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Abstract 

Background:  The timing of autumn migration in ducks is influenced by a range of environmental conditions that 
may elicit individual experiences and responses from individual birds, yet most studies have investigated relationships 
at the population level. We used data from individual satellite-tracked mallards (Anas platyrhynchos) to model the tim-
ing and environmental drivers of autumn migration movements at a continental scale.

Methods:  We combined two sets of location records (2004–2007 and 2010–2011) from satellite-tracked mallards 
during autumn migration in the Mississippi Flyway, and identified records that indicated the start of long-range 
(≥ 30 km) southward movements during the migration period. We modeled selection of departure date by individual 
mallards using a discrete choice model accounting for heterogeneity in individual preferences. We developed can-
didate models to predict the departure date, conditional on daily mean environmental covariates (i.e. temperature, 
snow and ice cover, wind conditions, precipitation, cloud cover, and pressure) at a 32 × 32 km resolution. We ranked 
model performance with the Bayesian Information Criterion.

Results:  Departure was best predicted (60% accuracy) by a “winter conditions” model containing temperature, and 
depth and duration of snow cover. Models conditional on wind speed, precipitation, pressure variation, and cloud 
cover received lower support. Number of days of snow cover, recently experienced snow cover (snow days) and cur-
rent snow cover had the strongest positive effect on departure likelihood, followed by number of experienced days 
of freezing temperature (frost days) and current low temperature. Distributions of dominant drivers and of correct 
vs incorrect prediction along the movement tracks indicate that these responses applied throughout the latitudinal 
range of migration. Among recorded departures, most were driven by snow days (65%) followed by current tempera-
ture (30%).

Conclusions:  Our results indicate that among the tested environmental parameters, the dominant environmental 
driver of departure decision in autumn-migrating mallards was the onset of snow conditions, and secondarily the 
onset of temperatures close to, or below, the freezing point. Mallards are likely to relocate southwards quickly when 
faced with snowy conditions, and could use declining temperatures as a more graduated early cue for departure. 
Our findings provide further insights into the functional response of mallards to weather factors during the migration 
period that ultimately determine seasonal distributions.
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Background
Avian seasonal migration is an energetically costly series 
of movements that may cover great distances, and is 
fundamental to the ecology of many bird species [1, 2]. 
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Migration decisions can influence fitness in both the 
breeding and non-breeding portion of the year. The tim-
ing, distance and speed of migratory movements can 
influence and be influenced by body condition, reproduc-
tive success, and population composition [3, 4] and has 
been shown to influence long-term processes including 
continental or global distribution and speciation [5].

Understanding migratory movements in waterfowl has 
been considered particularly important, due to their sta-
tus as popular gamebirds with associated population and 
habitat management programs [2, 6] as well as their role 
in the spread of zoonotic diseases [7]. Many waterfowl, 
and most ducks, depend on wetlands that are particu-
larly threatened by anthropogenic climate and land use 
change [8, 9]. Phenological shifts in waterfowl migration 
have been connected to altered habitat conditions and 
weather patterns in both breeding and wintering ranges 
[9–11].

Although an increasing number of studies have 
recently been published about the proximal factors influ-
encing migration chronology in waterfowl [12–18], much 
remains unclear. There is a lack of quantitative knowledge 
about the parameters that drive migration timing, dis-
tance, and choice of target location among waterfowl [2, 
19], with the information scarcity more pronounced for 
autumn than spring migration [18]. Response to decreas-
ing photoperiod is thought to be the principal external 
cue for autumn departure in many bird species, especially 
song birds [2, 20, 21], but this has not yet been clearly 
demonstrated in waterfowl. Among northern hemisphere 
waterfowl, decision to embark on southwards migra-
tion is thought to principally depend on energy budget 
considerations. With declining food availability under 
autumn and winter conditions, metabolic costs increase 
and food becomes harder to acquire, until staying at high 
latitudes is more costly than expending energy to relocate 
southward [12, 22, 23]. The effect of decreasing tempera-
tures together with the occurrence of snow and ice cover 
are principal migration cues in ducks and geese, both in 
the short term and as cumulative measures over longer 
periods [2, 6, 12, 15, 18].

On a proximate time scale, decision to migrate is 
frequently influenced by how energetically favorable 
weather conditions are on a given day for long-distance 
movements [1]. Flight may be made costly by headwinds 
or facilitated by tailwinds [17, 24], precipitation may 
impede flight and increase thermoregulation costs [1, 
17, 25], cloud cover may obstruct the view of visual cues 
used for navigation [26], and pressure differences may 
serve as cues for impending weather changes [1] or facili-
tate departure [27]. Flight weather is a prominent migra-
tion driver in passerines [19, 25, 28], but with the notable 
exception of wind direction [17, 18, 29, 30], it plays less 

of a role in waterfowl [31, 32]. However the majority of 
existing studies focused on shifts in waterfowl abundance 
at the population level, and were generally restricted to 
few chosen locations at particular latitudes. There is still 
much less information on what drives movement deci-
sions at the individual level, and across the latitudinal 
range between breeding and wintering grounds. How-
ever location records from satellite-tracked birds are 
increasingly used to address this information gap [13, 14, 
16, 18, 33].

The mallard (Anas platyrhynchos) is the most numer-
ous species among ducks migrating through the Missis-
sippi Flyway and considered a priority in the development 
of wetland management plans and hunting regulations 
[34, 35], with an average of 2.8 million individuals each 
year wintering in the Mississippi Alluvial Valley alone 
[36]. Consequently, the timing and drivers of mallards’ 
migratory movements into and through the flyway are of 
great interest for the development of accurate population 
models for conservation planning in the region [16, 37, 
38]. In this study we investigated the autumn migration 
movements of satellite-tagged mallards within the Mis-
sissippi Flyway. Our objective was to evaluate individual-
level decisions to embark on migration movements as a 
function of environmental drivers. As the migration pro-
cess depends on bird behaviour over a sequence of direc-
tional movements, and extended stays at stopover sites 
are common for many waterfowl and especially ducks 
[2, 39], we were interested to study departure and stopo-
ver events both inside and outside the wintering range. 
We used a discrete choice modeling framework [40] to 
develop resource selection functions [41], while includ-
ing environmental covariates that could account for the 
impact of winter conditions on local habitat and for the 
short-term energetic efficiency of undertaking migra-
tion flights. Based on the findings reported in the litera-
ture, we hypothesized that mallard’s decisions to relocate 
would be principally driven by the onset of longer-term 
winter conditions (snow and falling temperatures) and 
modified by short-term conditions that may facilitate or 
impede embarking on a long-distance flight (wind, pre-
cipitation, and visibility), and that these relationships 
would be applicable across the migration range.

Methods
Location data
We used two existing sets of location records from 
satellite-tracked mallards with a combined size of 220 
individuals, of which 43 were eventually used for analy-
sis. Data set A consisted of 180 mallards of both sexes 
that were captured and tagged in several locations in 
Arkansas in February–March 2004 (23 female: 10 male), 
February 2005 (27 female: 21 male), January–February 
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and November–December 2006 (39 female: 15 male), 
and January–February 2007 [45 female]. Transmitter 
units weighed 22–35 g (1.8–2.6% of body mass at cap-
ture [mean ± S.D.: 1098 ± 132  g]) and used the CLS-
Argos (Toulouse, France) satellite system to monitor 
movement [42]. For details on tagging and transmitters 
see [14].

Data set B was gathered from 40 mallard hens, of 
which 20 were captured in the same location in Sas-
katchewan in September 2010, and 20 in February 
2011 in multiple location in Arkansas. Transmitter 
units weighed 28  g (2.4–2.7% of body mass at capture 
[mean ± S.D.: 1099 ± 71.5 g]) and used the GPS satellite 
system to monitor movement. We used a version of the 
dataset that was already censored for dead individuals 
and failed transmitters as described in [16].

We first censored the sets of records invalidated 
by death of individuals and transmitter failures. This 
entirely removed 9 individuals from set A and yielded 
a total of 211 individuals (168 females: 43 males) (for 
details see Additional file  1: Methods S1). Both data 
sets were then further processed and filtered before 
analysis. Additional file  1: Table  S1 provides a break-
down of resultant sample sizes and individual numbers 
throughout the process.

First, successive records for each individual were com-
bined to no more than a single movement per 24  h to 
prevent masking of long-range daily movements by high 
recording frequency. In such a case, a straight-line move-
ment from the start point of the first movement to the 
end point of the last movement was assumed. This pro-
cess excised 0.5% of records in data set A and 63% of 
records in data set B, because mean recording frequency 
in the latter was higher.

We then identified records that could be interpreted 
as the starting point of individual migration-scale move-
ments during the autumn migration period, based on the 
following criteria (for details see Additional file 1: Meth-
ods S2): (1) movement distance to following recorded 
location ≥ 30  km, based on the approximate empirical 
breakpoint between local and migration flights in mal-
lards [43]; (2) time period 1 September–31 December of 
each year; (3) time difference to next record ≤ 48 h; and 
(4) movement had a southward component.

We chose to pool the two processed data sets for fur-
ther analysis, since the required location accuracy for 
the investigation of the migration-scale movements of 
interest (30+  km) was present in both sets. The pooled 
data set consisted of 269 relocation records represent-
ing a total of 82 individuals (48 female and 13 males from 
set A, 21 females from set B). The identified relocation 
records were used as the basis for constructing the set of 
alternative departure dates for discrete choice analysis.

Discrete choice modeling
We conceptualized migration as a choice that individual 
animals make based on ambient environmental condi-
tions. To model the selection of departure dates by indi-
vidual mallards, we used discrete choice models [41, 44, 
45]. A choice set included a date that an animal selected 
to migrate and a matched suite of available alternative 
dates the duck did not migrate. Conceptually, animals 
assign separate utilities U to each alternative date in a 
choice set. The alternative with the highest utility has 
the greatest probability that the animal will select that 
alternative to migrate. Although the utility of any given 
alternative can be negative, the above concept remains 
unchanged: alternative departure dates with higher utili-
ties have an increased probability of departure compared 
to alternatives with lower utilities. We modeled utility 
as an additive linear combination of covariates, wherein 
U of alternative j in choice set i by animal a based on 
k = 1…K covariates can be written as:

with errors εaij following the Gumbel extreme value dis-
tribution. In generalized linear terminology, U is the lin-
ear predictor. In our discrete choice model, observed data 
values are Y = 1 for dates on which an animal migrated 
and Y = 0 for dates on which an animal did not migrate. 
In each choice set, only one alternative is selected. The 
expected relative probability that alternative j in choice 
set i will be selected by animal a is then the discrete 
choice model [40, 44]:

where 
∑7

j=1 P
(

Yaij = 1|zaij

)

= 1.0 . ba denotes individ-
ual-level coefficients that account for inter-individual 
variance in selection patterns and serve to relax the 
assumption of independence from irrelevant alternatives 
(IIA) [44]. Observed heterogeneity in this variance com-
ponent can be accommodated by including individual-
specific covariates (e.g., sex), or a common distribution 
can be employed. Given our data structure and in the 
absence of specific information, we assumed a normal 
distribution f(ba) with mean ßk and standard deviation sk 
[45].

Rather than the commonly used selection among spa-
tially distinct resources such as habitat patches or food 
sources (e.g., 48–51), we employed a time series of suc-
cessive records (dates) at the same location as the choice 
set, and modeled the utility of each date as a temporal 
alternative—that is, as the time at which a relocation 
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could be undertaken. We constructed choice sets of J 
alternatives by selecting an identified relocation record 
and the J-1 non-relocation records directly preceding it. 
The observed chosen alternative (identified relocation) 
was thus always on the last day (day J). We used J = 7 
as a set size that provided a balance between number 
of alternatives (n =  7), number of available choice sets 
containing at least this number of alternatives (n = 73), 
and number of individual mallards represented by these 
choice sets (43; 52% of total individuals) (Additional file 1: 
Table S1). Although each choice set consisted of exactly 
7 records, the period between separate records could be 
longer than one calendar day (see above), resulting in 
choice sets longer than 7 days. Among sets, 36/73 (49%) 
covered a period of 7 calendar days, 68/73 (93%) covered 
up to 14 days, and the longest period was 35 days.

The final data set thus consisted of 43 individuals (39 
female: 4 male), 73 relocation dates and 73 × 7 = 511 
total alternative dates. For analysis, data were specified 
as panel data (i.e., possible repeated choices for decision 
makers) at the individual level to account for the fact 
that ~ 50% of mallards (21/43) were represented by two or 
more choice sets (1–4 sets per individual, with a mean of 
2).

Environmental data
After censoring, location records were matched with 
daily mean environmental parameter records from the 
National Oceanic and Atmospheric Administration’s 
(NOAA) North American Regional Reanalysis (NARR) 
database [49], using a nearest-neighbor approach based 
on their position within a grid of 32 × 32 km cells. This 
resolution corresponded closely to our chosen mini-
mal range of 30  km for analyzed movements. We then 
matched each location record with the corresponding 
daily parameters of its grid cell. We selected 10 poten-
tially informative variables based on their performance in 
previous population-level studies [12, 17, 18, 25]. Seven 
of these were used to describe short-term (daily) condi-
tions at the location:

•	 Surface air temperature (temp; °C) was measured at 
2 m above ground level.

•	 Depth of snow cover (snow; m)
•	 Difference in barometric pressure (press diff; Pa) was 

calculated between successive records.
•	 Total precipitation (precip; kg/m2) represented 

water in any form (rain, snow, freezing rain, or hail) 
amassed throughout the day.

•	 Cloud cover (cloud; %) represented the combination 
of low-, mid- and high-level clouds.

•	 Headwind and tailwind speed (head / tail; m/s). 
Wind speed was provided as separate meridional and 

zonal speed components, which were combined to 
yield a directional wind vector. This vector was then 
classified relative to the mean direction of all reloca-
tions (162°), with directions within 60° to either side 
(a 120° arc) classified as “tailwind” and the rest (a 240° 
arc) classified as “headwind”, and the associated wind 
speed assigned to the respective parameter while the 
other was set to 0.

We also computed three cumulative parameters descrip-
tive of multi-day conditions:

•	 Frost days (frost days; d) were consecutive days of 
mean temperature < 0 °C, calculated for each individ-
ual based on the rounded number of sequential 24 h 
periods spent in one location while the condition 
“temperature < 0 °C” prevailed. Location was consid-
ered to change whenever a bird had moved a cumu-
lative straight distance of ≥ 30  km over any number 
of records (i.e., left a circle of radius 30  km around 
the last location). If the interval between two records 
spanned multiple calendar days with both bounding 
records at the same location, we assumed that the 
bird remained at the location for the entire period. 
Movement to a new location or temperatures > 0  °C 
reset the counter to zero.

•	 Snow days (snow days; d) were consecutive days of 
snow depth ≥ 2.54  cm [1 inch], calculated equiva-
lently to frost days.

•	 Ice cover (ice cover; yes/no) was a binary index 
recording the assumed presence of ice ≥ 1  cm thick 
on shallow water bodies. We based the calculation 
of ice growth on empirical formulae that reported 
thin ice growth of 1 cm per 3.3 freezing degree days 
(FDD Celsius) and melting of 1  cm per 1.3 thawing 
degree days (TDD Celsius) [50, 51]. This applies from 
initial ice formation, the speed of which depends on 
the heat capacity of the water body; because dab-
bling ducks typically feed in shallow water bodies, we 
assumed a conservative two days of freezing temper-
atures for initial ice formation. At a given location, 
tracking of ice thickness was thus triggered after two 
calendar days of mean temperature < 0 °C and reset to 
zero if thickness was estimated to drop below 1 cm.

Daily means were used for the computation of all 
parameters. We did not include seasonal effect, in the 
form of Julian date, as a covariate because the structure 
of our model implied that this parameter would mono-
tonically increase within each choice set (see below).

To rescale environmental covariates for analysis, all 
were centered on the mean and divided by two stand-
ard deviations [52]. Model coefficients (βK) therefore 
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represent the expected change in utility for an alternative 
departure day given an increase of two standard devia-
tions of the independent variable.

Candidate models and analysis
We used the environmental parameters as covariates to 
formulate a set of candidate models representing hypoth-
eses about mallards’ choice of relocation day (Table  1). 
We included univariate models for each of the 10 covari-
ates, and a full model containing all covariates. We also 
included separate models for testing the covariates quan-
tified on a daily scale (model daily scale) and the covari-
ates quantified over multiple days (model multi-day 
scale). Finally, we included a model with covariates that 
represented winter conditions, i.e., low temperatures and 
presence of snow and ice (model winter conditions). We 
also included a statistical null model that assumed each 
alternative had the same utility and thus that all alter-
natives had identical relative probabilities of selection. 
To assess multicollinearity, we calculated variance infla-
tion factors (VIF) for each multivariate model; the maxi-
mum value (3.1) was well below the suggested threshold 
of 10 for assuming potentially problematic collinearity 
between predictors [53]. At the individual level, sex was 
available as a covariate. We ran all models both with 
inter-individual variance in covariates as driven by the 

discrete sex covariate, or as normally distributed across 
the range of each population-level covariate.

Resource selection probability functions (RSPFs) model 
the probability that an individual will select a resource 
unit with a given set of covariates when encountered, 
whereas resource selection functions (RSFs) model a 
dependent variable that is proportional to the RSFP. 
Assuming an exponential RSF, we calculated a selection 
index for the top model [w(z) = exp(z1ß1 + ⋯ + zKßK)] 
which is proportional to the selection of a given alterna-
tive at the population level [44, 54]. To investigate the 
interactions between covariates at different magnitudes, 
we predicted both utilities and selection indices over the 
recorded range of one covariate while fixing the others 
either at their mean, or at the 25th (“low” value) or 75th 
percentile (“high” value) of their range for the top model.

We evaluated the predictive ability of models with 
leave-one-out cross-validation, fitting models to the data 
excluding a single choice set, and excluding each of the 
73 choice sets in turn [55]. We then calculated the mean 
percentage of models where the observed day (day 7) of 
migration exhibited the highest utility within the choice 
set (% correct) across all validation sets. Although the 
percent correct does not constitute a goodness-of-fit sta-
tistic [40], we provide it as a useful index of predictive 
power. We ranked models by Bayesian Information Crite-
rion (BIC) rather than by Akaike’s Information Criterion 
(AIC) in the interest of more conservative ranking [53]. 

Table 1  Candidate models for discrete choice analysis

Model Covariates Notes

Null model Choice set ID Statistical null model

Temperature Temp Air temperature at 2 m (ºc)

Snow cover Snow Depth of snow cover (m)

Pressure difference Press diff Difference in barometric pressure to next record (Pa)

Precipitation Precip Accumulated water (rain, snow, freezing rain, hail) (kg/m2)

Cloud cover Cloud Total cloud cover (%)

Tailwind speed Tail Speed of wind with heading within ± 60º of mean relocation direction 
(m/s)

Headwind speed Head Speed of wind with heading greater/smaller than ± 60º of mean reloca-
tion direction (m/s)

Frost days Frost days Number of sequential days of temperature < 0ºc experienced by mallard 
at this location

Snow days Snow days Number of sequential days of snow depth ≥ 2.54 cm (1 inch) experi-
enced by mallard at this location

Ice cover Ice cover Presence (y/n) of ice cover ≥ 1 cm on shallow water bodies

Full model Temp + snow + press diff + pre-
cip + cloud + tail + head + frost days + snow days + ice 
cover

All covariates (n = 10)

Daily scale Temp + snow + press diff + precip + cloud + tail + head Shorter-term (daily) conditions

Multi-day scale Frost days + snow days + ice cover Longer-term (multi-day) conditions calculated as cumulative parameters

Winter conditions Temp + snow + frost days + snow days + ice cover Covariates specific to winter conditions (low temperature, snow, ice)
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The population-level parameter estimates ßK and the 
standard deviations sK were counted as parameters for 
the purpose of BIC calculation. Inferences on relocation 
day choice by mallards were made from the top-ranked 
model. We fit discrete choice models with package gmnl 
[45] in R v4.0.3 [56]. We used 500 draws of simulated 
probabilities in the maximum likelihood estimation, after 
having determined that parameter estimates remained 
static above this number (at the level of three significant 
digits).

Results
Models with air temperature and snow conditions were 
highly ranked, while models conditional on wind speed, 
precipitation, presence of ice, pressure difference, and 
cloud cover received much lower support (Table  2). 
Model selection among the set of candidate models indi-
cated a single top model, winter conditions, with a rela-
tive BIC model weight of 1.0. This model also shared the 
highest predictive power (60% correct over 73-fold cross-
validation), together with the lower-ranked full model. 
The null model, representing equal selection probabil-
ity for each of the seven alternatives in a set, had the 
expected predictive power of 14% (1/7). The highest-
ranked and most predictive single-parameter model was 
temperature (ΔBIC 21.2, 52% correct). Headwind speed 
and ice cover had the lowest predictive power (7% and 4% 
respectively). We found no support for sex as a predic-
tor of inter-individual preference, as the resultant model 
set showed the same rank order but globally raised BIC 

values (data not shown) compared to the set assuming 
a normal distribution of preferences across individuals. 
All inferences are therefore based on the highest-ranked 
model (winter conditions) of the latter set.

The winter conditions model included temperature, 
depth of snow cover, number of frost days experienced, 
number of snow days experienced, and presence of ice 
cover (≥ 1  cm thick) (Table  1). Specifically, temperature 
exhibited a negative relationship with the probability of 
departure ( β̂ =  − 6.04, SE = 2.59), indicating lower tem-
peratures increased the probability of a duck choosing to 
migrate (Figs. 1A, 2A). In contrast, snow cover ( β̂ = 5.23, 
SE = 3.04) and frost days ( β̂ = 3.71, SE = 2.86) exhibited 
positive relationships with the probability of departure, 
indicating that greater snow cover and number of frost 
days increased the probability of migrating (Figs. 1B, C, 
2B, C). The presence of ice cover ≥ 1  cm thick had the 
smallest positive relationship with probability of depar-
ture ( β̂ = 1.65, SE = 1.90) (Figs.  1E, 2E). The number of 
snow days had the largest effect on probability of depar-
ture ( β̂ = 10.61, SE = 8.68) with additional snow days 
generating a greater probability of migrating, but also 
exhibited high uncertainty (Figs. 1D, 2D); this parameter 
also had the greatest VIF (2.6) in the model. Substantial 
snow (greater numbers of snow days or greater snow 
depth) dominated choice of migration date to the extent 
that temperature parameters (frost days and tempera-
ture) had minimal impact, whereas under low snow con-
ditions, migration probability depended on temperature 
conditions (Fig.  3). Inter-individual variability in prefer-
ence among mallards was pronounced for temperature 
(ŝ = 9.34, SEŝ = 3.41) and frost days (ŝ = 8.20, SEŝ = 3.13), 
lower for depth of snow cover (ŝ = 5.71, SEŝ = 5.63) and 
snow days (ŝ = 2.42, SEŝ = 5.38), and almost absent for 
ice cover (ŝ = 0.33, SEŝ = 3.03) (Additional file 1: Fig. S1). 
Residuals of the top model (median = 0.045, SD = 0.275) 
fit a Gumbel extreme values distribution poorly (Kol-
omogorov-Smirnov test, p < 0.001). However, residuals 
were small relative to utility estimates (median = 0.152, 
SD = 5.344), indicating that the assumption was not 
overly restrictive [40]. There was no discernable differ-
ence between the distribution of all relocation latitudes 
(n = 73) and the distribution of latitudes where relocation 
was predicted correctly (Fisher-Pitman permutation test, 
105 samples; n = 45, Z = 0.129, p = 0.898) or incorrectly 
(n = 28, Z =  − 0.173, p = 0.863) (Fig. 4).

Discussion
We investigated the decision of individual mallards dur-
ing autumn migration in the Mississippi Flyway to relo-
cate south, as a function of environmental covariates that 
were descriptive of foraging habitat conditions and flight 
weather. Our results indicated that relocation probability 

Table 2  Model selection table

Models are ranked by increasing BIC. K, number of parameters used for BIC 
calculation; % correct, proportion of observed relocation days (day 7) correctly 
predicted with leave-one-out cross-validation; ΔBIC, difference in BIC value to 
top model

Model K % Correct BIC ΔBIC

Winter conditions 10 60 223.3 0

Multi-day scale 6 42 242.8 19.5

Temperature 2 52 244.5 21.2

Snow days 2 18 246.6 23.3

Snow cover 2 30 248.6 25.3

Full model 20 60 251.3 28

Frost days 2 40 252.5 29.2

Tailwind speed 2 36 257.1 33.8

Daily scale 14 53 263.2 39.9

Precipitation 2 27 275.7 52.4

Ice cover 2 04 277.9 54.6

Pressure difference 2 32 279.2 55.9

Headwind speed 2 7 279.6 56.3

Cloud cover 2 19 281.1 57.8

Null model 2 14 292.7 69.4
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was primarily influenced by winter conditions charac-
terized by snow cover in the previous few days and cur-
rent snow cover depth. Mallards reacted most strongly 
to experienced snow days, with even a single snow day 
resulting in very high relative relocation probability 
(Fig.  2D). Responses to snow cover depths above 7  cm 
were similarly pronounced (Fig. 2B). At low snow cover 
or in absence of snow days in the recent past, tempera-
tures dropping below 5  °C were an increasing incentive 
to relocate; whereas under snow conditions, relocation 
became likely at any temperature (Fig.  3A, B). Simi-
lar dynamics were predicted for experienced frost days 
(Fig.  3C, D). Among evaluated variables, the effect of 
temperature had the smallest uncertainty.

These results indicate a ranking of responses that has 
been suggested by several recent studies [12, 18, 57, 58]. 
Decreasing temperatures and the onset of frost may act 
as an early warning sign that elicits a response before 
foraging is actively impacted. Schummer et  al. [12] 
developed a weather severity index composed of param-
eters similar to those in our top model (location-based 

cumulative snow and frost days, and current temperature 
and snow cover), and found that dabbling duck abun-
dance at Missouri sites was principally correlated to the 
daily temperature component. Similarly, Xu and Si [18] 
found that greater white-fronted and swan geese timed 
their southwards departure from Northern Asian stopo-
ver sites by the onset of freezing temperatures, gener-
ally leaving before snow conditions became a factor. This 
more pronounced reaction to frost than to snow condi-
tions was not present in our model results; however, food 
availability for mallards is directly diminished by snow 
cover on the ground in certain regions [59], and when 
encountered may force birds to relocate rapidly to avoid 
the loss of foraging opportunities [2].

Models yielded relatively large error estimates for the 
snow parameters (snow days and snow cover depth) due 
to the strongly right-skewed distribution of these data, 
with 99.5% of records showing values of respectively 
0–3 days and 0–10 cm, and only a few records of up to 
7 days and 15 cm (data not shown). While this resulted 
in substantial uncertainty in prediction at higher values 

Fig. 1  Mean predicted utility ± 1 standard error (shaded area) for a resource unit as a function of covariate value over the observed range, based 
on the top model. All other covariates were held at mean values to calculate predictions. A Air temperature; B depth of snow cover; C accumulated 
days of frost; D accumulated days of snow ≥ 2.54 cm deep; E presence of ice cover ≥ 1 cm thick. Note different y-axis ranges. Negative slope values 
represent a decrease in the probability that the associated alternative is selected as the date for relocation
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Fig. 2  Mean predicted selection index ± 1 standard error (shaded area) as a function of covariate values in the top model (winter conditions). All 
other covariates were held at mean values to calculate predictions. The selection index is proportional to an alternative’s selection probability given 
this set of covariate values. A air temperature; B depth of snow cover; C accumulated days of frost; D accumulated days of snow ≥ 2.54 cm deep; E 
presence of ice cover ≥ 1 cm thick. Note different y-axis ranges

Fig. 3  Mean predicted utility ± 1 standard error (shaded area) for a resource unit in the top model (winter conditions) as a function of temperature 
or frost days. A utility as a function of temperature, given high (green) or low (blue) values of snow days; B utility as a function of temperature, given 
high (green) or low (blue) values of snow cover depth. C, D equivalent for utility as a function of frost days. All other covariates were held at mean 
values to calculate predictions
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(Figs. 1, 2), it has little impact on interpretation due to the 
rarity of these instances and mallards’ strong response to 
lower-value snow metrics (Fig. 2B, D). Allowing for this 
caveat, our results are consistent with a strong and rapid 
reaction to snow cover, and a more graduated response to 
temperature cues. Mallards may have a more pronounced 
tendency than other dabbling ducks to remain on loca-
tion in the face of worsening conditions, and sometimes 
leave only in the event of snowfall [12, 60]. In addition 
to having a comparatively high body weight, mallards can 
also take advantage of non-wetland food sources like har-
vested fields [6] and are thus less dependent on ice-free 
shallow water than wetland-obligate dabbling ducks. This 
may partly explain why presence of ice cover, included in 
the top model as a putative “winter conditions” param-
eter, was found to have no notable effect on selection of 
relocation date (Figs. 1E, 2E); another likely cause was the 
low accuracy of the heuristics we used to calculate this 
metric, and the absence of a method to estimate frac-
tional ice coverage of water bodies.

We found greater inter-individual variance in selec-
tion for temperature-related metrics (temperature, 
ŝ = 9.34; frost days, ŝ = 8.20) than for snow-related met-
rics (snow cover, ŝ = 5.71; snow days, ŝ = 2.42), possibly 
reflecting differences in condition ranges tolerated by 
individual mallards during the evaluated time periods 
close to relocation (Additional file 1: Fig. S1). Thus indi-
vidual mallards might tolerate a variety of above- or 

below-freezing temperatures and none to several frost 
days before relocating, but rarely more than two snow 
days or a light snow cover. Differences in body mass or 
condition may play a role in this regard. Previous stud-
ies have shown that female mallards tended to remain 
at stopover sites longer [14] and migrated farther and 
arrived later than males [61], indicating a possibly 
greater tolerance for worsening weather conditions. 
However, we found no correlation between individual 
preferences and sex in our model, presumably because 
the data set was heavily skewed towards females (39:4), 
making it unlikely that sex differences could be reliably 
distinguished.

We hypothesized that mallards’ functional responses 
to environmental parameters would apply at any point 
during migration and in the wintering range, and there-
fore included relocation instances from across the 
whole modeled migration period (September-Decem-
ber) in our model. We found no discernable latitudinal 
differences between the set of all relocations and those 
of correctly or incorrectly predicted relocations (Fig. 4). 
This suggests that the identified responses to environ-
mental conditions hold equally for departure from 
the summer range, stopover sites, and early reloca-
tions within the winter range. Similarly, van den Elsen 
[58] and Schummer et  al. [10] found that the Schum-
mer et  al. [12] weather severity index was applicable 
throughout the latitudinal range of several duck species 

Fig. 4  Location of start points of observed mallard relocations (n = 73), indicating whether the day of relocation (day 7) was correctly predicted 
from the relevant choice set
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including mallards, although prediction could be fur-
ther improved by adding a latitude parameter to the 
model [58].

Across the set of candidate models, the temperature 
and snow covariates, which could be considered descrip-
tive of habitat availability, performed much better than 
the flight weather covariates that would be expected to 
influence short-term departure decisions (Table  2). In 
contrast, Xu and Si [18], who included snow and frost 
days and vegetation indices together with wind and pre-
cipitation in their goose migration model, concluded that 
tailwind conditions played a substantial role in predicting 
departure from stopover sites. O’Neal et al. [17] examined 
the influence of numerous flight weather parameters on 
the departure probability of a diverse group of dabbling 
ducks from an Illinois site, and found that the dominant 
predictors consisted of tailwind, absence of precipitation, 
and low cloud cover; however, the only multi-day or hab-
itat-related parameter tested was a vegetation index. The 
departure-promoting effects of tailwinds in particular are 
well established for several goose species [29, 30, 62, 63], 
if less so for ducks. It is likely that in dabbling ducks, as 
in other bird species, large-scale environmental cues like 
habitat conditions drive willingness to depart at a daily 
or larger scale, while flight weather influences timing 
at a daily or smaller scale [2, 25, 64]. Our data were not 
well suited to model this distinction because the dynamic 
positioning of mallard departure locations (rather than 
recording at fixed sites) required the use of environ-
mental data at a relatively coarse resolution (32 × 32 km, 
daily averages), which likely affected flight weather data 
more than multi-day habitat-related metrics and favored 
the impact of the latter. It is notable that while the can-
didate model bundling the short-term parameters (daily 
scale) was ranked well below the multi-day parameter 
models, it still achieved 53% predictive power (Table 1). 
We did not model interactions between the two classes 
of parameters because of our relatively low sample size 
(73 choice sets); investigating these relationships using a 
larger individual-based data set might be of considerable 
interest.

A benefit of data derived from individual tracked birds 
is the availability of cumulative parameters in each indi-
vidual’s frame of reference rather than that of a visited 
location, which may be more relevant to the decision-
making process. We thus calculated sequential snow 
and frost days as experienced by each mallard from the 
time of arriving at a location, in contrast to the location-
continuous values used by Schummer et al. (2010, 2017) 
[10, 12]; however, differences between these two types of 
metrics were minimal in our choice sets (present in 3/73 
sets; not shown) because the requirement for mallards to 
remain on location for multiple days prior to departure 

selected against locations that were already under winter 
conditions on arrival.

Snow as a principal migration driver is likely to be 
affected by warming global temperatures in the com-
ing decades. In the Midwest region of North America, 
regional annual projections for the mid-twenty-first cen-
tury average an increase of 2.3–2.9  °C [65], with winter 
temperatures from December to March increasing by 
1.1–3.9 °C [66]; various regional models project reduced 
snowfall that may lower the number of days with snow 
cover of at least 1  cm by between 5 and 60  days annu-
ally [67]. The majority of investigations into the effects 
of climate change on duck migration have focused on 
spring migration, where warm conditions earlier in the 
year may allow better body condition and earlier arrival 
in the breeding range, but may also lead to a phenologi-
cal mismatch between breeding stages and peak food 
availability [9]. However, the weather during autumn 
migration and the mid-winter period is also likely to be 
affected by climatic changes. Recent northwards shifts in 
the wintering distribution of diverse waterfowl and wader 
species have been documented (e.g. [68, 69]). Schum-
mer et al. [10] found that the extent of areas in the Mis-
sissippi and Atlantic flyways that had winter conditions 
severe enough to cause mallards to relocate in the period 
December-February had declined from 1979 to 2013 [10]. 
Sauter et  al. [60] reported that mid-winter movement 
distances of European mallards decreased between 1952 
and 2004, likely due to less frequent occurrence of harsh 
winter conditions [60]. In North America, some studies 
have reported evidence that the winter distributions of 
North American mallards are shifting northwards [11, 
70] (although these findings are based on less accurate 
convenience-sampled data; see also [71]). If birds remain 
longer at more northern latitudes in autumn and winter, 
this may increase foraging pressure in northerly areas 
and require adaptation in regional conservation planning 
to meet changing nutritional needs at the landscape level 
[72].

A substantial percentage of relocation choices 
remained unexplained by modeled parameters. The 
chosen temporal and spatial scales may have masked 
smaller-scale variations in weather and environmental 
conditions. Although our study was the first to exam-
ine and conceptualize waterfowl migration as an indi-
vidual choice, the dataset and model structure limited 
our ability to include choice set-level parameters such 
as measures of wetland flooding status or vegetation 
cover, which may strongly affect habitat suitability for 
foraging [43]. The presence or absence of conspecif-
ics may have influenced departure decisions through 
competition and food depletion, or by participation in 
flock movements. Disturbance by hunters also has been 
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shown to factor into the timing of long-range reloca-
tion movements [73, 74]. Finally, we had no informa-
tion of the body condition of individuals, which may 
have influenced length of stay at productive foraging 
sites, willingness to embark in energetically costly flight 
weather, and flight duration. The collection of meta-
bolic data from free-living birds, while still complicated 
and costly, is becoming more feasible with the ongo-
ing miniaturization of implantable bio-loggers [75]. 
Inferences about body condition and energy budget 
derived from such data can provide valuable addi-
tional information for the interpretation of movement 
records from tracked animals [76, 77]. Future research 
into North American waterfowl migration focusing 
on combining high-resolution location records with 
disturbance and metabolic data would be helpful for 
developing a comprehensive picture of the drivers of 
migratory decisions.

Conclusions
Our results show that among the tested environmental 
parameters influencing departure decision in autumn-
migrating mallards, the dominant driver was the onset 
of snow conditions, and secondarily the onset of tem-
peratures lowering close to or below the freezing point. 
Mallards are likely to relocate southwards quickly when 
faced with foraging impeded by snow, and use declining 
temperatures as a more graduated early cue for depar-
ture. The effects of short-term weather conditions pre-
sumed to be related with flight efficiency could not be 
distinguished in the model. Our findings provide fur-
ther insights into the response of mallards to weather 
and climate factors during the migration period, and will 
be useful in the prediction and simulation of dabbling 
duck migratory movements under changing climatic 
conditions.
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