during the ascent phase 
[116, 123]. However, when the seal buoyancy becomes 
positive after some time foraging at sea, seals tend to 
glide up to the surface during the ascent phase [124]. 
In this case, we expect that descent rate will overcome 
the ascent rate in predicting nPEE. Additionally, divers 
are assumed to adjust the descent phase in response to 
prey encountered in previous dives as an anticipatory 
mechanism [41, 44, 93]. However, divers may be con-
stantly in a searching mode while descending to reach 
prey patches that are heterogeneously distributed in 
depth [34, 41], which may contribute to the poorer rela-
tionship between the descent rate and nPEE compared 
to the ascent rate.

High vs low‑resolution dive profiles
All metrics that were calculated from the low-reso-
lution dive profiles performed less well at predicting 
nPEE than their equivalent metrics calculated from the 

Fig. 6  Performance of each of the models (on the y-axis) in predicting the number of prey encounter events (nPEE) at the scale of dives (A and B) 
and days (C and D). Each of the models is fitted with a generalized linear mixed-effect model (GLMM; in black) and with a boosted regression tree 
(BRT; in grey). The root-mean-square error (RMSE) and the correlation coefficient are computed between the observed values of nPEE for each seal 
and the predicted values by the model fitted without the focal individual (i.e., leave-one-individual-out cross-validation). Dive metrics are calculated 
from the low-resolution dive profiles, i.e., simplified to five segments using the broken stick method similar to data transmitted by CTD-SRDL 
loggers
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high-resolution dive profiles. This reduction in perfor-
mance was especially pronounced in the metrics that 
performed the best when computed from high-resolution 
dive profiles such as the descent rate, the ascent rate, 
and the hunting time. Dive profiles of diving predators 
like SES can be complex, and defining the descent and 
the ascent (transit) phases is not always straightforward 
[125, 126]. Transit phases in SES generally last several 
minutes and therefore seals are likely to encounter prey 
on which they opportunistically feed [99]. These inter-
ruptions in transit phases can add considerable noise 
into metrics like the descent and ascent rates depending 
on how these phases are delimited. In this study, we con-
sidered the descent and the ascent phases in high-reso-
lution dive profiles as the first and the last dive segments 
where the vertical speed of the seal is uninterrupted, i.e., 
above a certain rate threshold. Although we believe this 
method is appropriate to estimate transit rates, it might 
result in underestimating the duration of the transit 
phases when these phases are composed by subphases. 
This may result in impacting the values of metrics such as 
the bottom duration, the bottom phase sinuosity, or the 
dive efficiency. The broken-stick algorithm, used for the 
segmentation of the low-resolution dive profiles, breaks-
down the dive profiles into five segments based on the 
general shape of the dive [94]. With this method, there 
is no guaranty that the first and the last segments of the 
broken-stick algorithm match with the true descent and 
ascent phases, which is likely to mismatch with complex 
dive profiles [see Fig. 1 in Heerah et al., 127].

The hunting time metric was developed initially to dis-
tinguish hunting segments from transit segments within 
a dive, as these hunting segments include most of the 
PEE [48, 101]. However, the relationship between the 
duration, or other characteristics (e.g., vertical rate), of 
these hunting segments and feeding activity was never 
explicitly tested. Despite this lack of validation, several 
studies used hunting time as a proxy for prey density, 
foraging success, or foraging effort [15, 74, 128, 129]. 
Moreover, the hunting time metric was tested only on 
few individuals [101, 127], while our results show that 
the performance of all metrics varies substantially among 
individuals. Thus, the initial validation of the hunting 
time to infer feeding behavior is likely biased towards the 
behavior of some individuals in the population.

Track‑based metrics
Although the ARS behavior matches with feeding activ-
ity in different studies on diving species [19, 130–132], 
we found that all track-based metrics performed poorly 
in predicting nPEE in SES, and this result was more pro-
nounced at the scale of dives than the scale of days. This 
is consistent with the study conducted by Vacquié-Garcia 

et  al. [45], where track-based metrics did not explain 
much of the variance in nPEE after accounting for dive-
based metrics. The omnipresence of the ARS hypothesis 
in marine foraging predators remains questionable as 
many studies also failed to validate it [55, 58, 133]. For 
example, southern bluefin tuna (Thunnus maccoyiii) and 
Adélie penguins do not fit the traditional ARS frame-
work; instead, they intensify feeding activity during lin-
ear and fast-transit phases compared to the tortuous and 
slow-transit phases that were hypothesized as resting 
periods [134–136].

The poor performance of the SES horizontal movement 
in predicting nPEE may arise from several factors. Della 
Penna et  al. [137] described SES movements as “quasi-
planktonic”, i.e., drifting with ocean currents, which may 
allow seals to dedicate most of their energy in diving 
and capturing prey instead of moving at the horizontal 
dimension. Foraging predators may adopt an ARS tactic 
only at a specific spatial or temporal scale [19], and the 
scale level may vary among individuals due to the local 
prey distribution [118] or to individual specialization in 
foraging tactics [138]. Also, the track data is generally 
in lower resolution than the dive data. All these poten-
tial explanations are supported, but not teased apart, by 
the fact that the models including track-based metrics 
explained a higher R2

F at the scale of days. At a lower 
temporal scale, the track data may not be able to capture 
the horizontal movement of the animal due to the added 
noise from ocean currents and the data resolution itself, 
or seals may adopt an ARS behavior only at higher spati-
otemporal scales.

During the post-breeding foraging trips, female SES 
are in a poor body condition, and thus require a rapid 
energy intake to avoid mortality. As SES forage in an 
unpredictable and heterogenous three-dimensional 
environment, there may be a trade-off in the horizontal 
movement patterns adopted depending on the motiva-
tional objective of the seals. ARS behavior may not be 
optimal in this context, as the seals must quickly supply 
elevated energy requirements as opposed to maximiz-
ing their long-term energy intake [135, 139]. The plot of 
the cumulative sum of nPEE over time shows that seals 
feed continuously (Fig.  7). Hence, feeding continuously 
and opportunistically may be more efficient to increase 
survival probability until seals improve their body condi-
tion to a certain level. This foraging movement behavior 
is also more efficient than the ARS behavior when prey 
are widely dispersed in the environment [140, 141]. This 
effect may also emerge due to a temporal sampling design 
biased towards the first part of the foraging trip at sea, 
where all seals were sampled at the beginning of their trip 
at sea, right after the breeding season, but varied in the 
total proportion of the trip that is sampled.
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Foraging temporal scale
All movement metrics performed better at the scale 
of days than at the scale of dives, which is consistent 
with previous findings [45, 56]. However, the degree of 
improvement of the bottom and surface durations was 
very minimal compared to other metrics. This general 
improvement in prediction performance, particularly the 
mean dive efficiency, suggests that seals adjust their diving 
behavior to optimize foraging success at a larger tempo-
ral scale than the dive per se. Accounting for the tempo-
ral scales at which a forager alters its behavior to optimize 
benefits and costs is necessary for fully understanding 
foraging behavior [142, 143]. Rate maximization may 
operate simultaneously on several (or all) temporal scales 
where distinct currencies are targeted at each scale [117, 
144]. Therefore, the relationship between movement met-
rics and prey density can be scale-dependent [59, 61]. For 
example, Adélie penguins increase dive bottom duration 
in response to krill capture rate at the scale of dives, and 
they decrease it at the scale of bouts [61]. Although scale-
specific behavioral adjustments make up for different 
motivational objectives, they come with physiological and 
behavioral constraints resulting in foraging scale trade-
offs. For example, bison (Bison bison) prefer to optimize 
their short-term energy gains at the expense of long-term 
gains by foraging on Carex atherodes instead of Agro-
pyron spp., presumably due to the risk of predation and 
anthropogenic disturbance [145].

Inter‑individual variability
We found that a substantial proportion of the variance 
in nPEE is explained by individual differences (between 

5 and 18% at the scale of dives and between 33 and 63% 
at the scale of days), which is commonly found in SES 
behavior [138, 146] as well as in other diving predators 
[147–149]. Among-individual variance includes the vari-
ance due to differences in the mean nPEE, differences in 
how seals adjust their behavior in response to nPEE, and 
the covariance between both [105]. All variance compo-
nents explained by among-individual differences were 
larger at the scale of days than at the scale of dives. This 
suggests again that seals adjust their foraging behavior 
at larger temporal scales. The among-individual vari-
ance could be explained by many extrinsic and intrinsic 
factors.

When leaving the Kerguelen Islands, SES seals spread 
in all directions in the Indian section of the Southern 
Ocean and consequently forage in areas with varying 
conditions [Fig. 1, 67, 68, 78]. This likely results in target-
ing different types of prey with varying characteristics 
such as size, energetical and nutritional content, acces-
sibility, and digestibility [80, 85]. A recent study by Gou-
let et  al. [150], using biologging, found that female SES 
within the same foraging trip switch between different 
types of prey varying in their depth distribution, size, 
escape capacity, and bioluminescence, which are likely 
different species of myctophidae and, in lower propor-
tions, squid species [89, 90]. These differences in foraging 
habitat and diet can cause a plastic behavioral response 
by the seals. For example, seals may adjust the number 
of prey they consume in response to the prey energy 
content [116] or seals may change their hunting mode 
in response to the size, the depth, and the anti-predator 
behavior of their prey [121].

In addition to among-individual variation in the plas-
tic response to varying experienced environmental con-
ditions, variation among individuals can emerge from 
intrinsic factors [151, 152]. For example, SES select dis-
tinct foraging habitats, varying in their productivity, level 
of competition and predation, and ice cover dynam-
ics, with sex [66, 68], age [153], and temperament [78]. 
The diet of SES is mainly composed by fish and squid 
species [82, 84, 154, 155] and their relative proportions 
vary between individuals with sex [82] and age [86, 87]. 
Among-individual behavioral differences due to state 
variables, such as sex, age, body size, and temperament 
can be mediated by metabolic rate [156], energetical 
and nutritional needs [157], or diving capacity [146]. For 
example, the relationship between the diving metabolic 
limit of SES and swimming speed and dive duration var-
ies among individuals [158], which may have direct con-
sequences on the diving and hunting tactics they adopt 
while foraging.

The proportion of the variance explained by individual 
differences in the effect size between each metric and 
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nPEE ( R2
S ) was relatively stable at the scale of dives but 

varied substantially among metrics at the scale of days. 
R2
S was higher for dive-based metrics compared to track-

based metrics. This variation among individuals in how 
they adjust their diving behavior resulted in predictions 
of nPEE with contrasting correlation values relative to the 
observed values. This suggests that the seals use different 
diving tactics. The bottom duration and the surface dura-
tion show the lowest values of R2

F and the highest vari-
ability among individuals in the direction of the metric’s 
effect size in response to nPEE. This result is interesting 
as it shows that there is no single dominant tactic among 
equipped seals in how they adjust the dive bottom phase 
duration and the post-dive surface duration in response 
to nPEE. For example, the following three tactics may 
exist according to the effect between surface duration 
and nPEE: a positive relationship may reflect individuals 
that increase surface time to recover from an increase in 
feeding effort [99]; an absence of relationship may indi-
cate that seals adjust their diving behavior or metabolic 
rate to stabilize energy expenditure over time and avoid 
variation in surface duration [158–160]; and a negative 
relationship may be caused by seals reducing surface time 
in response to nPEE to the increase of feeding time while 
adopting alternative recovery tactics such as delayed 
recovery surface periods after intensive feeding bouts 
[161, 162] or during resting dives [163].

The GLMM that included the hunting time (computed 
from high-resolution dive profiles) resulted in extremely 
biased predictions for some individuals at the scale of 
dives and days (Fig.  5). Interestingly, this bias does not 
appear when fitting the model with BRT. After investigat-
ing the relationship between the hunting time and nPEE 
of these outlier individuals, we found that they have a 
non-linear relationship, which was accounted for by BRT. 
Therefore, individuals can vary in the direction of the 
effect size (positive or negative) between the metric and 
nPEE as well as in the shape of the relationship (linear or 
non-linear).

Conclusion
In summary, our findings show that there is not a 
straightforward relationship between simple movement 
metrics and feeding intensity, which may be affected by 
several factors such as the temporal scale, individual 
variability, and the data resolution. We therefore con-
clude that these metrics should be carefully used, for 
example by testing them a priori with the studied spe-
cies and the ecological context, and their limitations 
should be understood and taken into consideration. 
We also recommend computing most relevant metrics 
(e.g., ascent rate and hunting time in this study) from 

the raw high-resolution data even when only the sum-
marized low-resolution data will be transmitted and 
accessible for researchers [e.g., 98]. For example, met-
rics could be computed onboard as the data is recorded 
and only their values transmitted through satellite 
communications.

Although considerable effort has been recently made 
to incorporate additional ecological complexity into 
foraging theoretical models [164, 165], its applicabil-
ity remains still difficult and rare in field studies. More 
effort is thus needed to make modern methods of mod-
eling foraging behavior more accessible to scientists, 
which will promote more effective wildlife management 
and conservation practices [166, 167].

Abbreviations
SES	� Southern elephant seals
PEE	� Prey encounter events
nPEE	� Number of prey encounter events
ARS	� Area-restricted search
FPT	� First-passage time
GLMM	� Generalized linear mixed-effect models
R
2	� The coefficient of determination, the proportion of the total vari-

ance explained by the model
R
2

F
	� The proportion of the total variance explained by the predictors 

via the fixed slope variance
R
2

I
	� The proportion of the total variance explained by the individual-

specific means via the random intercept variance
R
2

S
	� The proportion of the total variance explained by the predictors 

via the random slope variance/covariance
BRT	� Boosted regression tree models
RMSE	� Root-mean-square error
mRMSE	� Mean-based normalized RMSE
sdRMSE	� Standard-deviation-based normalized RMSE

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s40462-​022-​00361-2.

Additional file 1. General seal information.

Additional file 2. Building and checking the generalized linear mixed 
models.

Additional file 3. Example of hyperparameter tuning of boosted regres-
sion tree models.

Additional file 4. Inspecting the number of locations recorded per day.

Additional file 5. Output of all the generalized linear mixed-effect 
models.

Acknowledgements
We thank all field assistants and volunteers that helped for data collection and 
fieldwork on southern elephant seals at the Kerguelen islands. We also thank 
S.C. Patrick, I. Jonsen, E. Codling, and two anonymous reviewers for their useful 
comments on the manuscript.

Author contributions
HA conceived the ideas; HA, DR, and CG designed the methodology; HA, CG, 
and BP collected the data; HA and BP processed the data; HA conducted the 
analysis and wrote the first draft of the manuscript; All authors contributed to 
the discussion of the results and to the revisions of the manuscript. All authors 
read and approved the final manuscript.

https://doi.org/10.1186/s40462-022-00361-2
https://doi.org/10.1186/s40462-022-00361-2


Page 16 of 19Allegue et al. Movement Ecology            (2023) 11:3 

Funding
Field work was financially and logistically supported by the IPEV under the 
Antarctic research program 109 (H. Weimerskirch) and 1201 (C. Gilbert & C. 
Guinet), and most satellite tags used in this study were funded by CNES-
TOSCA (C. Guinet). This study was also funded by the French National Centre 
for Scientific Research (CNRS) to C.G., the Alexander Graham Bell Canada 
Doctoral Scholarship to H.A. and the Discovery Grant to D.R provided by the 
Natural Sciences and Engineering Research Council of Canada (NSERC), and 
the 3rd cycle Scholarship by the Fond de Recherche du Québec—Nature et 
Technologies to H.A..

Availability of data and materials
Datasets used for the models at the scale of dives and days are available on 
Zenodo: https://​doi.​org/​10.​5281/​zenodo.​74544​15.

Declarations

Ethics approval and consent to participate
This study was carried out with the approval of the ethics committee of the 
French Polar Institute (Institut Paul Emile Victor—IPEV).

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing of interest concerning the 
content of the manuscript.

Received: 18 March 2022   Accepted: 17 December 2022

References
	 1.	 Richner H. The effect of extra food on fitness in breeding carrion crows. 

Ecology. 1992;73:330–5.
	 2.	 Stephens DW, Krebs JR. Foraging theory. Princeton: Princeton University 

Press; 1986.
	 3.	 Bost CA, Cotté C, Terray P, Barbraud C, Bon C, Delord K, et al. Large-scale 

climatic anomalies affect marine predator foraging behaviour and 
demography. Nat Commun. 2015;6:8220.

	 4.	 Allen AM, Singh NJ. Linking movement ecology with wildlife manage-
ment and conservation. Front Ecol Evol. 2016;3.

	 5.	 Bograd S, Block B, Costa D, Godley B. Biologging technologies: new 
tools for conservation. Introd Endanger Spec Res. 2010;10:1–7.

	 6.	 Naito Y. How can we observe the underwater feeding behavior of 
endotherms? Polar Sci. 2007;1:101–11.

	 7.	 Carter MID, Bennett KA, Embling CB, Hosegood PJ, Russell DJF. Navigat-
ing uncertain waters: a critical review of inferring foraging behaviour 
from location and dive data in pinnipeds. Mov Ecol. 2016;4:25.

	 8.	 Volpov BL, Rosen DAS, Hoskins AJ, Lourie HJ, Dorville N, Baylis AMM, 
et al. Dive characteristics can predict foraging success in Australian fur 
seals (Arctocephalus pusillus doriferus) as validated by animal-borne 
video. Biol Open. 2016;5:262–71.

	 9.	 Kuhn CE, Crocker DE, Tremblay Y, Costa DP. Time to eat: measurements 
of feeding behaviour in a large marine predator, the northern elephant 
seal Mirounga angustirostris. J Anim Ecol. 2009;78:513–23.

	 10.	 Suzuki I, Naito Y, Folkow LP, Miyazaki N, Blix AS. Validation of a device 
for accurate timing of feeding events in marine animals. Polar Biol. 
2009;32:667–71.

	 11.	 Viviant M, Trites AW, Rosen DAS, Monestiez P, Guinet C. Prey capture 
attempts can be detected in Steller sea lions and other marine preda-
tors using accelerometers. Polar Biol. 2010;33:713–9.

	 12.	 Allegue H, Thomas A, Liu Y, Trites A. Harbour seals responded differently 
to pulses of out-migrating coho and Chinook smolts. Mar Ecol Prog Ser. 
2020;647:211–27.

	 13.	 Le Bras Y, Jouma’a J, Picard B, Guinet C, Wiebe P, Fincke J. How elephant 
seals (Mirounga leonina) adjust their fine scale horizontal movement 

and diving behaviour in relation to prey encounter rate. Hemmi JM, 
editor. PLoS One. 2016;11:e0167226.

	 14.	 Jeanniard-du-Dot T, Guinet C, Arnould JPY, Speakman JR, Trites AW. 
Accelerometers can measure total and activity-specific energy expen-
ditures in free-ranging marine mammals only if linked to time-activity 
budgets. Funct Ecol. 2016;31:377–86.

	 15.	 McMahon CR, Hindell MA, Charrassin JB, Corney S, Guinet C, Harcourt R, 
et al. Finding mesopelagic prey in a changing Southern Ocean. Sci Rep. 
2019;9:1–11.

	 16.	 Roncon G, Bestley S, McMahon CR, Wienecke B, Hindell MA. View from 
below: inferring behavior and physiology of southern ocean marine 
predators from dive telemetry. Front Mar Sci. 2018;5:464.

	 17.	 Pyke GH, Pulliam HR, Charnov EL. Optimal foraging: a selective review 
of theory and tests. Q Rev Biol. 1977;52:137–54.

	 18.	 Kareiva PM, Odell G. Swarms of predators exhibit “preytaxis” if individual 
predators use area-restricted search. Am Nat. 1987;130:233–70.

	 19.	 Weimerskirch H, Pinaud D, Pawlowski F, Bost C. Does prey capture 
induce area-restricted search? a fine-scale study using GPS in a marine 
predator, the wandering albatross. Am Nat. 2007;170:734–43.

	 20.	 Bell WJ. Sources of information controlling motor patterns in arthropod 
local search orientation. J Insect Physiol. 1985;31:837–47.

	 21.	 Robinson PW, Simmons SE, Crocker DE, Costa DP. Measurements of 
foraging success in a highly pelagic marine predator, the northern 
elephant seal. J Anim Ecol. 2010;79:1146–56.

	 22.	 Bailey H, Fossette S, Bograd SJ, Shillinger GL, Swithenbank AM, Georges 
J-Y, et al. Movement patterns for a critically endangered species, the 
leatherback turtle (Dermochelys coriacea), linked to foraging success 
and population status. PLoS ONE. 2012;7: e36401.

	 23.	 Pacheco-Cobos L, Winterhalder B, Cuatianquiz-Lima C, Rosetti MF, Hud-
son R, Ross CT. Nahua mushroom gatherers use area-restricted search 
strategies that conform to marginal value theorem predictions. Proc 
Natl Acad Sci. 2019;116:10339–47.

	 24.	 Bovet P, Benhamou S. Spatial analysis of animals’ movements using a 
correlated random walk model. J Theor Biol. 1988;131:419–33.

	 25.	 Nolet BA, Mooij WM. Search paths of swans foraging on spatially auto-
correlated tubers. J Anim Ecol. 2002;71:451–62.

	 26.	 Jonsen ID, McMahon CR, Patterson TA, Auger-Méthé M, Harcourt R, Hin-
dell MA, et al. Movement responses to environment: fast inference of 
variation among southern elephant seals with a mixed effects model. 
Ecology. 2019;100: e02566.

	 27.	 Fauchald P, Tveraa T. Using first-passage time in the analysis of area-
restricted search and habitat selection. Ecology. 2003;84:282–8.

	 28.	 Barraquand F, Benhamou S. Animal movements in heterogeneous 
landscapes: identifying profitable places and homogeneous movement 
bouts. Ecology. 2008;89:3336–48.

	 29.	 Knell AS, Codling EA. Classifying area-restricted search (ARS) using a 
partial sum approach. Theor Ecol. 2012;5:325–39.

	 30.	 Kramer DL. The behavioral ecology of air breathing by aquatic animals. 
Can J Zool. 1988;66:89–94.

	 31.	 Kooyman GL, Ponganis PJ. The physiological basis of diving to depth: 
birds and mammals. Annu Rev Physiol. 1998;60:19–32.

	 32.	 Orians GH, Pearson NE. On the theory of central place foraging. In: Horn 
DJ, Stairs GR, Mitchell RD, editors. Anal Ecol syst. Columbus: Ohio State 
Univ. Press; 1979. p. 155–77.

	 33.	 Houston AI, McNamara JM. A general theory of central place foraging 
for single-prey loaders. Theor Popul Biol. 1985;28:233–62.

	 34.	 Houston AI, Carbone C. The optimal allocation of time during the div-
ing cycle. Behav Ecol. 1992;3:255–65.

	 35.	 Carbone C, Houston AI. The optimal allocation of time over the dive 
cycle: an approach based on aerobic and anaerobic respiration. Anim 
Behav. 1996;51:1247–55.

	 36.	 Thompson D, Fedak MA. How long should a dive last? A simple model 
of foraging decisions by breath-hold divers in a patchy environment. 
Anim Behav. 2001;61:287–96.

	 37.	 Mori Y. The optimal allocation of time and respiratory metabolism over 
the dive cycle. Behav Ecol. 1999;10:155–60.

	 38.	 Mori Y, Takahashi A, Mehlum F, Watanuki Y. An application of optimal 
diving models to diving behaviour of Brünnich’s guillemots. Anim 
Behav. 2002;64:739–45.

https://doi.org/10.5281/zenodo.7454415


Page 17 of 19Allegue et al. Movement Ecology            (2023) 11:3 	

	 39.	 Elliott KH, Davoren GK, Gaston AJ. Time allocation by a deep-diving bird 
reflects prey type and energy gain. Anim Behav. 2008;75:1301–10.

	 40.	 Ropert-Coudert Y, Kato A, Baudat J, Bost C-A, Le Maho Y, Naito Y. Time/
depth usage of Adélie penguins: an approach based on dive angles. 
Polar Biol. 2001;24:467–70.

	 41.	 Sato K, Charrassin J-B, Bost C-A, Naito Y. Why do macaroni penguins 
choose shallow body angles that result in longer descent and ascent 
durations? J Exp Biol. 2004;207:4057–65.

	 42.	 Hanuise N, Bost C-A, Handrich Y. Optimization of transit strategies while 
diving in foraging king penguins. J Zool. 2013;290:181–91.

	 43.	 Tessier E, Bost C-A. Behavioural adjustments during foraging in two 
diving seabirds: king and macaroni penguins. Mar Biol. 2020;167:138.

	 44.	 Gallon S, Bailleul F, Charrassin J-B, Guinet C, Bost C-A, Handrich Y, et al. 
Identifying foraging events in deep diving southern elephant seals, 
Mirounga leonina, using acceleration data loggers. Deep Sea Res Part II 
Top Stud Oceanogr. 2013;88:14–22.

	 45.	 Vacquié-Garcia J, Guinet C, Dragon A-C, Viviant M, Ksabi NE, Bailleul F. 
Predicting prey capture rates of southern elephant seals from track and 
dive parameters. Mar Ecol Prog Ser. 2015;541:265–77.

	 46.	 Lescroël A, Ballard G, Toniolo V, Barton KJ, Wilson PR, Lyver PO’B, et al. 
Working less to gain more: when breeding quality relates to foraging 
efficiency. Ecology. 2010;91:2044–55.

	 47.	 Hanuise N, Bost C-A, Huin W, Auber A, Halsey LG, Handrich Y. Measuring 
foraging activity in a deep-diving bird: comparing wiggles, oesopha-
geal temperatures and beak-opening angles as proxies of feeding. J 
Exp Biol. 2010;213:3874–80.

	 48.	 Heerah K, Hindell M, Guinet C, Charrassin J-B. A new method to 
quantify within dive foraging behaviour in marine predators. PLoS ONE. 
2014;9: e99329.

	 49.	 Bost CA, Handrich Y, Butler PJ, Fahlman A, Halsey LG, Woakes AJ, 
et al. Changes in dive profiles as an indicator of feeding success in 
king and Adélie penguins. Deep Sea Res Part II Top Stud Oceanogr. 
2007;54:248–55.

	 50.	 Simeone A, Wilson RP. In-depth studies of Magellanic penguin (Sphe-
niscus magellanicus) foraging: can we estimate prey consumption by 
perturbations in the dive profile? Mar Biol. 2003;143:825–31.

	 51.	 Carroll G, Slip D, Jonsen I, Harcourt R. Supervised accelerometry 
analysis can identify prey capture by penguins at sea. J Exp Biol. 
2014;217:4295–302.

	 52.	 Cornick LA, Horning M. A test of hypotheses based on optimal forag-
ing considerations for a diving mammal using a novel experimental 
approach. Can J Zool. 2003;81:1799–807.

	 53.	 Sparling CE, Georges J-Y, Gallon SL, Fedak M, Thompson D. How long 
does a dive last? Foraging decisions by breath-hold divers in a patchy 
environment: a test of a simple model. Anim Behav. 2007;74:207–18.

	 54.	 Foo D, Semmens JM, Arnould JPY, Dorville N, Hoskins AJ, Abernathy K, 
et al. Testing optimal foraging theory models on benthic divers. Anim 
Behav. 2016;112:127–38.

	 55.	 Robinson PW, Tremblay Y, Crocker DE, Kappes MA, Kuhn CE, Shaffer SA, 
et al. A comparison of indirect measures of feeding behaviour based 
on ARGOS tracking data. Deep Sea Res Part II Top Stud Oceanogr. 
2007;54:356–68.

	 56.	 Viviant M, Monestiez P, Guinet C. Can we predict foraging success in a 
marine predator from dive patterns only? Validation with prey capture 
attempt data. PLoS ONE. 2014;9: e88503.

	 57.	 Viviant M, Jeanniard-du-Dot T, Monestiez P, Authier M, Guinet C. Bottom 
time does not always predict prey encounter rate in Antarctic fur seals. 
Funct Ecol. 2016;30:1834–44.

	 58.	 Thums M, Bradshaw CJA, Sumner MD, Horsburgh JM, Hindell MA. 
Depletion of deep marine food patches forces divers to give up early. J 
Anim Ecol. 2013;82:72–83.

	 59.	 Austin D, Bowen WD, McMillan JI, Iverson SJ. Linking movement, diving, 
and habitat to foraging success in a large marine predator. Ecology. 
2006;87:3095–108.

	 60.	 Heaslip SG, Bowen WD, Iverson SJ. Testing predictions of optimal diving 
theory using animal-borne video from harbour seals (Phoca vitulina 
concolor). Can J Zool. 2014;92:309–18.

	 61.	 Watanabe YY, Ito M, Takahashi A. Testing optimal foraging theory in a 
penguin–krill system. Proc R Soc B Biol Sci. 2014;281:20132376.

	 62.	 Labrousse S, Vacquié-Garcia J, Heerah K, Guinet C, Sallée J-B, Authier M, 
et al. Winter use of sea ice and ocean water mass habitat by southern 

elephant seals: the length and breadth of the mystery. Prog Oceanogr. 
2015;137:52–68.

	 63.	 Dingemanse NJ, Kazem AJN, Réale D, Wright J. Behavioural reaction 
norms: animal personality meets individual plasticity. Trends Ecol Evol. 
2010;25:81–9.

	 64.	 Stamps JA. Individual differences in behavioural plasticities. Biol Rev. 
2016;91:534–67.

	 65.	 Hindell MA, McMahon CR, Bester MN, Boehme L, Costa D, Fedak MA, 
et al. Circumpolar habitat use in the southern elephant seal: implica-
tions for foraging success and population trajectories. Ecosphere. 
2016;7: e01213.

	 66.	 Bailleul F, Authier M, Ducatez S, Roquet F, Charrassin J-B, Cherel Y, et al. 
Looking at the unseen: combining animal bio-logging and stable iso-
topes to reveal a shift in the ecological niche of a deep diving predator. 
Ecography (Cop). 2010;33:709–19.

	 67.	 Mestre J, Authier M, Cherel Y, Harcourt R, McMahon CR, Hindell MA, 
et al. Decadal changes in blood δ 13 C values, at-sea distribution, and 
weaning mass of southern elephant seals from Kerguelen Islands. Proc 
R Soc B Biol Sci; 2020;287:20201544

	 68.	 Hindell MA, McMahon CR, Jonsen I, Harcourt R, Arce F, Guinet C. Inter- 
and intrasex habitat partitioning in the highly dimorphic southern 
elephant seal. Ecol Evol. 2021;11:1620–33.

	 69.	 Bailleul F, Charrassin J-B, Monestiez P, Roquet F, Biuw M, Guinet C. Suc-
cessful foraging zones of southern elephant seals from the Kerguelen 
Islands in relation to oceanographic conditions. Philos Trans R Soc B Biol 
Sci. 2007;362:2169–81.

	 70.	 Guinet C, Vacquié-Garcia J, Picard B, Bessigneul G, Lebras Y, Dragon A, 
et al. Southern elephant seal foraging success in relation to tempera-
ture and light conditions: insight into prey distribution. Mar Ecol Prog 
Ser. 2014;499:285–301.

	 71.	 Vacquié-Garcia J, Guinet C, Laurent C, Bailleul F. Delineation of the 
southern elephant seal’s main foraging environments defined by tem-
perature and light conditions. Deep Sea Res Part II Top Stud Oceanogr. 
2015;113:145–53.

	 72.	 Bailleul F, Cotté C, Guinet C. Mesoscale eddies as foraging area of a 
deep-diving predator, the southern elephant seal. Mar Ecol Prog Ser. 
2010;408:251–64.

	 73.	 Dragon A-C, Monestiez P, Bar-Hen A, Guinet C. Linking foraging 
behaviour to physical oceanographic structures: Southern elephant 
seals and mesoscale eddies east of Kerguelen Islands. Prog Oceanogr. 
2010;87:61–71.

	 74.	 Siegelman L, O’Toole M, Flexas M, Rivière P, Klein P. Submesoscale ocean 
fronts act as biological hotspot for southern elephant seal. Sci Rep. 
2019;9:5588.

	 75.	 Rivière P, Jaud T, Siegelman L, Klein P, Cotté C, Le Sommer J, et al. 
Sub-mesoscale fronts modify elephant seals foraging behavior. Limnol 
Oceanogr Lett. 2019;4:193–204.

	 76.	 Cotté C, D’Ovidio F, Dragon A-C, Guinet C, Lévy M. Flexible preference 
of southern elephant seals for distinct mesoscale features within the 
Antarctic Circumpolar Current. Prog Oceanogr. 2015;131:46–58.

	 77.	 O’Toole M, Guinet C, Lea M, Hindell M. Marine predators and phyto-
plankton: how elephant seals use the recurrent Kerguelen plume. Mar 
Ecol Prog Ser Inter-Res. 2017;581:215–27.

	 78.	 Allegue H, Guinet C, Patrick SC, Hindell MA, McMahon CR, Réale D. Sex, 
body size, and boldness shape the seasonal foraging habitat selection 
in southern elephant seals. Ecol Evol. 2022;12: e8457.

	 79.	 Bradshaw CJA, Hindell MA, Sumner MD, Michael KJ. Loyalty pays: 
potential life history consequences of fidelity to marine foraging 
regions by southern elephant seals. Anim Behav. 2004;68:1349–60.

	 80.	 Hückstädt LA, Koch PL, McDonald BI, Goebel ME, Crocker DE, Costa DP. 
Stable isotope analyses reveal individual variability in the trophic ecol-
ogy of a top marine predator, the southern elephant seal. Oecologia 
Springer-Verlag. 2012;169:395–406.

	 81.	 Authier M, Martin C, Ponchon A, Steelandt S, Bentaleb I, Guinet C. 
Breaking the sticks: a hierarchical change-point model for estimat-
ing ontogenetic shifts with stable isotope data. Methods Ecol Evol. 
2012;3:281–90.

	 82.	 Slip DJ. The diet of southern elephant seals ( Mirounga leonina ) from 
Heard Island. Can J Zool. 1995;73:1519–28.

	 83.	 Daneri GA, Carlini AR. Fish prey of southern elephant seals, Mirounga 
leonina, at King George Island. Antarct Sci. 2002;1248:739–43.



Page 18 of 19Allegue et al. Movement Ecology            (2023) 11:3 

	 84.	 Bradshaw CJA, Hindell MA, Best NJ, Phillips KL, Wilson G, Nichols PD. You 
are what you eat: describing the foraging ecology of southern elephant 
seals (Mirounga leonina) using blubber fatty acids. Proc R Soc B Biol Sci. 
2003;270:1283–92.

	 85.	 Banks J, Lea M-A, Wall S, McMahon CR, Hindell MA. Combining bio-
logging and fatty acid signature analysis indicates spatio-temporal 
variation in the diet of the southern elephant seal, Mirounga leonina. J 
Exp Mar Bio Ecol. 2014;450:79–90.

	 86.	 Newland C, Field I, Nichols P, Bradshaw C, Hindell M. Blubber fatty 
acid profiles indicate dietary resource partitioning between adult and 
juvenile southern elephant seals. Mar Ecol Prog Ser. 2009;384:303–12.

	 87.	 Field IC, Bradshaw CJA, Van Den Hoff J, Burton HR, Hindell MA. Age-
related shifts in the diet composition of southern elephant seals 
expand overall foraging niche. Mar Biol Springer. 2007;150:1441–52.

	 88.	 Piatkowski U, Vergani DF, Stanganelli ZB. Changes in the cephalopod 
diet of southern elephant seal females at King George Island, during El 
Niño-La Niña events. J Mar Biol Assoc UK. 2002;82:913–6.

	 89.	 Cherel Y, Ducatez S, Fontaine C, Richard P, Guinet C. Stable isotopes 
reveal the trophic position and mesopelagic fish diet of female south-
ern elephant seals breeding on the Kerguelen Islands. Mar Ecol Prog 
Ser. 2008;370:239–47.

	 90.	 Ducatez S, Dalloyau S, Richard P, Guinet C, Cherel Y. Stable isotopes 
document winter trophic ecology and maternal investment of adult 
female southern elephant seals (Mirounga leonina) breeding at the 
Kerguelen Islands. Mar Biol. 2008;155:413–20.

	 91.	 Volpov BL, Hoskins AJ, Battaile BC, Viviant M, Wheatley KE, Marshall G, 
et al. Identification of prey captures in Australian fur seals (Arctocephalus 
pusillus doriferus) using head-mounted accelerometers: field validation 
with animal-borne video cameras. PLoS One; 2015;10: 0128789

	 92.	 Kokubun N, Kim J-H, Shin H-C, Naito Y, Takahashi A. Penguin head 
movement detected using small accelerometers: a proxy of prey 
encounter rate. J Exp Biol; 2011;214:3760.

	 93.	 Ropert-Coudert Y, Kato A, Wilson RP, Cannell B. Foraging strategies and 
prey encounter rate of free-ranging Little Penguins. Mar Biol Berlin/
Heidelberg. 2006;149:139–48.

	 94.	 Fedak M, Lovell P, McConnell B, Hunter C. Overcoming the constraints 
of long range radio telemetry from animals: getting more useful data 
from smaller packages1. Integr Comp Biol. 2002;42:3–10.

	 95.	 McMahon CR, Burton H, McLean S, Slip D, Bester M. Field immobili-
sation of southern elephant seals with intravenous tiletamine and 
zolazepam. Vet Rec. 2000;146:251–4.

	 96.	 McMahon CR, Field IC, Bradshaw CJA, White G, Hindell MA. Tracking 
and data–logging devices attached to elephant seals do not affect 
individual mass gain or survival. J Exp Mar Bio Ecol. 2008;360:71–7.

	 97.	 Zuur AF, IENO EN, Elphick CS. A protocol for data exploration to avoid 
common statistical problems. Methods Ecol Evol. 2010;1:3–14.

	 98.	 Cox SL, Orgeret F, Gesta M, Rodde C, Heizer I, Weimerskirch H, et al. 
Processing of acceleration and dive data on-board satellite relay tags 
to investigate diving and foraging behaviour in free-ranging marine 
predators. Methods Ecol Evol. 2018;9:64–77.

	 99.	 Jouma’a J, Le Bras Y, Richard G, Vacquié-Garcia J, Picard B, El Ksabi N, 
et al. Adjustment of diving behaviour with prey encounters and body 
condition in a deep diving predator: the Southern Elephant Seal. Funct 
Ecol. 2015;30:636–48.

	100.	 Photopoulou T, Lovell P, Fedak MA, Thomas L, Matthiopoulos J. Efficient 
abstracting of dive profiles using a broken‐stick model. Börger L, editor. 
Methods Ecol Evol. 2015;6:278–88.

	101.	 Heerah K, Hindell M, Guinet C, Charrassin JB. From high-resolution to 
low-resolution dive datasets: a new index to quantify the foraging 
effort of marine predators. Anim Biotelemetry. 2015;3:42.

	102.	 Jonsen ID, Patterson TA, Costa DP, Doherty PD, Godley BJ, Grecian WJ, 
et al. A continuous-time state-space model for rapid quality control of 
argos locations from animal-borne tags. Mov Ecol. 2020;8:31.

	103.	 Dingemanse NJ, Dochtermann NA. Quantifying individual variation in 
behaviour: mixed-effect modelling approaches. Pol M van de, editor. J 
Anim Ecol. 2013;82:39–54.

	104.	 Elith J, Leathwick JR, Hastie T. A working guide to boosted regression 
trees. J Anim Ecol. 2008;77:802–13.

	105.	 Rights JD, Sterba SK. Quantifying explained variance in multilevel mod-
els: An integrative framework for defining R-squared measures. Psychol 
Methods. 2019;24:309–38.

	106.	 Nakagawa S, Schielzeth H. A general and simple method for obtaining 
R2 from generalized linear mixed-effects models. Methods Ecol Evol. 
2013;4:133–42.

	107.	 Chen T, Guestrin C. XGBoost: A scalable tree boosting system. Proc of 
the 22nd ACM SIGKDD Int Conf Knowl Discov Data Min. 2016;KDD 
’16:785–94.

	108.	 Zhou H, Qian W, Yang Y. Tweedie gradient boosting for extremely 
unbalanced zero-inflated data. Commun Stat - Simul Comput. Taylor & 
Francis; 2020;1–23.

	109.	 Team R Development Core. A Language and Environment for Statisti-
cal Computing [Internet]. Vienna, Austria: R Foundation for Statistical 
Computing; 2021. http://​www.r-​proje​ct.​org

	110.	 Rosen DAS, Hindle AG, Gerlinsky CD, Goundie E, Hastie GD, Volpov BL, 
et al. Physiological constraints and energetic costs of diving behaviour 
in marine mammals: a review of studies using trained Steller sea lions 
diving in the open ocean. J Comp Physiol B. 2016;1–22.

	111.	 Houston AI, McNamara JM, Heron JE, Barta Z. The effect of foraging 
parameters on the probability that a dive is successful. Proc R Soc 
London Ser B Biol Sci. 2003;270:2451–5.

	112.	 Ydenberg RC, Clark CW. Aerobiosis and anaerobiosis during div-
ing by western grebes: an optimal foraging approach. J Theor Biol. 
1989;139:437–47.

	113.	 Gallon S, Sparling CE, Georges JY, Fedak MA, Biuw M, Thompson D. How 
fast does a seal swim? Variations in swimming behaviour under differ-
ing foraging conditions. J Exp Biol. 2007;210:3285–94.

	114.	 Hassrick JL, Crocker DE, Zeno RL, Blackwell SB, Costa DP, Le Boeuf BJ. 
Swimming speed and foraging strategies of northern elephant seals. 
Deep Sea Res Part II Top Stud Oceanogr. 2007;54:369–83.

	115.	 Adachi T, Maresh JL, Robinson PW, Peterson SH, Costa DP, Naito Y, et al. 
The foraging benefits of being fat in a highly migratory marine mam-
mal. Proc R Soc B Biol Sci. 2014;281.

	116.	 Richard G, Vacquié-Garcia J, Jouma’a J, Picard B, Génin A, Arnould JPY, 
et al. Variation in body condition during the post-moult foraging trip of 
southern elephant seals and its consequences on diving behaviour. J 
Exp Biol. 2014;217:2609–19.

	117.	 Mori Y, Boyd IL. The behavioral basis for nonlinear functional responses 
and optimal foraging in antarctic fur seals. Ecology. 2004;85:398–410.

	118.	 Bailleul F, Pinaud D, Hindell M, Charrassin J-B, Guinet C. Assessment of 
scale-dependent foraging behaviour in southern elephant seals incor-
porating the vertical dimension: a development of the First Passage 
Time method. J Anim Ecol. 2008;77:948–57.

	119.	 McIntyre T, Bornemann H, Nico de Bruyn PJ, Reisinger RR, Steinhage D, 
Márquez MEI, et al. Environmental influences on the at-sea behaviour of 
a major consumer, Mirounga leonina, in a rapidly changing environ-
ment. Polar Res. 2014;33:23808.

	120.	 Godard M, Manté C, Guinet C, Picard B, Nerini D. Diving behavior of 
mirounga leonina: a functional data analysis approach. Front Mar Sci. 
2020;7:595.

	121.	 Jouma’a J, Le Bras Y, Picard B, Guinet C. Three-dimensional assessment 
of hunting strategies in a deep diving predator, southern elephant seal 
Mirounga leonina. Mar Ecol Prog Ser. 2017;573:255–68

	122.	 Miller PJO, Biuw M, Watanabe YY, Thompson D, Fedak MA. Sink fast and 
swim harder! Round-trip cost-of-transport for buoyant divers. J Exp Biol. 
2012;215:3622–30.

	123.	 Webb PM, Crocker DE, Blackwell SB, Costa DP, Le Boeuf BJ. Effects of 
buoyancy on the diving behavior of northern elephant seals. J Exp Biol. 
1998;201:2349–58.

	124.	 Aoki K, Watanabe YY, Crocker DE, Robinson PW, Biuw M, Costa DP. 
Northern elephant seals adjust gliding and stroking patterns with 
changes in buoyancy: validation of at-sea metrics of body density. J Exp 
Biol. 2011;214:2973–87.

	125.	 Halsey LG, Bost C-A, Handrich Y. A thorough and quantified method for 
classifying seabird diving behaviour. Polar Biol. 2007;30:991–1004.

	126.	 McGovern K, Rodríguez D, Lewis M, Davis R. Classification and behavior 
of free-ranging female southern elephant seal dives based on three-
dimensional movements and video-recorded observations. Mar Ecol 
Prog Ser. 2019;620:215–32.

	127.	 Heerah K, Cox SL, Blevin P, Guinet C, Charrassin J-B. Validation of Dive 
Foraging Indices Using Archived and Transmitted Acceleration Data: 
The Case of the Weddell Seal. 2019. p. 30.

http://www.r-project.org


Page 19 of 19Allegue et al. Movement Ecology            (2023) 11:3 	

	128.	 Heerah K, Hindell M, Andrew-Goff V, Field I, McMahon CR, Charrassin 
J-B. Contrasting behavior between two populations of an ice-obligate 
predator in East Antarctica. Ecol Evol. 2017;7:606–18.

	129.	 Labrousse S, Sallée J-B, Fraser AD, Massom RA, Reid P, Sumner M, et al. 
Under the sea ice: exploring the relationship between sea ice and the 
foraging behaviour of southern elephant seals in East Antarctica. Prog 
Oceanogr. 2017;156:17–40.

	130.	 Jonsen ID, Myers RA, James MC. Identifying leatherback turtle foraging 
behaviour from satellite telemetry using a switching state-space model. 
Mar Ecol Prog Ser. 2007;337:255–64.

	131.	 Ramasco V, Barraquand F, Biuw M, McConnell B, Nilssen KT. The intensity 
of horizontal and vertical search in a diving forager: the harbour seal. 
Mov Ecol. 2015;3:1–16.

	132.	 Planque Y, Huon M, Caurant F, Pinaud D, Vincent C. Comparing the 
horizontal and vertical approaches used to identify foraging areas of 
two diving marine predators. Mar Biol. 2020;167:25.

	133.	 Bestley S, Jonsen ID, Hindell MA, Harcourt RG, Gales NJ. Taking animal 
tracking to new depths: synthesizing horizontal–vertical movement 
relationships for four marine predators. Ecology. 2015;96:417–27.

	134.	 Bestley S, Patterson TA, Hindell MA, Gunn JS. Feeding ecology of wild 
migratory tunas revealed by archival tag records of visceral warming. J 
Anim Ecol. 2008;77:1223–33.

	135.	 Bestley S, Patterson TA, Hindell MA, Gunn JS. Predicting feeding suc-
cess in a migratory predator: integrating telemetry, environment, and 
modeling techniques. Ecology. 2010;91:2373–84.

	136.	 Riaz J, Bestley S, Wotherspoon S, Emmerson L. Horizontal-vertical move-
ment relationships: Adélie penguins forage continuously throughout 
provisioning trips. Mov Ecol. 2021;9:43.

	137.	 Della Penna A, De Monte S, Kestenare E, Guinet C, D’Ovidio F. Quasi-
planktonic behavior of foraging top marine predators. Sci Rep. 
2015;5:18063.

	138.	 McIntyre T, Bester MN, Bornemann H, Tosh CA, de Bruyn PJN. Slow to 
change? Individual fidelity to three-dimensional foraging habitats in 
southern elephant seals. Mirounga leonina Anim Behav. 2017;127:91–9.

	139.	 Ford RG, Ainley DG, Lescroël A, Lyver PO’B, Toniolo V, Ballard G. Testing 
assumptions of central place foraging theory: a study of Adélie pen-
guins Pygoscelis adeliae in the Ross Sea. J Avian Biol. 2015;46:193–205.

	140.	 Hill S, Burrows MT, Hughes RN. Adaptive search in juvenile plaice forag-
ing for aggregated and dispersed prey. J Fish Biol. 2002;61:1255–67.

	141.	 Sims DW, Witt MJ, Richardson AJ, Southall EJ, Metcalfe JD. Encounter 
success of free-ranging marine predator movements across a dynamic 
prey landscape. Proc R Soc B Biol Sci. 2006;273:1195–201.

	142.	 Boyd IL. Temporal scales of foraging in a marine predator. Ecology. 
1996;77:426–34.

	143.	 Amano T, Katayama N. Hierarchical movement decisions in predators: 
effects of foraging experience at more than one spatial and temporal 
scale. Ecology. 2009;90:3536–45.

	144.	 Gass CL, Roberts WM. The problem of temporal scale in optimization: 
three contrasting views of hummingbird visits to flowers. Am Nat. 
1992;140:829–53.

	145.	 Fortin D, Fryxell JM, Pilote R. The temporal scale of foraging decisons in 
bison. Ecology. 2002;83:970–82.

	146.	 McIntyre T, Tosh C, Plötz J, Bornemann H, Bester M. Segregation in 
a sexually dimorphic mammal: a mixed-effects modelling analysis 
of diving behaviour in southern elephant seals. Mar Ecol Prog Ser. 
2010;412:293–304.

	147.	 Ishikawa K, Watanuki Y. Sex and individual differences in foraging 
behavior of Japanese cormorants in years of different prey availability. J 
Ethol. 2002;20:49–54.

	148.	 Jeanniard-du-Dot T, Thomas A, Cherel Y, Trites A, Guinet C. Combin-
ing hard-part and DNA analyses of scats with biologging and stable 
isotopes can reveal different diet compositions and feeding strategies 
within a fur seal population. Mar Ecol Prog Ser. 2017;584:1–16.

	149.	 Lescroël A, O’B. Lyver P, Jongsomjit D, Veloz S, Dugger KM, Kappes P, 
et al. Inter-individual differences in the foraging behavior of breeding 
Adélie penguins are driven by individual quality and sex. Mar Ecol Prog 
Ser. 2020;636:189–205.

	150.	 Goulet P, Guinet C, Campagna C, Campagna J, Tyack PL, Johnson M. 
Flash and grab: Deep-diving southern elephant seals trigger anti-
predator flashes in bioluminescent prey. J Exp Biol. 2020;223.

	151.	 Bolnick DI, Svanbäck R, Fordyce JA, Yang LH, Davis JM, Hulsey CD, et al. 
The ecology of individuals: incidence and implications of individual 
specialization. Am Nat. The University of Chicago Press; 2003;161:1–28.

	152.	 Réale D, Reader SM, Sol D, McDougall PT, Dingemanse NJ. Integrat-
ing animal temperament within ecology and evolution. Biol Rev. 
2007;82:291–318.

	153.	 Chaigne A, Authier M, Richard P, Cherel Y, Guinet C. Shift in foraging 
grounds and diet broadening during ontogeny in southern elephant 
seals from Kerguelen Islands. Mar Biol Springer-Verlag. 2013;160:977–86.

	154.	 Daneri GA, Carlini AR, Rodhouse PGK. Cephalopod diet of the southern 
elephant seal, Mirounga leonina, at King George Island, South Shetland 
Islands. Antarct Sci. 2004/05/06 ed. Cambridge University Press; 
2000;12:16–9.

	155.	 Daneri GA, Carlini AR, Marschoff ER, Harrington A, Negrete J, Mennucci 
JA, et al. The feeding habits of the Southern elephant seal, Mirounga 
leonina, at Isla 25 de Mayo/King George Island, South Shetland Islands. 
Polar Biol. 2015;38:665–76.

	156.	 Holtmann B, Lagisz M, Nakagawa S. Metabolic rates, and not hormone 
levels, are a likely mediator of between-individual differences in behav-
iour: a meta-analysis. Moore I, editor. Funct Ecol; 2017;31:685–96

	157.	 Selman C, Lumsden S, Bunger L, Hill WG, Speakman JR. Resting meta-
bolic rate and morphology in mice (Mus musculus) selected for high 
and low food intake. J Exp Biol. 2001;204:777–84.

	158.	 Hindell MA, Lea M, Morrice MG, MacMahon CR. Metabolic limits on dive 
duration and swimming speed in the southern elephant seal mirounga 
leonina. Physiol Biochem Zool. 2000;73:790–8.

	159.	 Castellini MA, Kooyman GL, Ponganis PJ. Metabolic rates of freely diving 
Weddell seals: correlations with oxygen stores, swim velocity and div-
ing duration. J Exp Biol. 1992;165:181–94.

	160.	 Meir JU, Robinson PW, Vilchis LI, Kooyman GL, Costa DP, Ponganis PJ. 
Blood oxygen depletion is independent of dive function in a deep div-
ing vertebrate, the northern elephant seal. PLoS ONE. 2013;8: e83248.

	161.	 Ydenberg RC, Forbes LS. Diving and Foraging in the Western Grebe. 
Ornis Scand. 1988;19:129–33.

	162.	 Kooyman GL. Diverse divers: physiology and behavior. Berlin: Springer; 
2012.

	163.	 Crocker DE, Boeuf BJL, Costa DP. Drift diving in female northern ele-
phant seals: implications for food processing. Can J Zool. 1997;75:27–39.

	164.	 Railsback SF, Harvey BC. Trait-mediated trophic interactions: is foraging 
theory keeping up? Trends Ecol Evol. 2013;28:119–25.

	165.	 van Gils JA, van der Geest M, De Meulenaer B, Gillis H, Piersma T, Folmer 
EO. Moving on with foraging theory: incorporating movement deci-
sions into the functional response of a gregarious shorebird. J Anim 
Ecol. 2015;84:554–64.

	166.	 Ward TD, Algera DA, Gallagher AJ, Hawkins E, Horodysky A, Jørgensen 
C, et al. Understanding the individual to implement the ecosystem 
approach to fisheries management. Conserv Physiol. 2016;4:cow005.

	167.	 Merrick MJ, Koprowski JL. Should we consider individual behavior 
differences in applied wildlife conservation studies? Biol Conserv. 
2017;209:34–44.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Track and dive-based movement metrics do not predict the number of prey encountered by a marine predator
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Methods
	Instrument deployment and data collection
	Dive data
	High-resolution dive profiles
	Low-resolution dive profiles

	Track data
	Prey encounter event
	Data analysis

	Results
	Model predictive performance
	GLMM vs BRT
	Single vs multiple metrics
	Low vs high-resolution dive profiles
	Scale of dives vs days


	Discussion
	Dive-based metrics
	High vs low-resolution dive profiles
	Track-based metrics
	Foraging temporal scale
	Inter-individual variability

	Conclusion
	Acknowledgements
	References


