
R E S E A R C H Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Gilbertson et al. Movement Ecology           (2022) 10:43 
https://doi.org/10.1186/s40462-022-00342-5

Movement Ecology

*Correspondence:
Marie L. J. Gilbertson
mgilbertson5@wisc.edu

Full list of author information is available at the end of the article

Abstract
Background  Dispersal is a fundamental process to animal population dynamics and gene flow. In white-tailed deer 
(WTD; Odocoileus virginianus), dispersal also presents an increasingly relevant risk for the spread of infectious diseases. 
Across their wide range, WTD dispersal is believed to be driven by a suite of landscape and host behavioral factors, 
but these can vary by region, season, and sex. Our objectives were to (1) identify dispersal events in Wisconsin WTD 
and determine drivers of dispersal rates and distances, and (2) determine how landscape features (e.g., rivers, roads) 
structure deer dispersal paths.

Methods  We developed an algorithmic approach to detect dispersal events from GPS collar data for 590 juvenile, 
yearling, and adult WTD. We used statistical models to identify host and landscape drivers of dispersal rates and 
distances, including the role of agricultural land use, the traversability of the landscape, and potential interactions 
between deer. We then performed a step selection analysis to determine how landscape features such as agricultural 
land use, elevation, rivers, and roads affected deer dispersal paths.

Results  Dispersal predominantly occurred in juvenile males, of which 64.2% dispersed, with dispersal events 
uncommon in other sex and age classes. Juvenile male dispersal probability was positively associated with the 
proportion of the natal range that was classified as agricultural land use, but only during the spring. Dispersal 
distances were typically short (median 5.77 km, range: 1.3–68.3 km), especially in the fall. Further, dispersal distances 
were positively associated with agricultural land use in potential dispersal paths but negatively associated with the 
number of proximate deer in the natal range. Lastly, we found that, during dispersal, juvenile males typically avoided 
agricultural land use but selected for areas near rivers and streams.

Conclusion  Land use—particularly agricultural—was a key driver of dispersal rates, distances, and paths in Wisconsin 
WTD. In addition, our results support the importance of deer social environments in shaping dispersal behavior. Our 
findings reinforce knowledge of dispersal ecology in WTD and how landscape factors—including major rivers, roads, 
and land-use patterns—structure host gene flow and potential pathogen transmission.
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Background
Wildlife dispersal—the act of permanently moving from 
what is typically a natal range to an adult range—is a key 
biological process which affects population dynamics and 
gene flow [1–3], and can contribute to the geographic 
spread of pathogens [4–6]. Dispersal behavior is gener-
ally thought to be motivated by inbreeding avoidance 
and intraspecific competition for mates or resources [3, 
7–10]. Furthermore, when dispersing, landscape features 
may shape individual animals’ dispersal paths, thereby 
contributing to population connectivity [11, 12]. Deter-
mining how the landscape and an animal’s social envi-
ronment shape dispersal behavior and movements is 
therefore critical for understanding wildlife biology and 
population dynamics.

White-tailed deer (Odocoileus virginianus; WTD or 
deer, hereafter), while heavily studied, are found across 
varied landscapes with a range of potential drivers for 
dispersal behaviors. For example, deer dispersal rates 
and distances increase in areas of low forest cover [13, 
14] and high deer densities (e.g., [15], but see [13, 16]). 
Dispersal dynamics can also be temporally variable as in 
Clements et al. [17], where dispersal distance and direc-
tion varied by season. While deer dispersal is most com-
mon in juvenile males, some regions have seen higher 
rates of juvenile female dispersal (e.g., [14, 15, 18]). Driv-
ers of dispersal vary by sex, with female deer disper-
sal thought to be density-dependent and motivated by 
access to resources [15], whereas male dispersal is driven 
by inbreeding avoidance and mate competition [7]. Fur-
thermore, intersexual aggression from females towards 
juvenile male offspring increases spring dispersal prob-
abilities, particularly with higher female deer densities 
[7, 19], while intrasexual aggression among males prior 
to the breeding season contributes to increased fall dis-
persal probabilities [7]. Once dispersal has been initiated, 
landscape features or barriers affect cervid movement 
paths. For example, major roads and rivers often act as 
semipermeable barriers (occasionally or rarely crossed) 
to movement [20–22] and subsequent gene flow (and 
likely pathogen spread; [23, 24]). Riparian areas appear to 
direct some dispersal movement [17], so while both riv-
ers and roads may act as broad landscape barriers, rivers 
and streams could be particularly important for shaping 
the direction of travel. Forest cover is the most consistent 
driver of WTD dispersal distances [13], but the effect of 
landscape features on deer dispersal rates and distances 
is not always consistent across populations [22]. Bauder 
et al., [25], for example, found minimal landscape-driven 
genetic structuring of WTD in Ohio, concluding that 
landscape features likely do not form a barrier to deer 
movement in their study area.

Variability in dispersal patterns between sexes, tempo-
ral periods, and geographic regions results in uncertainty 

regarding movement ecology and population connectiv-
ity or gene flow across deer populations—uncertainty 
that has important consequences for deer population 
management. These consequences are particularly appar-
ent in the context of disease spread. For example, chronic 
wasting disease (CWD) is a fatal prion disease of cervids, 
and is increasing in prevalence and geographic distribu-
tion across North America [26]. As CWD prevalence 
increases, the probability of juvenile infection prior to 
dispersal is also expected to increase [27, 28]. Thus, in 
addition to shaping population gene flow, juvenile dis-
persal events present an increasing risk for geographic 
disease spread. Understanding drivers of deer dispersal 
behavior and movements thereby informs deer popula-
tion management and disease control and surveillance 
efforts [29, 30].

Our objectives were to (1) identify dispersal events in 
Wisconsin WTD and determine drivers of dispersal rates 
and distances, and (2) determine how landscape features 
(e.g., rivers, major roads) structure deer dispersal paths. 
We expected that juvenile males would complete most 
dispersal events, and predicted that land use—especially 
forested versus agricultural land use [13, 14]—and deer 
social environments [15] would be key drivers of deer 
dispersal behavior and movement trajectories. More 
specifically, we predicted that individuals in natal ranges 
with limited access to forest cover or in areas with an 
increased number of proximate individuals would be 
more likely to disperse [7, 13]. We expected that agri-
cultural land use would favor longer dispersal distances 
as dispersing individuals seek out key cover [13]. Lastly, 
we predicted that landscape barriers like major rivers 
and roads would further shape dispersal patterns by act-
ing as semipermeable barriers to dispersal [20, 22]. For 
example, if potential dispersal paths for an individual fre-
quently intersected or intersected soon after origin with 
major roads or rivers, we expected the individual would 
be less likely to disperse (i.e., “frustrated dispersal”; [31, 
32]).

Methods
Study area and deer collaring
The Wisconsin Department of Natural Resources 
(WDNR), in collaboration with > 300 landowners, cap-
tured 1,157 individual WTD from 2017 to 2020 in Iowa, 
Grant, and Dane counties in southwestern Wisconsin, 
as part of ongoing research on CWD. As the region in 
which CWD was first detected in Wisconsin in 2001 
[33], our study area has featured in extensive prior 
research (e.g., [34–36]). The habitat in this area has a 
rolling topography with highly dissected deciduous for-
est patches (about 41.0% deciduous and 4.2% mixed or 
evergreen forest) interspersed with agricultural land use 
(about 19.9% pasture or hay and 21.8% cultivated crops) 
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and minor amounts of grassland and woody or emergent 
herbaceous wetlands. Our study was rural, with several 
small towns, located directly west of the city of Madison, 
Wisconsin.

Deer were captured using a combination of clover traps 
[37], drop nets [38], box traps [39], and chemical immobi-
lization with intramuscular injections of BAM (27.3 mg/
ml butorphanol + 9.1  mg/ml azaperone + 10.9  mg/ml 
medetomidine; [40]) via hand-injection. During capture, 
deer were monitored via rectal temperature, respiratory 
and heart rates, and capillary refill time. Deer were sub-
sequently chemically mobilized with atipamezole (25 mg/
ml). Deer capture and handling protocols were approved 
under WDNR’s Animal Care and Use Committee (Proto-
col: 16-Storm-01).

At the time of capture, 763 deer (452 female, 311 male) 
greater than 8 months of age were fitted with global posi-
tioning system (GPS) collars (Vectronic VERTEX Lite 
Iridium or Lotek LiteTrack Iridium 420) and biological 
samples (incisiform tooth if estimated > 20 months of 
age) and measurements (body weight, tooth replace-
ment and wear) were recorded. Captures occurred from 
December to March each year, and at capture, individu-
als were classified as juvenile (approximately 8 months of 
age), yearling (approximately 20 months of age), or adult 
(greater than two years of age) by body size and tooth 
wear [41], or incisor cementum annuli [42, 43] in cases 
where the former two measures were inconclusive. GPS 
collars recorded deer locations typically every four hours, 
but as often as hourly during fawning or dispersal sea-
sons (i.e., spring and fall), or as infrequently as every 23 h 
to conserve battery life.

GPS collar data processing
Deer GPS collar data were processed to screen for likely 
erroneous locations before analysis. For GPS collar data 
preparation, Lewis et al. [44] recommend removing 
2D fixes above a dilution of precision (DOP) cutoff (in 
their case, DOP > 5), while Bjørneraas et al. [45] recom-
mend using movement characteristics, such as “spike” or 
high-speed movements, to screen data for likely errant 
points. We used a hybrid of these two recommenda-
tions, removing 2D points with DOP > 5, and screening 
for spike movements. Spike movements were defined 
and removed based on having a turning angle between 
166–194º and either (1) a high displacement rate, relative 
to the population (in the 99th percentile of displacement 
rates across the study population; 0.67  km/hr), or (2) 
crossing and immediately returning across the Wisconsin 
River. In addition, we trimmed the ends of all trajectories 
to account for capture or mortality effects on movement. 
For all individuals, we removed 3 days from the start of 
the animal’s trajectory, and 1 day from the end of the tra-
jectory. This approach helped ensure data removals were 

both biologically relevant and consistent with the quality 
of the data.

Following processing, we included only those individu-
als with movement data spanning at least one dispersal 
season, including data for a season only if it included at 
least 60 recorded locations. For this screening process, 
we defined dispersal seasons as spring (1 Apr − 31 Jul) or 
fall (1 Sep − 31 Dec; these windows conservatively expand 
beyond peak dispersal seasons typically described as 
May-Jun and Sep-Nov; [13, 22]). We evaluated male and 
female deer across all age classes (juveniles, yearlings, 
and adults). We evaluated adults to screen for evidence 
of range shifts among older age classes, especially those 
consistent with migratory behavior which would affect 
our interpretation of dispersal behavior (i.e., migratory 
behavior could be mis-classified as dispersal events).

Dispersal detection algorithm
Following Lutz et al. [15, 19], we defined dispersal as 
a permanent, one–way movement from a natal range 
(hereafter, pre-dispersal range) to a new range (post-dis-
persal range). Further, to be defined as a dispersal event, 
the individual’s post-dispersal range could not overlap 
with the pre-dispersal range. Based on this definition, 
we developed an automated algorithm for identification 
of dispersal to facilitate the analysis of a large number of 
individuals.

For each deer, we used k-means clustering to identify 
geographical clusters of locations [46]. We used the sil-
houette approach [47, 48] to determine the number of 
clusters to test per individual, limiting the algorithm 
to testing for 2–5 clusters. Most individuals for which 
k-means identified more than 2 clusters were non-dis-
persing individuals, so increasing the number of clusters 
was unlikely to improve dispersal detection.

After cluster detection, we then determined the spatial 
overlap between the identified clusters. If a cluster con-
tained at least 30 locations, we quantified overlap using 
the utilization distribution overlap index (UDOI) of the 
95% vertices of bivariate normal home range kernels [49]. 
For efficiency, we used the default settings in the R pack-
age adehabitatHR [50]. If a cluster contained fewer than 
30 locations, we determined if any of the cluster’s points 
fell within the 95% kernel density estimation (KDE) 
home range vertices of other clusters. We note that KDE 
approaches can underestimate home range size when 
movement data are autocorrelated [51], but autocorre-
lated KDE (aKDE) approaches can be prohibitively slow 
for large datasets such as ours. We found, however, that 
home range sizes derived for a sample of our data using 
KDE versus aKDE approaches were not significantly dif-
ferent (supplementary methods), so our dispersal detec-
tions are unlikely to have been affected by this choice.
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We used the cluster overlap results to classify each 
individual as a disperser or non-disperser. Dispersers 
were classed as those individuals for which (1) at least 
one cluster did not overlap with any other clusters, and 
(2) the last-used cluster was different from and not over-
lapping the first-used cluster. All other individuals were 
considered non-dispersers (see Figure S1 for examples of 
the clustering and classification process). Dispersal clas-
sifications for all individuals were visually screened and 
updated (reclassified) if the automated workflow resulted 
in an apparent misclassification.

Descriptive analysis
We defined dispersal distance as the Euclidean distance 
between pre- and post-dispersal cluster centers (as deter-
mined by k-means above). We similarly defined the 
dispersal direction as that from the pre- to post-range 
cluster center, and tested for bias in dispersal direc-
tion across dispersers using CircMLE [52, 53]. CircMLE 
determines directional bias using a model selection 
approach across the 10 models of orientation described 
by Schnute and Groot [54], with the uniform model (i.e., 
no directional bias) as the null model. Output of Circ-
MLE gives the top orientation model, which can include 
up to two directional distributions if directional bias 
is not unimodal; for each directional distribution, Cir-
cMLE provides the mean direction and concentration 
parameters.

Among dispersers, we defined the duration and tim-
ing of dispersal as the time from the last GPS location 
within the pre-dispersal range to the first GPS loca-
tion within the post-dispersal range. These ranges were 
defined as the vertices for the 95% KDE home range from 
previous k-means analysis. Because GPS locations could 
fall outside the 95% KDE vertices on a number of occa-
sions besides the main dispersal event, for all dispersing 
individuals we defined a preliminary “dispersal window” 
based on visual inspection of an individual’s net-squared 
displacement (similar to the approach used by [21]). 
Within this window, we then identified the last location 
in the pre-dispersal range and the first location in the 
post-dispersal range. As with dispersal classification, all 
timing estimations were visually inspected for accuracy 
(see supplementary materials for more details, and Fig-
ure S2 for examples of the dispersal timing estimation 
process).

Statistical models
Our two response variables were dispersal (a binary out-
come) and log-transformed dispersal distance (in km). 
While our descriptive analysis (above) examined indi-
viduals of all age and sex classes, for the statistical mod-
els for dispersal and dispersal distance, we only evaluated 
juvenile males due to limited dispersal events in other 

age and sex classes. Further, we only evaluated individu-
als with pre-dispersal collar data spanning at least 40 
days to ensure accurate covariate estimation. Because 
many non-dispersers were observed in both spring and 
fall, we ran separate spring and fall models to account 
for potentially different seasonal drivers. All dispers-
ing and non-dispersing individuals had a pre-dispersal 
range, which we defined based on all GPS locations from 
1 Mar or 1 Aug to either the date of dispersal (for dis-
persers) or the median date of dispersal for a given sea-
son (for non-dispersers; spring: 25 May; fall: 22 Oct). 
We evaluated dispersal distance for dispersers only and 
did not run separate seasonal models. We predicted that 
dispersal probability and distance for juvenile male deer 
would each be a function of access to resources (i.e., cover, 
proximate individuals) and the ability to disperse (i.e., tra-
versability of the surrounding landscape, individual con-
dition), as reflected by our model covariates described 
below. A table of relevant data sources used in all analy-
ses is available in the supplementary materials (Table S1). 
All analyses were performed in R v3.6.3 and 4.1.2 [55].

Access to cover
To test for a relationship between access to cover and dis-
persal probability and distance, we used National Land 
Cover Database (NLCD, 30  m resolution; [56]) desig-
nations to calculate the proportion of each individual’s 
pre-dispersal range that was classified as “planted or 
cultivated” (the NLCD planted/cultivated designations 
include pasture/hay and cultivated crops, which we 
hereafter refer to as proportion agricultural) or forested 
(deciduous, evergreen, or mixed forest, though our study 
region was classified almost exclusively as deciduous 
forest). For estimating these proportions, we used the 
95% aKDE home range vertices to define range borders 
(supplementary materials), and removed home range size 
outliers (greater than three standard deviations larger 
than the mean; n = 3). We used aKDE home ranges for 
this analysis because the smaller sample sizes here, as 
compared to our dispersal detection algorithm, mitigated 
the computational demands of aKDE approaches, and 
because we felt this habitat analysis would most benefit 
from reducing the risk of bias or error in home range 
estimation introduced by autocorrelated movement data 
[51, 57]. Because the proportion agricultural was strongly 
negatively correlated with the proportion forested (Pear-
son correlation coefficient = -0.76), our statistical analy-
ses incorporated only the proportion agricultural.

Social environment
We lacked fine-scale or sex-specific deer density data, 
so we quantified the deer social environment with two 
metrics, hereafter average proximity and number proxi-
mate. For average proximity, we first calculated proximity 
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scores between all pairs of collared individuals. Proximity 
score was defined as the number of GPS locations within 
a 50 m distance threshold per all simultaneous locations 
(with a 60  min allowance) between a given pair of GPS 
collared individuals [58, 59]. For each juvenile male, we 
then averaged its pairwise proximity scores across all 
proximate individuals (those with a proximity score 
greater than zero) to generate its average proximity value. 
Proximity scores were likely to be biased for individuals 
with few proximate individuals; we therefore only evalu-
ated those individuals with an average proximity score 
greater than zero and with at least five collared individu-
als “available” (having GPS locations) within 4 km of that 
individual’s range center. For the number proximate met-
ric, we calculated the number of unique proximate indi-
viduals for each juvenile male, relative to the number of 
available individuals of any sex or age within 4 km of the 
focal individual’s range center.

The average proximity metric represents the relative 
frequency with which juvenile males “associated” with 
their potential contacts, and the number of proximate 
individuals represents the number of unique individuals 
“associated with,” relative to the number of available indi-
viduals nearby. We emphasize that these “associations” 
do not necessarily represent direct interactions, but are 
meant to represent events where an individual could rea-
sonably detect the recent presence of a conspecific. While 
collaring effort—especially geographically biased collar 
deployment—may bias social interaction metrics, social 
network studies have shown that those metrics which 
quantify the number and relative frequency of interac-
tions appear to be the most robust to undersampling 
[60–62], particularly among clustered or highly social 
species like deer [62]. However, to determine robustness 
of our results, we performed an additional sensitivity 
analysis for the effect of collaring effort on the number 
proximate metric (supplementary materials).

Traversability of surrounding landscape
To quantify the traversability of the landscape sur-
rounding each individual, we simulated potential dis-
persal paths. We attempted to fit hidden Markov models 
(HMM) with two or three behavioral states to each dis-
persing individual’s movement trajectory (regularized to 
fixes every four hours using continuous time movement 
modeling; [63, 64]). Dispersal events were often short 
in both duration and distance, but HMMs identified 
a movement state consistent with dispersal for 24 indi-
viduals. We averaged the movement parameters for this 
dispersal movement state and used them to simulate 100 
movement trajectories per individual. Each simulated 
path initiated at a randomly selected used location within 
the focal individual’s pre-dispersal range. To align with 

the average dispersal duration, simulated movements 
were for 11 steps, with four hours per step.

With the simulated trajectories, we calculated (1) the 
mean first step in poor habitat (defined as “developed” 
or “water” by NLCD) across the 100 simulations, (2) the 
mean proportion of steps per simulated path that were 
in agricultural land use, (3) the proportion of simulated 
paths that intersected with major roads, and (4) the 
proportion of simulated paths that intersected with riv-
ers or streams (Table S1). The traversability agricultural 
land use metric was only used in the dispersal distance 
model, and, being highly correlated with the proportion 
of agricultural land use in pre-dispersal ranges (Pearson 
correlation coefficient = 0.73), these two variables were 
never included in models together. Our simulated paths 
approach allowed us to quantify traversability without 
calculating a semi-arbitrary dispersal buffer for extracting 
landscape covariates in the surrounding area. In addition, 
our approach allowed dispersal path extents to derive 
from and therefore correspond to the focal individual’s 
space use (i.e., did not assume circular home ranges). 
Because simulated paths reached variable Euclidean dis-
tances from the initial range, habitat closer to the initial 
range was more likely to contribute to traversability met-
rics. Given that dispersal theory suggests that individu-
als disperse to the first available range and then stop to 
reduce risk [3, 7], we believe the emergent weighting of 
closer habitat values was biologically reasonable.

Individual condition
We used body weight as a proxy for deer body condi-
tion, expecting that deer in better condition would be 
more able to disperse and disperse longer distances than 
those in poorer body condition. Deer body weight was 
recorded at capture; because captures typically occurred 
between December and March each year, capture 
weights were expected to be more informative for spring 
dispersals.

Statistical model fitting
For both response variables, dispersal and dispersal dis-
tance, we fit models based on specific biological hypothe-
ses [65]. Dispersal models were logistic regressions, while 
models for log-transformed dispersal distances were lin-
ear regressions (Table  1). For the logistic regression of 
dispersal events, we had several “null” hypothesis models 
that evaluated dispersal as a function of (1) aKDE-based 
home range area, (2) number of pre-dispersal fixes, (3) 
longitude of capture location, or (4) year. The home range 
area null model tested if dispersal was simply a func-
tion of home range size (e.g., dispersal more likely with 
small home ranges). The null model for the number of 
pre-dispersal fixes tested for the possibility of increased 
dispersal detection with increased GPS locations and was 
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not biologically motivated but controlled for improved 
identification of range shifts with increased location data. 
The longitude of capture location was included in the 
null modeling to account for the possibility of an unmea-
sured factor correlated with the slight east-west gradient 
in agricultural land use in our study area. The null model 
for year tested for variability in dispersal rates across the 
years of our study; because stratifying by year limited 
sample sizes on a per-year basis (minimum of three juve-
nile male dispersers in one year), we chose to exclude a 
year effect in full models. The null models for log-disper-
sal distance (linear regression) were identical to those for 
dispersal probability, with the addition of a null model for 
season that tested for the role of season alone in describ-
ing dispersal distances, and motivated our choice to 
include season as a covariate in all full models testing our 
broader hypotheses (Table 1).

Not all individuals had data for proximity metrics or 
body weight, so we fit separate full hypothesis models by 
data availability to maximize data use and confirm con-
sistency of findings. We fit three classes of full models 
representing our major hypotheses: (1) models with max-
imum individuals, but without proximity or body weight 
covariates; (2) models with the addition of one proxim-
ity metric (used to determine top proximity metric via 

Akaike information criterion, AIC; [65, 66]), and (3) 
models with the fewest individuals, but including all 
covariates. All predictors were scaled and centered, and 
models were checked graphically for linearity assump-
tions (binned residuals for logistic regressions, residuals 
for linear regressions; [67, 68]).

Dispersal habitat selection
To determine how landscape structures dispersal move-
ments, we performed a step selection analysis for juve-
nile male deer. Step selection functions (SSFs) evaluate 
habitat covariates at consecutive versus matched avail-
able steps [69]. An extension of SSFs, integrated SSFs 
(iSSFs), include movement covariates and allow habitat 
selection to be jointly estimated [70–72]. We fit separate 
iSSFs for three different movement states: pre-dispersal 
movements (trajectories of dispersers prior to dispersal), 
dispersal movements, and non-dispersal movements (tra-
jectories of non-dispersers prior to median date of dis-
persal). Pre-dispersal movements were included to act as 
“within-individual” controls, while non-dispersal move-
ments could account for potential differences in habitat 
selection between dispersing and non-dispersing individ-
uals prior to or during dispersal. For all movement states, 
we used trajectories with locations recorded every four 

Table 1  Summary of statistical models evaluating Wisconsin white-tailed deer dispersal
Response Hy-

poth-
esis 
class

Covariates

Dispersal* 
(logistic 
regression)

Null aKDE-based home range area

Number of pre-dispersal fixes

Longitude of capture location

Year

Full Agricultural + average first poor location + proportion potential paths intersecting roads

Agricultural + average first poor location + proportion potential paths intersecting roads + average proximity OR number 
proximate

Agricultural + average first poor location + proportion potential paths intersecting roads + number proximate + body weight

Log-
transformed 
dispersal dis-
tance (linear 
regression)

Null aKDE-based home range area

Number of pre-dispersal fixes

Longitude of capture location

Year

Season†

Full Proportion potential paths intersecting rivers and streams + proportion intersecting roads + season*average proportion of 
steps falling in agricultural land OR season*agricultural

Proportion potential paths intersecting rivers and streams + proportion intersecting roads + season*average proportion of 
steps falling in agricultural land + season*average proximity OR season*number proximate

Proportion potential paths intersecting rivers and streams + proportion intersecting roads + season*average proportion of 
steps falling in agricultural land + season*number proximate + body weight

Note: Models with “OR” indicate variables that were not included in models together, but were selected via AIC. *Dispersal logistic regressions were fit separately 
for spring and fall models. †Season was highly significant for dispersal distances and was therefore included in all dispersal distance models. Abbreviated covariates 
were: aKDE home range area = autocorrelated kernel density estimation home range area; agricultural = proportion of pre-dispersal range classified as planted 
or agricultural land use; average first poor location = the average first simulated dispersal step in “developed” or “water” land types; proportion intersecting 
roads = proportion simulated paths intersecting roads; average proximity = an individual’s average proximity score across potential associations; number 
proximate = the number of individuals proximate to the focal individual (per available individuals within 4 km). Season was spring or fall; Year was a categorical 
variable for the years 2017–2020
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hours. Because the frequency of location recording can 
affect iSSF results [69], for dispersal movements, we fit an 
additional iSSF with locations recorded every hour (see 
supplementary materials for additional iSSF details).

We fit iSSFs both at the individual level and at the 
population level. For individual-level models, we fit iSSFs 
for each individual separately using the amt package in R 
[72]. For the population-level models, because failure to 
account for random coefficients can lead to biased infer-
ence [73], we used a two-step estimation approach for 
mixed-effects models, including random coefficients for 
all covariates [74, 75] using the TwoStepCLogit package in 
R [76]. The two-step estimation approach frequently fails 
when individuals do not have enough covariate variability 
(e.g., those that do not encounter all levels of categori-
cal predictors; [74]). As such, population-level models 
included only those individuals that had adequate covari-
ate variability to fit individual-level models (pre-disper-
sal: n = 75; dispersal: n = 33 for locations every four hours, 
n = 38 for locations every one hour; non-dispersal: n = 45).

For all iSSFs, we used 16 random steps for each 
observed step, and performed a sensitivity analysis for 
this choice to confirm stability of resulting coefficients 
(Figure S3). Random step lengths and turning angles 
were based on independent gamma and von Mises dis-
tributions, respectively [72]. All iSSFs evaluated habitat 
covariates of agricultural land use (binary variable from 
NLCD), elevation (as a second order polynomial), and 
distance to the nearest river or stream (see Table S1 for 
data sources). In addition, we evaluated a binary “inter-
section with roads” covariate, which documented if real 

or random steps intersected with major roads. Road 
crossings were ultimately rare (dispersal movements: 
2.5% real and 4.7% of random steps intersected roads; 
pre-dispersal: 0.02% of real and 0.18% of random; non-
dispersal: 0.03% of real and 0.18% of random), so we only 
used this covariate in an additional, separate model with 
the subset of individuals with dispersal movements that 
included road crossings (n = 14).

All iSSFs also included the movement-related covari-
ates of step length, log-step length, and cosine of turning 
angles. We expected that deer would exhibit faster and 
more directed movement (i.e., longer step lengths, more 
concentrated turning angle distributions) when in low-
cover, agricultural environments. We therefore included 
interactions between agricultural land use and move-
ment covariates. All main effects habitat covariates were 
extracted at the end of steps, and interaction coefficients 
at the start of steps (see Table 2 for full iSSF model speci-
fications). Log-relative selection strength plots were gen-
erated using coefficient estimates and average covariate 
values [77, 78].

Results
We evaluated 590 individual juvenile, yearling, and adult 
deer, of which we identified 111 individuals as dispers-
ers (18.8%; see Table S2 for sample sizes across dispersal 
status, sex, and age class) after accounting for dispersal 
classification errors identified by visual inspection. Such 
errors were rare: 2.7% of analyzed individuals required 
reclassification, with the majority of these (87.5% of 
reclassifications) being changes from an initial dispersal 
classification to non-dispersal. Dispersal was most com-
mon in juvenile males, with 64.2% of these individuals 
classified as dispersers. Dispersal was uncommon for all 
other age and sex classes (Fig. 1). Six dispersers (five juve-
nile males and one yearling female) completed two dis-
tinct dispersal events, with the first event in the spring, 
and the second in the following fall (except for the year-
ling female, whose second shift occurred in January).

We observed distinct spring and fall dispersal peri-
ods. Only males dispersed in the fall dispersal season, 
and yearling and adult dispersal (or range shift) events 
predominantly occurred in the spring (Fig.  1). We did 
not observe annual range shift patterns consistent with 
migratory movements. The median dispersal distance 
across all dispersers was 5.77  km (range: 1.3–68.3  km), 
and the median dispersal duration was 1.71 days (range: 
1 h − 47.7 days). Dispersal distances and durations were 
typically shorter in the fall, even accounting for the lack 
of female dispersal in the fall (Fig. 2, S4). The longest dis-
tance dispersal events were completed by juvenile and 
sometimes yearling individuals (Fig. 1).

We observed an overall bias in dispersal directions 
towards the east and west-northwest (Fig.  3, S5, Table 

Table 2  Step selection analysis terms and descriptions for 
Wisconsin white-tailed deer
Term Description or prediction
Step length Estimator for scale parameter of gamma 

step-length distribution

log(Step length) Estimator for shape parameter of gamma 
step-length distribution

cosine(Turning angle) Estimator for concentration parameter of 
von Mises turning angle distribution

Agricultural (end of step) Avoidance of agricultural land use during 
dispersal movements

Elevation + Elevation2 Selection for intermediate elevation

Distance to rivers/streams Avoidance of greater distance from near-
est river/stream

Intersection with roads Avoidance of road crossings

Agricultural (start): Step 
length

More variable step lengths when steps 
initiate in agricultural land use

Agricultural (start): log(Step 
length)

Longer step lengths when steps initiate in 
agricultural land use

Agricultural (start): 
cosine(Turning angle)

More concentrated turning angles (i.e., 
less variation from moving straight ahead) 
when steps initiate in agricultural land use

Note: Model terms were included in all integrated step selection function models (i.e., 
dispersal, pre-dispersal, and non-dispersal movement iSSFs).
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S3). When subsetting dispersals by season, models 
showed some support for seasonal variation in dispersal 
direction, with spring dispersals biased toward the east 
and fall dispersal directions bimodally distributed with a 
stronger west-northwest bias (Figure S5, Table S3).

Dispersal probability
Our logistic regression for juvenile male dispersal identi-
fied a seasonal effect of agricultural land use on disper-
sal probability (Fig. 4), with juvenile males having higher 
odds of dispersing with a higher proportion of agricul-
tural land use in their pre-dispersal range, but only in the 
spring (Table S4). Based on null models, there was some 
evidence that detection of dispersals increased with the 
number of locations recorded in the spring (Table S5), 
such that dispersal rates among juvenile males may be 
higher in the spring than we detected here. Models did 
not identify clear drivers of dispersal in the fall (Fig.  4, 
Table S4), though there was no statistical difference in 
agricultural land use in pre-dispersal ranges among non-
dispersers in the spring versus fall (two-sided paired 

t-test: t = -1.68, p = 0.10). Dispersal probability results 
were robust across all full models (Table S6).

Dispersal distance
Linear regression models for log-transformed dispersal 
distance among juvenile males identified a strong effect 
of season, with spring dispersals associated with longer 
dispersal distances than those in the fall (Fig. 5, Table S7). 
In addition, models identified an agricultural effect on 
dispersal distances, with longer dispersals occurring with 
more agricultural land use in potential dispersal paths 
(an interaction with season was not statistically signifi-
cant; Fig. 5, Table S7). Dispersal distances also increased 
as the number of proximate individuals (per available) 
decreased (Fig. 5, Table S7). Our sensitivity analysis sug-
gests our results are relatively robust to sampling effects, 
with coefficients estimated from subsampled data falling 
largely within the confidence intervals for the coefficients 
estimated from the full data (Figure S6).

Null hypothesis models for log-transformed dispersal 
distances found evidence for longer dispersal distances 

Fig. 1  Counts of southwest Wisconsin white-tailed deer dispersal by sex and age class. In (A), dispersals are shown in green (top of bar) and percentages 
above each bar give the percent dispersers for each sex/age class combination. In (B), the timing of dispersals is shown by sex (females in upper panel, 
males in lower) and age class (color or shading of bars). Note that in (B), individuals that dispersed two times are shown twice to show the full distribution 
of dispersal events, and the y-axes are identical to facilitate visual comparison by sex
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with more GPS locations recorded during the focal sea-
son (Table S5); however, this is likely explained by the 
trend toward having more observations in the spring, 
when dispersals were typically longer, relative to the fall 
(two-sided t-test: t = 1.95, p = 0.055). Model results were 
generally qualitatively robust across all full models (Table 
S8), with the lone exception being that agricultural land 
use in potential paths was no longer a statistically sig-
nificant predictor in the model that included deer body 
weight. We note, however, that there was large data 
loss for this model (n = 84 for model without proximity 

or weight, compared to n = 67 with these covariates 
included, a reduction of 20.2%; Table S8).

Dispersal habitat selection
Population-level iSSFs showed that dispersing juvenile 
males avoided agricultural land use and selected for 
proximity to rivers and streams (Figs. 6 and 7, Table S9). 
Among the subset of dispersal movements that had ade-
quate road-intersection data (n = 14), juvenile males also 
avoided intersections with major roads while dispersing 
(Figure S7, Table S9). Pre-dispersal and non-dispersal 

Fig. 2  Histograms of Wisconsin white-tailed deer dispersal distances (in km), stratified by season and sex. Bars are colored by the age class of individu-
als at dispersal. Females only dispersed in the spring, and are shown in the top panel; male dispersal distances in the spring and fall are shown in the 
middle and bottom panels, respectively. Y-axes vary between panels, with the bottom panel the largest due to its higher count values. Median dispersal 
distances per season and sex are shown with vertical dashed lines. Note that individuals that dispersed two times (n = 6) are shown twice to show the full 
distribution of dispersal distances
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movements did not show avoidance of agricultural land 
use, but non-dispersal movements selected for proxim-
ity to rivers and streams (Figs. 6 and 7, Table S9). When 
repeating iSSFs for dispersal movements with locations 
recorded every hour, main effects for habitat covari-
ates were largely consistent with models fit to locations 
recorded every four hours. The key exception was that 
models fit to hourly locations found dispersing juvenile 
males selected for intermediate elevations (Figures S8-9, 
Table S10), which was not found in the four-hour models.

Pre-dispersal and non-dispersal movements tended 
to have longer step lengths when initiated in agricul-
tural land use, but this was not the case for dispersal 

movements (Fig. 6, S10, Table S9). In addition, pre- and 
non-dispersal turning angles were more concentrated 
(i.e., less variation around moving straight) when steps 
initiated in agricultural land use. In contrast, when 
locations were recorded every four hours, dispersal 
movements were less concentrated in agricultural than 
non-agricultural land use. However, this relationship dis-
appeared when we evaluated dispersal movements with 
locations recorded hourly (Figure S11, Tables S9-S10).

Individual-level iSSFs demonstrated inter-individual 
variability in selection and avoidance patterns, resulting 
in non-statistically significant habitat selection results 
when averaged across individuals (Figures S12-S15). 

Fig. 3  Maps showing (A) the study area locale of Wisconsin (red dashed box) in the context of the United States, (B) the study area and surrounding land 
(red solid box) in the context of Wisconsin, and (C) white-tailed deer dispersal events with the landscape colored by land use class. In (B), the solid red box 
corresponds to the bounds of the area shown in (C). The arrows in (C) initiate at each individual’s pre-dispersal range center and end at their post-dispersal 
range center. The dispersals for individuals that completed multiple dispersal events are shown as a single arrow connecting their first range and final 
range (i.e., each arrow represents a different dispersing individual). Map colors correspond to NLCD land use classifications; of the 4.4% of land pictured 
classified as “other,” about 84.3% is woody or emergent herbaceous wetlands, with the remainder a mix of barren land, shrub/scrub, and grassland/herba-
ceous. The label for Highway 18 indicates the major east-west highway that formed the southern boundary of our deer capture area. The red land use to 
the right is part of the urban area of Madison, WI; the major river pictured is the Wisconsin River
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However, conclusions regarding the relative selection or 
avoidance of covariates and differences between move-
ment states were generally robust across population 
and individual-level iSSF results (Figure S16). In addi-
tion, a linear regression for the individual-level agricul-
tural selection coefficient as a function of season and 
movement state [69] found a significant effect of season 
(regression coefficient estimate for fall = 0.45, p < 0.001). 

As such, the individual-level results showed a trend 
across movement states for a seasonal effect of agricul-
tural land use, with weaker avoidance and even potential 
selection for agricultural land use in the fall (Figure S12), 
though this pattern was not apparent for dispersal move-
ments recorded at an hourly rate (Figure S17).

Fig. 4  Dispersal logistic regression model results for juvenile male white-tailed deer in southwestern Wisconsin, including model estimates and confi-
dence intervals in (A) spring and (B) fall, as well as (C) the effect of agricultural land use on dispersal probability in spring. For (A) and (B), blue results show 
positive coefficient estimates, red show negative coefficient estimates. Covariates were statistically significant (shown in bold text) if the 95% confidence 
interval did not cross the vertical black line (odds ratio = 1). For (C), the black line and gray ribbon show the effects estimate and 95% confidence interval, 
respectively, from the spring model in (A). Blue dots in (C) are data points. All predictors were scaled and centered. Deer photo credit to Jerry Davis
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Discussion
We identified dispersal events in 64.2% of juvenile male 
white-tailed deer, with limited dispersal events in other 
sex and age classes. Land use—specifically agricultural 
relative to forested land use—had significant impacts on 
patterns of dispersal among our juvenile male deer. The 
probability of dispersal increased with increasing agricul-
tural land use in the natal range, but only for individu-
als dispersing during the spring. In addition, increased 
agricultural land use in potential dispersal paths was 
associated with longer dispersal distances, and individu-
als tended to avoid agricultural land use during dispersal. 
In our study area, most of the landscape was classified as 
either agricultural or forested (for iSSFs, nearly all used 
and random steps were in one of these two land use 

classes; used steps: 27.6% in agricultural land use, 69.6% 
in forested, 1.4% in developed, and 1.4% in other land 
cover types; Figure S18). As such, our results can reason-
ably be compared to and are consistent with other stud-
ies which focused instead on the relationship between 
forest cover and dispersal (e.g., lower female dispersal 
rates with increased forest cover [14] corresponds to our 
higher male dispersal with increased agricultural land 
use; see also shorter dispersal distances with increased 
forest cover [13, 79]).

In the spring, in particular, agricultural land use likely 
represents low-cover habitat for deer when compared to 
forested habitat: waste grain is at a minimum and crop 
heights are low during this period. In the fall, agricul-
tural land use likely serves as effective cover prior to crop 

Fig. 5  Model results for linear regression of log-transformed dispersal distance (not including body weight predictor) for juvenile male white-tailed deer 
in southwestern Wisconsin. Panels show (A) coefficient estimates and 95% confidence intervals, (B) the effect of the number of proximate individuals (per 
available) by season, and (C) the effect of agricultural land use in potential dispersal paths by season. In (A), blue results show positive coefficient esti-
mates, red show negative coefficient estimates. Covariates were statistically significant (shown in bold text) if the 95% confidence interval did not cross 
the vertical black line (estimate = 0). For (B) and (C) spring effects estimates and 95% confidence intervals are shown in teal and fall in brown
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harvest and high resource habitat, which, combined with 
a shift in the social drivers of dispersal (i.e., from inter-
sexual aggression to intrasexual competition for mates 
[7]), explains the lack of association with dispersal prob-
ability in the fall. Indeed, while dispersal movements 
generally avoided agricultural land use, pre- and non-dis-
persal movements showed a trend toward reduced avoid-
ance and even selection for agricultural land use during 
the fall. Dispersal-specific avoidance of agricultural land 
use in the spring may therefore represent a response to a 
“landscape of fear” [80] during a high-risk behavior (dis-
persal) through unfamiliar, low-cover habitat, or even to 

increased exposure to human activity (e.g., spring plant-
ing activities), which can have a stronger impact on cer-
vid behavior than predation [81].

Intersexual aggression from does to offspring is typi-
cally implicated as a driver of dispersal in WTD [7]. 
We lacked data to examine doe-offspring interactions, 
but competition for forest cover has been suggested as 
a driver of female dispersal [15], such that agricultural 
land use may represent lower quality fawning habitat and 
consequently increase competition for cover in spring. 
Indeed, such a relationship would explain the positive 
association we observed between agricultural land use 

Fig. 6  Population-level iSSF coefficient estimates and 95% confidence intervals by movement state (dispersal, pre-dispersal, and non-dispersal move-
ment) for juvenile male white-tailed deer in southwest Wisconsin. Coefficients are not exponentiated such that no selection or avoidance is indicated 
by a coefficient estimate of 0 (highlighted in red). Note that elevation and elevation2 variables correspond to the second order polynomial for elevation 
used in models
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and spring dispersal probability, although we only exam-
ined drivers of juvenile male dispersal. The temporally 
dynamic role of land use in shaping dispersal probabil-
ity likely reflects the effects of both seasonal variation in 
landscape features and shifting social drivers of disper-
sal behavior. Further study of how deer of all age and sex 
classes use or avoid agricultural land use throughout the 
year could further refine understanding of the dynamic 
costs and benefits of these habitats for deer.

Drivers of fall dispersal were poorly explained in our 
models. Fall dispersal events only occurred in male deer 

and covered much shorter distances, similar to other 
studies (e.g., [17]). In discussing shorter fall dispersal dis-
tances in WTD, Long et al. [7] argued that mate competi-
tion avoidance is likely accomplished over short dispersal 
distances, while inbreeding avoidance requires longer 
dispersal distances. As such, our results support the con-
clusion that fall dispersals reflect short distance shifts to 
improve access to potential mates [7]. Indeed, regardless 
of season, we found that dispersal distances were typically 
shorter with increased numbers of proximate deer. This 
is in contrast with Diefenbach et al. [79] who argue for 

Fig. 7  Log-relative selection strength (log-RSS) for the three main habitat covariates in population-level iSSFs for juvenile male white-tailed deer: (A) 
agricultural land use, (B) distance to nearest river/stream, and (C) elevation. Line types and colors indicate movement state, with dispersal movements in 
solid red, non-dispersal movements in dotted blue, and pre-dispersal movements in dashed green. Continuous variables are un-scaled and centered, so 
each line in (B) and (C) has a log-RSS value of zero at the average habitat value for that movement state. Agricultural land use log-RSS is plotted as lines 
to demonstrate change in selection by movement state. Note that log-RSS was calculated within the bounds of the observed habitat values for a given 
movement state
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modeling deer dispersal distance distributions based on 
percentage forest cover alone. We do not suggest that our 
metric for the number of proximate deer is representative 
of local deer densities, nor that dispersal distances are 
likely to be shorter with higher deer densities (see instead 
[15]). Rather, by focusing on an individual’s fine-scale 
social “neighborhood,” this metric is most representative 
of the contributions of local social interactions on dis-
persal distances. Tosa et al. [82] found that juvenile deer 
appeared to join neighboring social groups when their 
original social group was experimentally removed, sug-
gesting that deer social environments—and disruption 
to those environments—can contribute to deer space use 
and interactions. Further, while we lacked data to exam-
ine deer social dynamics by sex, low numbers of male-
female interactions are expected to increase fall dispersal 
rates for juvenile males, while low male-male interactions 
likely decrease fall dispersal rates [7]. As such, future 
work may determine if the relationship we observed 
between the number of proximate deer and dispersal dis-
tances is driven by specific inter- or intra-sex interactions 
to refine understanding of how the social environment of 
deer contributes to their dispersal and movement ecol-
ogy [83]. While under- or biased sampling is a concern 
in studies documenting the number or frequency of ani-
mal interactions [60–62, 84], our sensitivity analysis sug-
gests our results are relatively robust to sampling effort. 
We do, however, still urge caution in their interpretation. 
Nevertheless, further assessments of how animal social 
behavior contributes to movement and habitat selection 
(e.g., [85]) could be particularly important for predicting 
geographic spread of infectious disease (i.e., CWD) and 
designing disease surveillance programs (e.g., [86], where 
juvenile male dispersal is simulated only as a function of 
forest cover).

Our results also provide insight into the impact of 
landscape features on dispersal paths. Firstly, we found 
that longer dispersal distances occurred with higher agri-
cultural land use in potential paths, aligning with results 
from other studies of deer dispersal in Pennsylvania and 
Illinois [13, 14]. From a population management perspec-
tive, these results support the potential for longer dis-
tance gene flow in agricultural areas, though this effect 
may be non-linear or altered by habitat fragmentation, 
as large, continuous expanses of agriculture or grasslands 
impede deer gene flow [87]. We also found that juvenile 
males selected for proximity to rivers and streams dur-
ing dispersal, which is consistent with other work [17], 
suggesting that riparian areas may also help to direct 
individual dispersal paths. Our finding that dispersal 
directions were biased largely towards the east and west 
agree with previous work in our study area with deer 
population genetics [23, 24, 88]. Further, the Wiscon-
sin River is a major barrier to northward dispersal (we 

observed only one individual, an adult female, that suc-
cessfully dispersed across this river), which aligns with 
work by Blanchong et al. [88]. However, rivers are not 
always a significant barrier to deer dispersal, as in work 
by Lang et al. [5] which indicated the Mississippi River 
was not a barrier to deer gene flow in the upper Midwest.

We observed an apparent avoidance of southward dis-
persal (Fig.  3) which concurs with previous population 
genetics research [23]. This observation could be driven, 
at least in part, by deer avoidance of a major east-west 
highway (Highway 18) since we observed avoidance of 
road crossings during juvenile male dispersal. However, 
pre-dispersal and non-dispersal movements could not be 
evaluated for avoidance of road crossings because cross-
ings were so rare for these movement states. This implies 
that juvenile males are most likely to complete major 
road crossings during dispersal, even though these events 
are still avoided. Other work with cervids [20–22, 24, 
89] and a range of other mammal species (e.g., bobcat, 
Lynx rufus [90]; puma, Puma concolor [91]; hedgehogs, 
Erinaceus europaeus L. [92]; pronghorn, Antilocapra 
americana [93]) has implicated major roads as barriers to 
animal movement, pathogen spread, and host gene flow 
[94]. Importantly, in our study area, the landscape south 
of this apparent semipermeable road barrier is heavily 
agricultural, and dispersal events that crossed this road 
were relatively long (Fig.  3). Taken together, it is likely 
that avoidance of both agricultural land use and major 
road crossings drive the limited southward dispersal of 
deer we observed here. This finding is important for pre-
dicting, for example, geographic bias in infectious disease 
spread and designing appropriate disease surveillance 
and management protocols (e.g., assigning disease man-
agement zones based on expected pathogen geographic 
spread potential). Further, these results highlight the 
importance of considering animal movement barriers in 
the context of their surrounding habitat quality [95].

The dispersal events we observed here predominantly 
occurred in juvenile males. When females did disperse 
in our study, they only did so in the spring and showed 
a tendency to disperse earlier than males and for shorter 
distances (compared to males in the spring), though a 
few females dispersed greater than 30 km. These results 
were consistent with previous work in Wisconsin [96], 
but other regions have found much higher rates of dis-
persal in female deer [14, 15, 18]. We identified dispersal 
events—perhaps best referred to as range shifts—in older 
age classes, though these events were rare and typically 
over short distances. Importantly, rare, long-distance 
or barrier-crossing movements can be important for 
population genetics (e.g., [97]) and disease spread [35, 
98]. While long-distance movements were uncommon 
for adults and females in our area, the potential conse-
quences of such movements highlight the importance 
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of interrogating the assumption that dispersal or range 
shifts occur predominantly in juvenile males [18]. Fur-
ther, while we focused on successful dispersal events, 
future work could benefit from identifying and character-
izing short-term excursions, which can play an important 
role in pathogen transmission as well (e.g., [99]).

Limitations and broader management implications
Our null models suggested that increased GPS loca-
tions were associated with increased detection of dis-
persal events in the spring. As such, spring dispersal 
rates among juvenile males may be higher than what we 
detected (i.e., we may have failed to detect some dispersal 
events), making our estimates conservative. In addition, 
our step selection analysis was limited by the often short 
dispersal events we observed, especially because shorter 
dispersal events were more likely to lack adequate covari-
ate heterogeneity for inclusion in individual or popula-
tion-level models. Our step selection results therefore 
are most representative for habitat selection over longer 
dispersal paths. However, because short dispersal events 
expose individuals to fewer habitat “choices”—particu-
larly given our study area’s limited habitat types—higher 
resolution movement data, in the absence of correspond-
ing fine-scale habitat data, may be unlikely to provide 
novel habitat selection insight for these short distance 
dispersal events.

While our findings largely align with other studies of 
WTD dispersal [13, 14, 17, 19, 20, 22], as of yet, there is 
no comprehensive framework for drivers of deer disper-
sal across their highly varied habitats, leading to uncer-
tainty in the generalizability of any location-specific 
study to other regions. This gap in understanding is par-
ticularly relevant in the context of continually expand-
ing CWD: there is not yet a clear understanding of the 
specific role of juvenile dispersal or other long-distance 
movements in the spread of CWD [87], which could alter 
the effectiveness of CWD management. For example, if 
the local social environment contributes to dispersal 
distances—and dispersal events are high risk for CWD 
spread—limiting geographic spread of CWD may ben-
efit from selective removal of social groups, rather than 
general deer density reduction [82, 100]. A broader-scale 
(e.g., regional) analysis of long-distance deer movements 
may therefore improve predictions of CWD spread and 
response to management interventions.

Conclusion
In this study, we quantified the important role of land 
use—particularly agricultural land use—in shaping 
white-tailed deer dispersal rates, distances, and paths. 
In addition, our results suggest that an individual’s social 
environment further contributes to deer dispersal ecol-
ogy. These findings agree with and build on the body of 

cervid dispersal literature, and provide key information 
for deer population management and disease control.

Abbreviations
aKDE	� autocorrelated kernel density estimation.
BAM	� butorphanol, azaperone, medetomidine.
CWD	� chronic wasting disease.
DOP	� dilution of precision.
GPS	� global positioning system.
HMM	� hidden Markov model.
iSSF	� integrated step selection function.
KDE	� kernel density estimation.
Log-RSS	� log-relative selection strength.
NLCD	� National Land Cover Database.
SSF	� step selection function.
UDOI	� utilization distribution overlap index.
WDNR	� Wisconsin Department of Natural Resources.
WTD	� white-tailed deer.

Supplementary information
The online version contains supplementary material available at https://doi.
org/10.1186/s40462-022-00342-5.

Supplementary Material 1

Acknowledgements
We thank the many field technicians who contributed to collaring efforts, 
including: S. Bundick, L. Hahn, T. Johannes, T. Klein, K. Luukkonen, H. Manninen, 
M. Watt. We thank J. Fieberg for helpful discussions on applications of iSSF 
methods. Any use of trade, firm, or product names is for descriptive purposes 
only and does not imply endorsement by the U.S. Government.

Authors’ contributions
MLJG, AK, DPW, DJS, and WCT designed the study; MH, DJ, WE, and DJS 
contributed to data collection; MLJG performed the analyses and led writing 
of the manuscript; all authors read and approved the final manuscript.

Funding
Funding was provided by the Federal Aid in Wildlife Restoration Act, 
administered through the Wisconsin Department of Natural Resources and 
the University of Wisconsin-Madison.

Data availability
The R code used during the current study is available via the Zenodo digital 
repository (https://doi.org/10.5281/zenodo.7200058). The data that support 
the findings of this study are available from the Wisconsin Department of 
Natural Resources but restrictions apply to the availability of these data, which 
were used under a data sharing agreement for the current study, and so are 
not publicly available. Data may be requested from the Wisconsin Department 
of Natural Resources.

Declarations

Ethical approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Wisconsin Cooperative Wildlife Research Unit, Department of Forest and 
Wildlife Ecology, University of Wisconsin–Madison, 1630 Linden Dr,  
53706 Madison, WI, USA
2Wisconsin Department of Natural Resources, 1500 N Johns St,  
53533 Dodgeville, WI, USA

http://dx.doi.org/10.1186/s40462-022-00342-5
http://dx.doi.org/10.1186/s40462-022-00342-5


Page 17 of 18Gilbertson et al. Movement Ecology           (2022) 10:43 

3Warnell School of Forestry and Natural Resources, University of Georgia, 
180 E Green St, 30602 Athens, GA, USA
4U.S. Geological Survey, Montana Cooperative Wildlife Research Unit, 
University of Montana, 32 Campus Drive NS 205, 59812 Missoula, MT, USA
5Wisconsin Department of Natural Resources, 1300 West Clairemont Ave, 
54701 Eau Claire, WI, USA
6 U.S. Geological Survey, Wisconsin Cooperative Wildlife Research Unit, 
Department of Forest and Wildlife Ecology, University of Wisconsin-
Madison, 1630 Linden Dr, 53706 Madison, WI, USA

Received: 30 March 2022 / Accepted: 4 October 2022

References
1.	 Gaines MS, McClenaghan LR Jr. Dispersal in small mammals. Annu Rev Ecol 

Syst. 1980;11:163–96.
2.	 Slarkin M. Gene flow in natural populations. Annu Rev Ecol Syst. 

1985;16:393–430.
3.	 Murray BG Jr. Dispersal in Vertebrates Ecology. 1967;48:975–8.
4.	 Daversa DR, Fenton A, Dell AI, Garner TWJ, Manica A. Infections on the move: 

how transient phases of host movement influence disease spread. Proc Biol 
Sci 2017;284.

5.	 Lang KR, Blanchong JA. Population genetic structure of white-tailed deer: 
Understanding risk of chronic wasting disease spread. J Wildl Manage. 
2012;76:832–40.

6.	 Cullingham CI, Merrill EH, Pybus MJ, Bollinger TK, Wilson GA, Coltman DW. 
Broad and fine-scale genetic analysis of white-tailed deer populations: 
estimating the relative risk of chronic wasting disease spread. Evol Appl. 
2011;4:116–31.

7.	 Long ES, Diefenbach DR, Rosenberry CS, Wallingford BD. Multiple proximate 
and ultimate causes of natal dispersal in white-tailed deer. Behav Ecol. 
2008;19:1235–42.

8.	 Wolff JO, Lundy KI, Baccus R. Dispersal, inbreeding avoidance and reproduc-
tive success in white-footed mice. Anim Behav. 1988;36:456–65.

9.	 Pusey A, Wolf M. Inbreeding avoidance in animals. Trends Ecol Evol. 
1996;11:201–6.

10.	 Stephen Dobson F. Competition for mates and predominant juvenile male 
dispersal in mammals. Anim Behav. 1982;30:1183–92.

11.	 Benz RA, Boyce MS, Thurfjell H, Paton DG, Musiani M, Dormann CF, et al. 
Dispersal Ecology Informs Design of Large-Scale Wildlife Corridors. PLoS ONE. 
2016;11:e0162989.

12.	 Baguette M, Blanchet S, Legrand D, Stevens VM, Turlure C. Individual dispersal, 
landscape connectivity and ecological networks. Biol Rev Camb Philos Soc. 
2013;88:310–26.

13.	 Long ES, Diefenbach DR, Rosenberry CS, Wallingford BD, Grund MD. For-
est Cover Influences Dispersal Distance of White-Tailed Deer. J Mammal. 
2005;86:623–9.

14.	 Nixon CM, Mankin PC, Etter DR, Hansen LP, Brewer PA, Chelsvig JE, et al. 
White-tailed Deer Dispersal Behavior in an Agricultural Environment. Am Midl 
Nat AM. 2007;157:212–20.

15.	 Lutz CL, Diefenbach DR, Rosenberry CS. Population density influences disper-
sal in female white-tailed deer. J Mammal. 2015;96:494–501.

16.	 Nelson ME, Mech LD. Dispersal in Female White-Tailed Deer. J Mammal. 
1992;73:891–4.

17.	 Clements GM, Hygnstrom SE, Gilsdorf JM, Baasch DM, Clements MJ, Vercau-
teren KC. Movements of white-tailed deer in riparian habitat: Implications for 
infectious diseases. J Wildl Manage. 2011;75:1436–42.

18.	 Anderson N. Survival and dispersal of white-tailed deer in the agricultural 
landscape of east-central Illinois. Wildl Biol Pract. 2015;11:26–41.

19.	 Lutz CL, Diefenbach DR, Rosenberry CS. Proximate influences on female 
dispersal in white-tailed deer. J Wildl Manage. 2016;80:1218–26.

20.	 Long ES, Diefenbach DR, Wallingford BD, Rosenberry CS. Influence of roads, 
rivers, and mountains on natal dispersal of white-tailed deer. J Wildl Manage. 
2010;74:1242–9.

21.	 Passoni G, Coulson T, Ranc N, Corradini A, Hewison AJM, Ciuti S, et al. Roads 
constrain movement across behavioural processes in a partially migratory 
ungulate. Mov Ecol. 2021;9:57.

22.	 Peterson BE, Storm DJ, Norton AS, Van Deelen TR. Landscape influence on 
dispersal of yearling male white-tailed deer. J Wildl Manage. 2017;81:1449–56.

23.	 Robinson SJ, Samuel MD, Rolley RE, Shelton P. Using landscape epidemiologi-
cal models to understand the distribution of chronic wasting disease in the 
Midwestern USA. Landsc Ecol. 2013;28:1923–35.

24.	 Robinson SJ, Samuel MD, Lopez DL, Shelton P. The walk is never random: 
subtle landscape effects shape gene flow in a continuous white-tailed deer 
population in the Midwestern United States. Mol Ecol. 2012;21:4190–205.

25.	 Bauder JM, Anderson CS, Gibbs HL, Tonkovich MJ, Walter WD. Landscape 
features fail to explain spatial genetic structure in white-tailed deer across 
Ohio, USA. J Wildl Manage. 2021;85:1669–84.

26.	 U.S. Geological Survey. Expanding distribution of chronic wasting disease. 
2022 [cited 2022 Mar 11]. Available from: https://www.usgs.gov/centers/
nwhc/science/expanding-distribution-chronic-wasting-disease.

27.	 Jennelle CS, Henaux V, Wasserberg G, Thiagarajan B, Rolley RE, Samuel MD. 
Transmission of chronic wasting disease in Wisconsin white-tailed deer: 
implications for disease spread and management. PLoS ONE. 2014;9:e91043.

28.	 Gilbertson MLJ, Brandell EE, Pinkerton ME, Meaux NM, Hunsaker M, Jarosinski 
D, et al. Cause of death, pathology, and chronic wasting disease status of 
white-tailed deer mortalities in Wisconsin. J Wildl Dis. In press..

29.	 Evans TS, Kirchgessner MS, Eyler B, Ryan CW, Walter WD. Habitat influences 
distribution of chronic wasting disease in white-tailed deer. Jour Wild Mgmt. 
2016;80:284–91.

30.	 Edmunds DR, Albeke SE, Grogan RG, Lindzey FG, Legg DE, Cook WE, et al. 
Chronic wasting disease influences activity and behavior in white-tailed deer. 
J Wildl Manage. 2018;82:138–54.

31.	 Lidicker WZ. Solving the Enigma of Microtine “Cycles.”. J Mammal. 
1988;69:225–35.

32.	 Maehr DS, Land ED, Shindle DB, Bass OL, Hoctor TS. Florida panther dispersal 
and conservation. Biol Conserv. 2002;106:187–97.

33.	 Joly DO, Ribic CA, Langenberg JA, Beheler K, Batha CA, Dhuey BJ, et al. 
Chronic wasting disease in free-ranging Wisconsin White-tailed Deer. Emerg 
Infect Dis. 2003;9:599–601.

34.	 Jennelle CS, Samuel MD, Nolden CA, Berkley EA. Deer carcass decomposition 
and potential scavenger exposure to chronic wasting disease. J Wildl Man-
age. 2009;73:655–62.

35.	 Oyer AM, Mathews NE, Skuldt LH. Long-distance movement of a white-
tailed deer away from a chronic wasting disease area. J Wildl Manage. 
2007;71:1635–8.

36.	 Grear DA, Samuel MD, Langenberg JA, Keane D. Demographic patterns and 
harvest vulnerability of chronic wasting disease infected white-tailed deer in 
Wisconsin. J Wildl Manage. 2006;70:546–53.

37.	 Clover MR. Single-gate deer trap. Calif Fish and Game J. 1956;42:199–201.
38.	 Ramsey CW. A Drop-Net Deer Trap. J Wildl Manage. 1968;32:187–90.
39.	 Anderson RG, Nielsen CK. Modified Stephenson Trap for Capturing Deer. 

Wildl Soc Bull. 2002;30:606–8.
40.	 Miller BF, Osborn DA, Lance WR, Howze MB, Warren RJ, Miller KV. Butorph-

anol-azaperone-medetomidine for immobilization of captive white-tailed 
deer. J Wildl Dis. 2009;45:457–67.

41.	 Severinghaus CW. Tooth Development and Wear as Criteria of Age in White-
Tailed Deer. J Wildl Manage. 1949;13:195–216.

42.	 Storm DJ, Samuel MD, Rolley RE, Beissel T, Richards BJ, Van Deelen TR. Estimat-
ing ages of white-tailed deer: Age and sex patterns of error using tooth 
wear-and-replacement and consistency of cementum annuli. Wildl Soc Bull. 
2014;38:849–56.

43.	 Adams DM, Blanchong JA. Precision of cementum annuli method for aging 
male white-tailed deer. PLoS ONE. 2020;15:e0233421.

44.	 Lewis JS, Rachlow JL, Garton EO, Vierling LA. Effects of habitat on GPS collar 
performance: using data screening to reduce location error. J Appl Ecol. 
2007;44:663–71.

45.	 Bjørneraas K, Moorter B, Rolandsen CM, Herfindal I. Screening global posi-
tioning system location data for errors using animal movement characteris-
tics. J Wildl Manage. 2010;74:1361–6.

46.	 Hartigan JA, Wong MA. Algorithm. AS 136: A K-Means Clustering Algorithm. J 
R Stat Soc Ser C Appl Stat. 1979;28:100–8.

47.	 Rousseeuw PJ. Silhouettes. A graphical aid to the interpretation and valida-
tion of cluster analysis. J Comput Appl Math. 1987;20:53–65.

48.	 Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K, Studer M, et al. Pack-
age “cluster.” Dosegljivo na. 2013; Available from: https://cran.microsoft.com/
snapshot/2014-10-10/web/packages/cluster/cluster.pdf.

49.	 Fieberg J, Kochanny CO, Lanham. Quantifying home-range overlap: the 
importance of the utilization distribution. J Wildl Manage. 2005;69:1346–59.

50.	 Calenge C. The package adehabitat for the R software: tool for the analysis of 
space and habitat use by animals. Ecological Modelling. 2006. p. 1035.

https://www.usgs.gov/centers/nwhc/science/expanding-distribution-chronic-wasting-disease
https://www.usgs.gov/centers/nwhc/science/expanding-distribution-chronic-wasting-disease
https://cran.microsoft.com/snapshot/2014-10-10/web/packages/cluster/cluster.pdf
https://cran.microsoft.com/snapshot/2014-10-10/web/packages/cluster/cluster.pdf


Page 18 of 18Gilbertson et al. Movement Ecology           (2022) 10:43 

51.	 Fleming CH, Fagan WF, Mueller T, Olson KA, Leimgruber P, Calabrese JM. 
Rigorous home range estimation with movement data: a new autocorrelated 
kernel density estimator. Ecology. 2015;96:1182–8.

52.	 Fitak RR, Johnsen S. Bringing the analysis of animal orientation data full 
circle: model-based approaches with maximum likelihood. J Exp Biol. 
2017;220:3878–82.

53.	 Fitak R, Johnsen S. Package “CircMLE.” Maximum Likelihood Analysis of Circu-
lar Data. 2020; Available from: http://cran.uni-muenster.de/web/packages/
CircMLE/CircMLE.pdf.

54.	 Schnute JT, Groot K. Statistical analysis of animal orientation data. Anim 
Behav. 1992;43:15–33.

55.	 R Core Team. R: A Language and Environment for Statistical Computing. 
Vienna, Austria: R Foundation for Statistical Computing; 2018. Available from: 
https://www.R-project.org/.

56.	 Dewitz J, U.S. Geological Survey. National Land Cover Database (NLCD) 2019 
products (ver. 2.0, June 2021). 2021. Available from: https://www.sciencebase.
gov/catalog/item/5f21cef582cef313ed940043.

57.	 Silva I, Fleming CH, Noonan MJ, Alston J, Folta C, Fagan WF, et al. Autocor-
relation-informed home range estimation: A review and practical guide. 
Methods Ecol Evol. 2022;13:534–44.

58.	 Long J, Long MJ. Package “wildlifeDI.” cran.hafro.is; 2021; Available from: 
http://cran.hafro.is/web/packages/wildlifeDI/wildlifeDI.pdf.

59.	 Long JA, Nelson TA, Webb SL, Gee KL. A critical examination of indi-
ces of dynamic interaction for wildlife telemetry studies. J Anim Ecol. 
2014;83:1216–33.

60.	 Silk MJ, Jackson AL, Croft DP, Colhoun K, Bearhop S. The consequences of 
unidentifiable individuals for the analysis of an animal social network. Anim 
Behav. 2015;104:1–11.

61.	 Davis GH, Crofoot MC, Farine DR. Estimating the robustness and uncertainty 
of animal social networks using different observational methods. Anim 
Behav. 2018;141:29–44.

62.	 Gilbertson MLJ, White LA, Craft ME. Trade-offs with telemetry-derived 
contact networks for infectious disease studies in wildlife. Methods Ecol Evol. 
2021;12:76–87.

63.	 McClintock BT, Michelot T. momentuHMM. R package for generalized hidden 
Markov models of animal movement. Methods Ecol Evol. 2018;9:1518–30.

64.	 Calabrese JM, Fleming CH, Gurarie E. Ctmm: An r package for analyzing ani-
mal relocation data as a continuous-time stochastic process. Methods Ecol 
Evol. 2016;7:1124–32.

65.	 Johnson JB, Omland KS. Model selection in ecology and evolution. Trends 
Ecol Evol. 2004;19:101–8.

66.	 Burnham KP, Anderson DR. Multimodel inference: understanding AIC and BIC 
in model selection. Sociol Methods Res. 2004;33:261–304.

67.	 Gelman A, Hill J. Data Analysis Using Regression and Multilevel/Hierarchical 
Models. Cambridge University Press; 2006.

68.	 Gelman Su, Yajima, Hill. Package “arm.” mirror.linux.duke.edu; 2013; Available 
from: https://mirror.linux.duke.edu/cran/web/packages/arm/arm.pdf.

69.	 Thurfjell H, Ciuti S, Boyce MS. Applications of step-selection functions in ecol-
ogy and conservation. Mov Ecol. 2014;2:4.

70.	 Forester JD, Im HK, Rathouz PJ. Accounting for animal movement in estima-
tion of resource selection functions: sampling and data analysis. Ecology. 
2009;90:3554–65.

71.	 Avgar T, Potts JR, Lewis MA, Boyce MS. Integrated step selection analysis: 
bridging the gap between resource selection and animal movement. Meth-
ods Ecol Evol. 2016;7:619–30.

72.	 Signer J, Fieberg J, Avgar T. Animal movement tools (amt): R package for 
managing tracking data and conducting habitat selection analyses. Ecol Evol. 
2019;9:880–90.

73.	 Schielzeth H, Forstmeier W. Conclusions beyond support: overconfident 
estimates in mixed models. Behav Ecol. 2009;20:416–20.

74.	 Muff S, Signer J, Fieberg J. Accounting for individual-specific variation in 
habitat-selection studies: Efficient estimation of mixed-effects models using 
Bayesian or frequentist computation. J Anim Ecol. 2020;89:80–92.

75.	 Craiu RV, Duchesne T, Fortin D, Baillargeon S. Conditional Logistic Regression 
With Longitudinal Follow-up and Individual-Level Random Coefficients: A 
Stable and Efficient Two-Step Estimation Method. J Comput Graph Stat. 
2011;20:767–84.

76.	 Craiu RV, Duchesne T, Fortin D, Baillargeon S, Duchesne MT. Package 
“TwoStepCLogit.” 2016; Available from: https://cran.pau.edu.tr/web/pack-
ages/TwoStepCLogit/TwoStepCLogit.pdf.

77.	 Avgar T, Lele SR, Keim JL, Boyce MS. Relative Selection Strength: Quantifying 
effect size in habitat- and step-selection inference. Ecol Evol. 2017;7:5322–30.

78.	 Fieberg J, Signer J, Smith B, Avgar T. A “How to” guide for interpreting param-
eters in habitat-selection analyses. J Anim Ecol. 2021;90:1027–43.

79.	 Diefenbach DR, Long ES, Rosenberry CS, Wallingford BD, Smith DR. Modeling 
distribution of dispersal distances in male white-tailed deer. J Wildl Manage. 
2008;72:1296–303.

80.	 Laundré JW, Hernández L. The landscape of fear: ecological implications of 
being afraid. The Open Ecology. 2010;3.

81.	 Ciuti S, Northrup JM, Muhly TB, Simi S, Musiani M, Pitt JA, et al. Effects of 
humans on behaviour of wildlife exceed those of natural predators in a 
landscape of fear. PLoS ONE. 2012;7:e50611.

82.	 Tosa MI, Schauber EM, Nielsen CK. Localized removal affects white-tailed deer 
space use and contacts. J Wildl Manage. 2017;81:26–37.

83.	 Koen EL, Tosa MI, Nielsen CK, Schauber EM. Does landscape connectivity 
shape local and global social network structure in white-tailed deer? PLoS 
ONE. 2017;12:e0173570.

84.	 Smith JA, Moody J. Structural Effects of Network Sampling Coverage I: Nodes 
Missing at Random1. Soc Networks. 2013;35.

85.	 Webber QMR, Prokopenko CM, Kingdon KA, Turner JW, Vander Wal E. Effects 
of the social environment on movement-integrated habitat selection. 
bioRxiv. 2021. Available from: https://doi.org/10.1101/2021.02.11.430740.

86.	 Belsare AV, Gompper ME, Keller B, Sumners J, Hansen L, Millspaugh JJ. An 
agent-based framework for improving wildlife disease surveillance: A case 
study of chronic wasting disease in Missouri white-tailed deer. Ecol Modell. 
2020;417.

87.	 Kelly AC, Mateus-Pinilla NE, Brown W, Ruiz MO, Douglas MR, Douglas ME, et al. 
Genetic assessment of environmental features that influence deer dispersal: 
implications for prion-infected populations. Popul Ecol. 2014;56:327–40.

88.	 Blanchong JA, Samuel MD, Scribner KT, Weckworth BV, Langenberg JA, 
Filcek KB. Landscape genetics and the spatial distribution of chronic wasting 
disease. Biol Lett. 2007;4:130–3.

89.	 Prokopenko CM, Boyce MS, Avgar T. Characterizing wildlife behavioural 
responses to roads using integrated step selection analysis. J Appl Ecol. 
2017;54:470–9.

90.	 Lee JS, Ruell EW, Boydston EE, Lyren LM, Alonso RS, Troyer JL, et al. Gene flow 
and pathogen transmission among bobcats (Lynx rufus) in a fragmented 
urban landscape. Mol Ecol. 2012;21:1617–31.

91.	 Wheeler DC, Waller LA, Biek R. Spatial analysis of feline immunodeficiency 
virus infection in cougars. Spat Spatiotemporal Epidemiol. 2010;1:151–61.

92.	 Rondinini C, Doncaster CP. Roads as barriers to movement for hedgehogs. 
Funct Ecol. 2002;16:504–9.

93.	 Robb BS, Merkle JA, Sawyer H, Beck JL, Kauffman MJ. Nowhere to run: 
semi-permeable barriers affect pronghorn space use. J Wildl Manage. 
2022;86:e22212.

94.	 Trombulak SC, Frissell CA. Review of ecological effects of roads on terrestrial 
and aquatic communities. Conserv Biol. 2000;14:18–30.

95.	 Nielsen CK, Anderson RG, Grund MD. Landscape Influences on Deer-Vehicle 
Accident Areas in an Urban Environment. J Wildl Manage. 2003;67:46–51.

96.	 Skuldt LH, Mathews NE, Oyer AM. White-tailed deer movements in a 
chronic wasting disease area in south-central Wisconsin. J Wildl Manage. 
2008;72:1156–60.

97.	 Gustafson KD, Vickers TW, Boyce WM, Ernest HB. A single migrant enhances 
the genetic diversity of an inbred puma population. R Soc Open Sci. 
2017;4:170115.

98.	 Breed AC, Field HE, Smith CS, Edmonston J, Meers J. Bats without borders: 
long-distance movements and implications for disease risk management. 
EcoHealth. 2010;7:204–12.

99.	 O’Brien JM, O’Brien CS, MCcarthy C, Carpenter TE. Incorporating foray behav-
ior into models estimating contact risk between bighorn sheep and areas 
occupied by domestic sheep. Wildl Soc Bull. 2014;38:321–31.

100.	 Kelly AC, Mateus-Pinilla NE, Douglas M, Douglas M, Brown W, Ruiz MO, et al. 
Utilizing disease surveillance to examine gene flow and dispersal in white-
tailed deer. J Appl Ecol. 2010;47:1189–98.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations. 

http://cran.uni-muenster.de/web/packages/CircMLE/CircMLE.pdf
http://cran.uni-muenster.de/web/packages/CircMLE/CircMLE.pdf
https://www.R-project.org/
https://www.sciencebase.gov/catalog/item/5f21cef582cef
https://www.sciencebase.gov/catalog/item/5f21cef582cef
http://cran.hafro.is/web/packages/wildlifeDI/wildlifeDI.pdf
https://mirror.linux.duke.edu/cran/web/packages/arm/arm.pdf
https://cran.pau.edu.tr/web/packages/TwoStepCLogit/TwoStepCLogit.pdf
https://cran.pau.edu.tr/web/packages/TwoStepCLogit/TwoStepCLogit.pdf
http://dx.doi.org/10.1101/2021.02.11.430740

	﻿Agricultural land use shapes dispersal in white-tailed deer (﻿Odocoileus virginianus﻿)
	﻿Abstract
	﻿Background
	﻿Methods
	﻿Study area and deer collaring
	﻿GPS collar data processing
	﻿Dispersal detection algorithm
	﻿Descriptive analysis
	﻿Statistical models
	﻿Access to cover
	﻿Social environment
	﻿Traversability of surrounding landscape
	﻿Individual condition
	﻿Statistical model fitting


	﻿Dispersal habitat selection
	﻿Results
	﻿Dispersal probability
	﻿Dispersal distance

	﻿Discussion
	﻿Limitations and broader management implications

	﻿Conclusion
	﻿References


