
Wilson et al. Movement Ecology           (2022) 10:25  
https://doi.org/10.1186/s40462-022-00326-5

RESEARCH

Intrapopulation differences in polar bear 
movement and step selection patterns
Ryan R. Wilson1*   , Michelle St. Martin1,4, Eric V. Regehr2 and Karyn D. Rode3 

Abstract 

Background:  The spatial ecology of individuals often varies within a population or species. Identifying how individu-
als in different classes interact with their environment can lead to a better understanding of population responses 
to human activities and environmental change and improve population estimates. Most inferences about polar bear 
(Ursus maritimus) spatial ecology are based on data from adult females due to morphological constraints on apply-
ing satellite radio collars to other classes of bears. Recent studies, however, have provided limited movement data for 
adult males and sub-adults of both sexes using ear-mounted and glue-on tags. We evaluated class-specific move-
ments and step selection patterns for polar bears in the Chukchi Sea subpopulation during spring.

Methods:  We developed hierarchical Bayesian models to evaluate polar bear movement (i.e., step length and 
directional persistence) and step selection at the scale of 4-day step lengths. We assessed differences in movement 
and step selection parameters among the three classes of polar bears (i.e., adult males, sub-adults, and adult females 
without cubs-of-the-year).

Results:  Adult males had larger step lengths and less directed movements than adult females. Sub-adult movement 
parameters did not differ from the other classes but point estimates were most similar to adult females. We did not 
detect differences among polar bear classes in step selection parameters and parameter estimates were consistent 
with previous studies.

Conclusions:  Our findings support the use of estimated step selection patterns from adult females as a proxy for 
other classes of polar bears during spring. Conversely, movement analyses indicated that using data from adult 
females as a proxy for the movements of adult males is likely inappropriate. We recommend that researchers consider 
whether it is valid to extend inference derived from adult female movements to other classes, based on the questions 
being asked and the spatial and temporal scope of the data. Because our data were specific to spring, these findings 
highlight the need to evaluate differences in movement and step selection during other periods of the year, for which 
data from ear-mounted and glue-on tags are currently lacking.

Keywords:  Age class, Chukchi Sea subpopulation, Movement, Polar bear, Spatial ecology, Sex, Step selection, Ursus 
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Background
The spatial ecology of individuals can vary within a spe-
cies [1] with different classes often exhibiting distinct 
space use and movement patterns [2–4]. Multiple factors 
can lead to individual variation in a population, such as 
physical and behavioral development [5], social status [6], 
and life history stage [7]. These differences are often the 
result of variation in ecological constraints among classes 
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(e.g., sex, age, reproductive status). For example, an indi-
vidual’s size or age can have an effect on diet [8] which 
can lead to different movement decisions for accessing 
their desired prey or forage [9].

Frequently, location data are obtained for one class of 
animal in a population and used to make inference to the 
entire population [10, 11]. Depending on the questions 
being posed, monitoring the movements of only one 
class (e.g., adult females) may be justified (e.g., [12]). If, 
however, the questions are related to the overall ecology 
of the population (e.g., disease transmission [13]), then a 
more holistic approach may be required. This is especially 
true if studies have not previously established that differ-
ent classes of animals exhibit similar movement decisions 
and patterns. Assuming that one class is representative of 
others can lead to erroneous ecological inference or inef-
ficient management and conservation strategies [14].

Polar bears (Ursus maritimus) embody many of the 
challenges listed above. Movement data to inform polar 
bear management and conservation are nearly always 
obtained from adult females due to morphological issues 
with collar retention on adult males and concerns about 
collars on sub-adults becoming too tight as bears grow 
[15]. As a result, most inferences about polar bear space 
use decisions and movement patterns are derived from 
adult females [16–19]. A few studies have analyzed dif-
ferences in the spatial ecology among different classes of 
polar bears [20–22], but the logistical challenges of col-
lecting these data make such analyses rare. Application 
of these results to other classes of bears typically requires 
an assumption that all classes of bears use space similarly 
[18, 23], but the few studies where animals other than 
adult females have been monitored show this assumption 
may be incorrect [20–22].

Understanding the spatial ecology of polar bear classes 
other than adult females can provide valuable insights 
into their ecology and the efficacy of management 
actions. Studies have shown that resource selection pat-
terns of adult female polar bears are largely invariant to 
climate-induced changes to sea ice [18, 24]. It remains 
unclear, however, if other classes of bears (i.e., adult 
males, sub-adults) use space differently, and if so, how 
their responses to sea-ice loss might differ from adult 
females. Data on movements and space use of adult 
female polar bears have also been critical to estimat-
ing demographic parameters of polar bear subpopula-
tions [23]. If adult female movements and space use are 
significantly different from other classes of polar bears, 
then these demographic estimates might be biased in an 
unknown direction.

Previous research has shown that sub-adult polar bears 
are typically most responsible for human-polar bear con-
flicts [25, 26]. Nutritionally-stressed adult males have 

also been implicated in higher rates of attacks on humans 
than adult females [26]. Studies on movement and space 
use decisions of sub-adult and adult male bears can 
therefore help understand when and where polar bears 
are most likely to interact with humans. With sea-ice loss 
increasing and leading to more bears on land for longer 
periods each year [16, 17], conflicts with polar bears are 
likely to increase [26]. Thus, information on the space use 
decisions and movement patterns of adult males and sub-
adults, compared to adult females, can provide insight 
into how conflicts with humans might be mitigated.

Given the difficulty of tracking the movements of polar 
bears other than adult females, it is desirable to identify 
if adult female space use decisions and movement pat-
terns differ sufficiently from other classes such that their 
use as a proxy is unwarranted. Since 2010, adult males 
and sub-adults have been tagged with satellite telem-
etry ear-tags or glue-on tags during spring live-capture 
research in the Chukchi Sea (CS) which provide location 
data for approximately 3 months allowing an understand-
ing of polar bear movements during a critical feeding 
period for polar bears [27]. Our objective in this study 
was to determine whether differences exist in key move-
ment metrics (i.e., directional persistence, step lengths) 
and step selection patterns between adult females, adult 
males, and sub-adults. Given the observed differences 
in diet between adult males and other classes of polar 
bears [27], and the differences in spatial distribution of 
prey [28], we predicted that step selection patterns would 
differ between adult males and adult females and sub-
adults. Because movement patterns of adult males are 
thought to be related to mate-finding behavior in spring 
[21], we also predicted that adult males would have less 
directional persistence and similar step lengths as adult 
females [21] and sub-adults.

Methods
Study area
The CS subpopulation is one of 19 recognized polar bear 
subpopulations [29] ranging from northwestern Alaska 
to northeastern Chukotka, Russia (Fig.  1). The CS sub-
population’s range [29] is bounded by the Bering Sea to 
the south, the East Siberian Sea to the west, the Beaufort 
Sea to the east, and the continental shelf to the north 
(Fig. 1), representing an area of approximately 1,600,000 
km2. Sea ice in the CS is highly dynamic with ice form-
ing, shifting, and melting throughout the year. Sea ice in 
the CS currently reaches its maximum extent in March 
and its minimum extent in September [30]. Polar bears 
in the CS subpopulation primarily prey on ringed (Pusa 
hispida) and bearded seals (Erignathus barbatus), with 
spring being a critical hunting period [27].



Page 3 of 12Wilson et al. Movement Ecology           (2022) 10:25 	

Fig. 1  Map depicting the boundary for the Chukchi Sea (CS) subpopulation (black line) as defined by the Polar Bear Specialists Group and the 
region where polar bear captures occurred for this study (the black “sample area” polygon) between the communities of Point Hope and Shishmaref, 
Alaska. The gray shading in the ocean depicts the ocean depth across the study area, with darker regions indicating deeper waters
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Animal capture
We captured polar bears from a helicopter and immo-
bilized them with a dart containing zolazepam-tileta-
mine (Telazol or Zoletil; [31]) between mid-March and 
late April (2010–2017, excluding 2012 and 2014) in U.S. 
waters between Point Hope and Shishmaref, Alaska 
(Fig.  1). We fitted captured adult females with a GPS 
collar that was set to drop off after 12–15 months. Our 
sample of adult females did not include any females with 
cubs-of-the-year as these bears were not available to be 
captured in our study area given that most bears in the 
subpopulation den on Wrangel Island [17], approxi-
mately 600  km northwest. Similarly, we did not include 
data from bears collared the previous year that had 
denned. As noted earlier, we did not fit GPS collars to 
male bears or sub-adults. Instead, we fit these bears with 
an Argos satellite telemetry tag affixed to either an ear or 
glued onto their back.

Location data
Non-collar satellite-based transmitters for polar bears 
typically have poor performance [15], with a maximum 
life span often lasting < 6  months [15, 20, 21]. The poor 
performance of these devices are thought to be related 
to tags being lost (e.g., pulled out of ear or lost due to 
molting), antennae failure, and limited battery life [15]. 
Our comparative analyses were therefore limited to loca-
tion data obtained between 1 March and 30 June, when 
the three classes of bears had active tags. To ensure that 
capturing bears did not influence their movements, we 
restricted each bear’s data to ≥ 5 days post-capture [32]. 
Even though we fit adult females with GPS collars, pre-
liminary analyses found that models had difficulty con-
verging when using GPS data from adult females and 
Argos data from other classes, even if GPS data were 
subset to match the acquisition intervals from the Argos 
tags. This was likely due to large differences in uncer-
tainty for GPS-based locations compared to Argos-based 
locations [33]. Because GPS collars also collected Argos 
locations, we only used Argos locations for adult females. 
Given that Argos transmitters can provide multiple loca-
tions during a duty cycle, we restricted Argos data to 
only one location per duty cycle (i.e., satellite acquisi-
tion period), keeping the location with the smallest error 
ellipse [34]. The frequency of Argos location acquisition 
varied between years and tag types (e.g., collar vs ear tag). 
Argos acquisition varied between 1 and 4 days, with aver-
age durations between acquisition being 3 (SD = 3.1), 3 
(SD = 1.4), and 2 days (SD = 1.0) for adult females, adult 
males, and sub-adults, respectively. Further, we removed 
individuals from the analysis that had < 3 locations, which 
is the minimum number of locations needed to estimate 
movement metrics. Unequal sampling among individuals 

was accommodated by our hierarchical modeling 
approach (see below). Lastly, we restricted our analyses 
to movement and step selection while on sea ice and not 
land as most bears are on sea ice in spring. Only den-
ning bears would be on land for prolonged periods dur-
ing spring and as stated earlier, we did not included bears 
with cubs-of-the-year in our analysis.

Due to computational constraints, we chose to use a 
data imputation approach to account for uncertainty in 
locations [35] rather than directly accounting for it in a 
state-space model (e.g., [34]). Following the guidance 
of Scharf et  al. [35], for each individual’s location data 
we fit a continuous time correlated random walk model 
(CTCRW; [10]) that incorporated the location uncer-
tainty estimated by Argos error ellipses [34] with the 
‘crawl’ package [36] for R [37]. We then obtained 25 reali-
zations for each animal’s estimated path, with estimated 
locations obtained at 4-day intervals, which we used for 
the subsequent analyses of movements and step selec-
tion. The CTCRW model was also able to account for 
missing Argos fixes for an individual, which would lead 
to greater variability in estimated locations further from 
observed locations. Twenty-five datasets were then cre-
ated such that each dataset had one realized path from 
each individual (without replacement). We provide a gen-
eral overview of the data imputation approach in Addi-
tional file 1.

Movement analysis
We were interested in determining if there were differ-
ences in movement characteristics across different classes 
of polar bears to help inform movement models used to 
address management and conservation concerns [23, 38] 
and to gain a better understanding of the ecological dif-
ferences among polar bears. Recently methods have been 
developed to jointly estimate movement metrics and 
step selection parameters jointly, termed integrated step 
selection analysis [39]. While our study objectives lend 
themselves to the use of this approach, we preferred to 
take a two-step approach (i.e., estimating movement and 
step selection parameters independently) for a variety of 
reasons. Given the limited sample sizes for some individ-
uals in our study, especially adult males and sub-adults 
because of tag retention and performance issues [15], we 
wanted to take advantage of a trait of Bayesian hierar-
chical models that allows for borrowing strength across 
samples with varying levels of information [40]. This is 
not currently possible with the integrated step selection 
approach which would have likely required us to omit 
data from a number of individuals for our analysis. Addi-
tionally, integrated step selection analyses generally pre-
fers separate models to be fit to each individual which are 
then averaged to develop population-level estimates [39]. 
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Given our data imputation approach to handle location 
uncertainty, this would have led to 3,200 unique mod-
els needing to be run. We therefore developed a simple 
movement model to evaluate step length and directional 
persistence differences across the three classes studied 
and then conducted a separate step selection analysis 
(detailed below). We note, however, that by not taking an 
integrated step selection analysis approach, we are unable 
to correct the movement parameters to remove the influ-
ence of resource selection, which may lead to some bias 
in sample of available points [41].

Our use of a data imputation approach allowed us to 
obtain expected location data for all individuals at fixed 
time steps, which reduced model complexity compared 
to other state-space approaches [42–44]. Similarly, 
the data imputation approach eliminated the need to 
account for uncertainty associated with observed loca-
tions in the hierarchical model (see below), further sim-
plifying the model.

We obtained 4-day step lengths and turn angles (i.e., 
distance traveled and turn angles between locations 
obtained at 4-day intervals) from the CTCRW output 
for each individual and used these values as data in 
our model. We modeled an individual’s step lengths as 
coming from a Weibull distribution:

where li,t is the observed step length of individual i at 
time t, and ki and gi are individual-level shape and scale 
parameters, respectively, for individual i in the Weibull 
distribution. We used the method-of-moments approach 
[40] to parameterize the model to estimate individual-
level parameters based on population-level parameters 
for each of the three classes:

where ci is the class for individual i (i.e., adult female, 
adult male, sub-adult), κc and γc are population-level 
shape and scale parameters (specific for each class of 
bear), respectively, for the Weibull distribution of step 
lengths, and σ 2

κ  and σ 2
γ  represent variation among indi-

viduals for the two population-level parameters. We 
calculated the mean expected step length for class c as: 
µc = γcŴ(1+ 1/κc) , where Γ is the log gamma function.

We modeled an individual’s turn angles as coming 
from a wrapped Cauchy distribution:

li,t ∼ Weib
(

ki, gi
)
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∣
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]

∼ Gamma

(

γ 2
c

σ 2
γ

,
γc

σ 2
γ

)

[

ki
∣

∣ci
]

∼ Gamma

(

κ2c

σ 2
κ

,
κc

σ 2
κ

)

where θi,t−1 is the turn angle for individual i at the previ-
ous time step (i.e., t-1) and ri is individual i’s estimated 
directional persistence. We again used the method-of-
moments approach to estimate an individual’s directional 
persistence based on population-level parameters for 
each of the three classes:

where φc is the population-level mean for directional 
persistence specific to each class of bear, and σ 2

φ is the 
inter-individual variation in directional persistence. 
We gave all population-level parameters vague priors, 
with γc ∼ Uniform(0, 500000) , κc ∼ Uniform(0, 10) , 
φc ∼ Uniform(0, 1) , σγ ∼ Uniform(0, 50000) , 
σκ ∼ Uniform(0, 5) , and σφ ∼ Uniform(0, 0.5) . Because 
the model for individual turn angles required the pre-
vious turn angle as a parameter, we also estimated 
the starting (i.e., t = 1) step length and turn angle 
as vague priors, with si,1 ∼ Uniform(0, 100000) and 
θi,1 ∼ Uniform(−π ,π).

Step selection analysis
To assess differences in polar bear step selection 
among classes, we developed step selection functions 
(SSFs) at the scale of 4-day step lengths. For each of 
the 25 imputed data sets, we estimated SSFs with a 
hierarchical Bayesian conditional logistic regression 
model [18, 45], which accounted for the lack of inde-
pendence among multiple clusters (i.e., one used loca-
tion with multiple random locations; see below) for 
individual bears. We obtained samples of available 
locations for each individual i’s used locations by first 
drawing a random sample from the individual’s poste-
rior distributions for the shape (i.e., ki), scale (i.e., gi), 
and directional persistence (i.e., ri) parameters. We 
then obtained 25 random samples of step length from 
a Weibull distribution with the values of the sampled 
shape and scale parameters, and 25 random samples 
of turn angles from a Wrapped Cauchy distribution 
with the values of the previous turn angle for individ-
ual i (i.e., θi,t-1) and the sample directional persistence 
parameter. We defined a used location with its asso-
ciated available locations as a cluster. A sample of > 20 
available locations has been shown to be sufficient for 
obtaining accurate estimates of habitat selection [46]. 
We generated available locations as:

θi,t ∼ wCauchy
(

θi,t−1, ri
)

[ ri|ci] ∼ Beta

(

φ2
c − φ3

c − φcσ
2
φ

σ 2
φ

,
φc − 2φ2

c + φ3
c − σ 2

φ + φcσ
2
φ

σ 2
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where vt,a is a two-element vector with an available loca-
tion a’s x- and y-coordinates at time t, which is a function 
of the used location at the previous time step ( st−1 ; simi-
larly a two-element vector with x- and y-coordinates) and 
a randomly sampled step length ( la ) and turn angle ( θa) 
from the posterior distribution as described above. We 
estimated the choice probability [47] for the used loca-
tion, si,t for individual i at time t as:

where si,t−1 is individual i’s used location at time t-1, xi,t 
is a vector of attributes corresponding to the set of used 
and available locations for individual i at time t, St is the 
set of all available and used points for individual i at time 
t, xs is a vector of attributes corresponding to used loca-
tion si,t (see below), and αi is a vector of parameters for 
animal i (i.e., individual-level selection parameters). We 
modeled each individual selection parameter as:

where βc represents the corresponding population-level 
selection parameter for class c, and σβ represents the 
inter-individual standard deviation for that selection 
parameter. To simplify the model, we assumed that σβ did 
not vary among classes. We assigned all βc a vague prior, 
βc ~ Normal(0,100). Similarly, we assigned all σβ a vague 
prior, σβ ~ Gamma(0.01,0.01).

We estimated selection using covariates that have pre-
viously been identified as important for describing polar 
bear resource selection patterns [18, 19]. Additionally, 
the following variables might be expected to have differ-
ent relationships with other classes of polar bears given 
their connection to prey distribution [48] and observa-
tions that some classes may be more likely to occur near 
communities [25, 26] and therefore closer to land. Spe-
cifically, we estimated selection patterns across classes 
for ocean depth (resolution = 16 km2; http://​dx.​doi.​org/​
10.​7289/​V5C82​76M, accessed 17 March 2022); sea-ice 
concentration; sea-ice concentration-squared; the stand-
ard deviation of sea-ice concentration within 100 km of 
points, as an index of sea-ice variability [18]; distance to 
land; distance to land-squared; distance to the 10% ice 
concentration contour, as an index of the distance to the 
sea-ice edge and related to prey distribution [48]; and 
distance to the 10% ice concentration contour-squared. 
For all sea ice-related variable, we obtained data from 

vt ,a = st−1 +

(

lacosθa

lasinθa

)

⌈si,t |si,t−1, si,t−2, xi,t⌉ =
eαixs

∑

r∈St
eαixr

αi ∼ Normal(βc , σβ)

Cavalieri et al. [49]. We also used the sea ice concentra-
tion maps to define distance to land as those datasets also 
classified the presence of land. Sea ice concentration-
derived layers had a spatial resolution of 625 km2 and 
were available daily, so we related them the specific day 
and year a location was obtained.

We scaled each variable by subtracting their overall 
means from the observed values and then dividing by 
their overall standard deviations. To assess the predic-
tive capacity of the model we used a cross-validation 
approach designed for case–control analyses [50]. We 
withheld 20% of clusters to use as a test set in for each 
of the 25 imputed data sets and used the remaining 80% 
of the clusters as the training data set. For each location 
in the withheld cluster, we calculated the choice probabil-
ity based on the parameters estimated from the training 
dataset. We then ranked the calculated choice probabili-
ties within each cluster from lowest to highest, extracted 
the rank for each used location, and calculated the num-
ber of used locations that were ranked in each of the 26 
bins (with bins 1 and 26 having the lowest and highest 
calculated choice probabilities, respectively, within the 
cluster). Finally, we used Spearman’s rank correlation of 
the bin counts to assess predictive capacity of the model. 
A high correlation value is expected for good-fitting 
models because used locations should rank higher (on 
average) than available locations.

Model implementation
For the two analyses (i.e., movement and step selection), 
we estimated the posterior distribution for each param-
eter with Monte Carlo Markov Chains using the pack-
age ‘rjags’ [51] to run the program JAGS [52] from R 
[37]. We ran the 25 imputed data sets in parallel, allow-
ing 5,000 iterations for the adaptation phase and a burn 
in of 100,000 and 10,000 iterations for the movement and 
step selection analyses, respectively. We then obtained 
100,000 and 5,000 iterations from each chain for the 
movement and step selection analyses (respectively) and 
thinned each by 100 and 5 (respectively), resulting in a 
total of 1,000 samples from the posterior distribution. 
We visually assessed each parameter for convergence. We 
then combined the 1,000 posterior samples from each 
imputed data set for each analysis, resulting in a posterior 
sample of 25,000 which we used to estimating summary 
statistics for model parameters. Given that our primary 
study objective was to assess if differences exist in param-
eter estimates between polar bear classes we assessed if 
the 95% Credible Intervals (CI) for a given class’s param-
eter estimate overlapped with the other class’s 95% CIs.

http://dx.doi.org/10.7289/V5C8276M
http://dx.doi.org/10.7289/V5C8276M
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Results
We obtained location data from 118 unique bears, rep-
resenting 128 unique bear years of data (hereafter bears). 
Five bears provided data from 2 separate years, one 
bear provided data from 3 separate years, and one bear 
provided data from 4 separate years. All but one of the 
bears with multiple years of data were adult females, the 
other was an adult male. Of the 128 bears, 78 were adult 
females, 32 were adult males, and 20 were sub-adults 
of both sexes. Bears had an average of 28.5 (SD = 17.7) 
Argos locations that were used in the CTCRW analy-
sis. From the CTCRW output, there was a total of 1978 
4-day steps, with an average of 15.5 (SD = 5.5) 4-day 
steps per individual bear. Adult females had an average 
of ~ 5 additional 4-day steps per individual (adult female: 
mean = 17.7, SD = 4.9; adult male: mean = 12.2, SD = 4.7; 
sub-adult: mean = 12.1, SD = 4.8) due to the lower tag 
retention and poorer performance of ear and glue-on 
tags.

Movement analysis
We observed differences in movement metrics between 
adult male and adult females, but not between sub-
adults and adult bears of either sex (Table 1, Additional 
file  2). Plots of the posterior distribution of the move-
ment parameters show overlap between all three bear 
classes for the Weibull shape parameter, but little overlap 
between adult males and adult females for the Weibull 
scale parameter, step length, and directional persis-
tence (Additional file  2). Adult males exhibited larger 
step lengths and lower directional persistence than adult 
females with minimal overlap in their respective 95% CI 
(Table  1). These differences did not exist between adult 
males and sub-adult bears. Similarly, 95% CI of move-
ment parameters overlapped between adult females and 
sub-adult bears (Table 1).

Step selection analysis
Cross-validation of withheld data for our step selection 
model had a spearman rank correlation coefficient esti-
mate of 0.95 (95% CI 0.90–0.98) indicating strong predic-
tive capacity for the model. Selection coefficients across 
the three polar bear classes were similar, with only minor 
differences in estimates and largely overlapping credible 
intervals (Table 2, Additional file 2). Polar bears exhibited 
no selection for ocean depth but exhibited positive selec-
tion for more variable sea ice (Table  2), although sub-
adults had 95% CI that slightly overlapped 0 (Table  2). 
Coefficient estimates for distance to land did not differ 
from zero for adult males and sub-adults, but was > 0 for 
adult females which showed selection for areas further 
from land (Fig.  2, Table  2, Additional file  2). All classes 
also showed decreasing selection for distance to the sea-
ice edge until ~ 400  km, after which selection began to 
increase for further distances, but again with very wide 
credible intervals (Fig.  2, Table  2). Finally, all classes of 
polar bears showed increasing selection for more con-
centrated sea ice which stabilized around 80% concentra-
tion (Fig. 2, Table 2).

Discussion
Polar bears in the CS subpopulation exhibited different 
movement patterns across classes, which is largely con-
sistent with findings from other subpopulations [20, 21]. 
Similar to Laidre et  al. [21], we observed adult females 
having higher directional persistence in their movement 
compared to adult males. In their study, Laidre et al. [21] 
attributed this pattern to adult male movement being 
motivated by searching for potential mates in the spring, 
with less directed movements leading to lower encounter 
rates with competing males. This explanation is consist-
ent with our results which were similarly based on move-
ment data collected during the breeding season for polar 

Table 1  Parameter estimates (median and 95% Credible Intervals [CI]) for the analysis comparing movement differences between 
adult female, adult male, and sub-adult polar bears in the Chukchi Sea subpopulation

The κ (i.e., shape) and γ (i.e., scale) parameters are for the Weibull distribution component of the model, whereas ρ is for the wrapped Cauchy distribution component 
of the model. The mean expected step length (m ) is derived from the Weibull distribution parameters (i.e., step length = γΓ(1 + 1/κ ), where Γ is the log gamma 
function)

Variable Class

Adult female Adult male Sub-adult

Median 95% CI Median 95% CI Median 95% CI

κ 1.79 1.68–1.90 1.76 1.57–1.96 1.77 1.55–2.01

γ 67,288 62,947–71,962 79,025 71,078–87,080 69,079 59,966–78,667

Step length 59,864 56,012–64,014 70,396 63,361–77,512 61,532 53,486–70,000

ρ 0.248 0.200–0.296 0.159 0.066–0.243 0.212 0.096–0.325
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bears [54]. Although sub-adult polar bear directional per-
sistence did not differ from either adult bear class, their 
mean persistence was closer to adult female levels, likely 
indicating adult female and sub-adult bear movements 
are not influenced by breeding behavior. This is further 
supported by Laidre et al.’s [21] finding that reproductive 
status of a female had no relationship with directional 
persistence. Adult males had longer step length than 
other classes which is counter to our predictions and 
inconsistent with previous studies of polar bears [21].

We did not find meaningful differences in step selec-
tion patterns across demographic classes of bears in the 
CS subpopulation, which is consistent with other studies 
[21], despite the ecological differences between our study 
systems [55]. Variables in our analysis were primarily 
related to factors associated with accessibility to prey in 
relation to ice dynamics but did not include data on the 
distribution of prey due to a lack of availability. If these 
data become available they could potentially influence 
the results and highlight differences in selection given 
that males tend to prey more on bearded seals whereas 
adult females and younger bears predominantly prey on 
ringed seals [27, 56], both which have different distribu-
tions [28]. We predicted that adult males might display 
differences in step selection patterns from other classes of 
bears in our study given their greater reliance on bearded 
seal as prey [27]. The lack of difference between classes in 
our study might suggest that during spring, adult males 
are also capitalizing on ringed seal pups which are only 
available for a short period [57]. Conversely, adult males 
might be most focused on mating in the spring and thus 
matching their space use patterns to adult females. In 

either case, additional research is warranted during other 
periods of the year.

Our selection estimates for distance to ice edge (Fig. 2) 
reflect results from Von Duyke et al. [58] that ringed seal 
distribution in the CS region is negatively related to dis-
tance from ice edge, and from the results of Cameron 
et  al. [48] who showed juvenile bearded seals selecting 
for areas closer to the ice edge. Our results indicated that 
bears showed decreased selection for areas further from 
the ice edge, out to ~ 400  km (Fig.  2). Although we also 
observed an increase in selection for distances beyond 
400  km from the ice edge, this relationship was highly 
uncertain (Fig. 2) because the majority (58%) of locations 
were from bears < 550 km from the ice edge.

All classes of polar bears studied exhibited similar pat-
terns of selection for areas further from land (Fig.  2). 
These results indicate that during late spring no class of 
polar bear is selecting for areas nearer to human settle-
ments than other classes. Spring is the period of the year 
when ice is at its greatest extent and hunting success is 
highest [57], thus polar bears should be motivated to 
remain on the sea ice. The only activity in spring that 
would be likely to cause polar bears to occur near com-
munities would be spring whaling activities which can 
provide food resources to polar bears. Our results indi-
cate that the majority of bears in the CS subpopulation 
prefer to remain on the sea ice in spring. This does not 
mean that there are not differences in the level of con-
flict between humans and different classes of polar bears, 
as has been previously documented [25, 26]. Rather, 
human-polar bear conflict is most likely related to behav-
ioral differences among polar bears [59].

Table 2  Coefficient estimates (and associated 95% CI) for population-level parameters of a step selection model for three different 
classes of polar bears in the Chukchi Sea subpopulation

Covariates included in the model were ocean depth (Depth), sea-ice concentration (Conc), ice concentration squared (Conc2), standard deviation in sea-ice 
concentration within a 100 km radius (SDConc), distance to land (D2Land), distance to land squared (D2Land2), distance to the pack ice edge (D2Ice) and distance to 
pack ice edge squared (D2Ice2). We considered variables whose 95% CI did not overlap 0 as statistically significant

Variable Class

Adult female Adult male Sub-adult

Median 95% CI Median 95% CI Median 95% CI

Depth 0.028 −0.065–0.142 0.031 −0.557–0.639 −0.046 −2.263–0.866

Conc 1.515 0.998–2.059 1.440 0.884–2.047 1.410 0.779–2.047

Conc2 −0.697 −1.260–0.166 −0.858 −1.545–0.262 −0.772 −1.446–−0.132

SDConc 0.236 0.095–0.377 0.308 0.099–0.522 0.223 −0.021–0.468

D2Land 0.485 0.005–0.960 0.488 −0.073–1.105 0.443 −0.165–1.055

D2Land2 −0.316 −0.832–0.206 −0.408 −1.099–0.206 −0.377 −1.105–0.318

D2Ice −1.420 −2.356–0.469 −1.338 −2.327–−0.256 −1.367 −2.382–−0.236

D2Ice2 1.740 0.628–2.846 1.479 0.115–2.713 1.454 −0.153–2.730



Page 9 of 12Wilson et al. Movement Ecology           (2022) 10:25 	

Our analysis of movement and step selection at the 
scale of 4-day steps was primarily motivated by the res-
olution of spatial data from adult males and sub-adults 
and to compare with Laidre et al. [21] which also used 

4-day steps for their analysis. We note, however, that 
the patterns we observed between classes could eas-
ily change with finer-scale movement data (if that ever 
becomes available for classes other than adult females). 

Fig. 2  Average effects of sea ice concentration (A), distance to land (B), and distance to sea ice edge (C) on the relative probability of use for each 
of three classes (i.e., adult female [AF], adult male [AM], and sub-adult [SA]) of polar bears in the Chukchi Sea subpopulation in spring and early 
summer (i.e., 1 March–30 June). Plots are based on the habitat conditions present in the sample of available points used for the step selection 
analysis. We developed curves (and associated 95% Confidence Intervals of the smoothed curve; gray polygons) based on a smoothed (i.e., 
generalized additive model, with df = 3 for the sea ice concentration and distance to land variables, and df = 4 for the distance to ice edge variable) 
non-parametric model, as described in Avgar et al. [53]
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At a 4-day time scale, the three classes of bears we 
studied appear to be making similar decisions on where 
to move next. But this could mask differences in move-
ment decisions at finer temporal scales. For example, 
if different classes of bears hunt in similar areas, but 
display differences in hunting strategies (e.g., break-
ing in ice seal lairs vs. ambushing hauled-out seals), 
these differences might not be detected with a 4-day 
step length. Similarly, it is well-known that estimated 
distances moved between two points in time becomes 
increasingly biased low with longer durations between 
those points [60]. With finer-scale movement data, we 
might have observed even larger relative differences in 
step lengths between classes or shown differences in 
directional bias based on different movement decisions 
being made during small time intervals. Thus, inference 
from our study can only be applied to questions that 
generally match the temporal scale of our movement 
data.

Our findings generally support the use of adult female 
step selection patterns during spring to inform the move-
ment decisions of other classes of polar bears (e.g., [23]). 
Future research is warranted, however, when informa-
tion becomes available on the abundance and distribu-
tion of polar bear prey species in the region. While spring 
is an important time for polar bears from a mating [54] 
and energetic perspective [57], our results might not be 
representative of other periods of the year. For example, 
adult male movement and selection patterns are likely 
tightly linked to adult female patterns given that our 
study period overlaps with polar bear breeding [54]. We 
know that during other periods of the year, adult female 
movements and space use decisions can be affected by 
their reproductive status, leading to differences com-
pared to other classes of bears [22]. Additional research 
during other periods of the year is warranted if adult 
female movement and resource selection patterns are to 
be used as a proxy for other classes of bears that cannot 
be fitted with collars. The limited battery life of non-col-
lar tags, however, would require captures to occur dur-
ing other periods of the year (e.g., autumn) which can be 
challenging given differences in the distribution of bears 
(e.g., some portion the sub-population on land and some 
on ice) and difficulty in capturing bears adjacent to open 
water.

Conclusions
We found some support for the use of adult female 
movement data to infer the spatial ecology of other 
classes of bears in the CS subpopulation. Careful con-
sideration is required to determine whether such infer-
ence is warranted based on the questions being asked 

and the time period of interest. Our results highlight 
the need to evaluate class-specific movement and step 
selection during other periods of the year than spring. 
Results from our movement analysis show that rely-
ing on data from adult females as proxy for the move-
ments of adult males is likely inappropriate, as has been 
documented previously for other populations [21]. 
This could be an especially important consideration in 
studies relying on simulated polar bear movements to 
estimate potential impacts of anthropogenic activities 
(e.g., oil spills [61]) or that assess the relative outcomes 
of different management or conservation activities on 
bears [38].
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