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Abstract

Background: Our understanding of movement patterns and behaviours of wildlife has advanced greatly through
the use of improved tracking technologies, including application of accelerometry (ACC) across a wide range of
taxa. However, most ACC studies either use intermittent sampling that hinders continuity or continuous data
logging relying on tracker retrieval for data downloading which is not applicable for long term study. To allow
long-term, fine-scale behavioural research, we evaluated a range of machine learning methods for their suitability
for continuous on-board classification of ACC data into behaviour categories prior to data transmission.

Methods: We tested six supervised machine learning methods, including linear discriminant analysis (LDA), decision
tree (DT), support vector machine (SVM), artificial neural network (ANN), random forest (RF) and extreme gradient
boosting (XGBoost) to classify behaviour using ACC data from three bird species (white stork Ciconia ciconia, griffon
vulture Gyps fulvus and common crane Grus grus) and two mammals (dairy cow Bos taurus and roe deer Capreolus
capreolus).

Results: Using a range of quality criteria, SVM, ANN, RF and XGBoost performed well in determining behaviour
from ACC data and their good performance appeared little affected when greatly reducing the number of input
features for model training. On-board runtime and storage-requirement tests showed that notably ANN, RF and
XGBoost would make suitable on-board classifiers.

Conclusions: Our identification of using feature reduction in combination with ANN, RF and XGBoost as suitable
methods for on-board behavioural classification of continuous ACC data has considerable potential to benefit
movement ecology and behavioural research, wildlife conservation and livestock husbandry.
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Background
Biologging not only advances research in movement
ecology, behavioural ecology and applied ecology, but
also continues to contribute increasingly to wildlife con-
servation and livestock management [1]. In addition to
the position of tracked animals in time, advanced biolog-
ging technologies also provide opportunities for add-
itional environmental data collection such as ambient
temperature, light intensity and water depth, and data
related to logger carriers such as heart rate, energy ex-
penditure and behaviour [2–4]. Moreover, the shrinking
size and increasing energy efficiency of current trackers
progressively enables studies across a wide range of ani-
mal taxa in a great variety of environments [5, 6].
Among add-on sensors in advanced biologging, accel-

erometers have gained popularity in the recent three de-
cades [7]. An accelerometer is an electromechanical
device measuring acceleration, most commonly along all
three dimensions (i.e. triaxial accelerometry). When at-
tached on animals, accelerometry (hereafter ACC) re-
flects two aspects of movement: static acceleration and
dynamic acceleration. Static acceleration is due to gravi-
tational force acting on the accelerometer, which could
be used to derive animal body posture [8]. Dynamic ac-
celeration is due to changes of velocity caused by animal
movement [8]. Based on these characteristics, at least
four types of studies have been routinely conducted
using ACC. Firstly, under the assumption that metabolic
rate is positively correlated with the dynamic movement
component, ACC data have been used to calculate over-
all dynamic body acceleration (ODBA) or vector dy-
namic body acceleration (VeDBA) as a proxy of an
animal’s energy expenditure (e.g. [9, 10]). Secondly, for
the interval between position fixes, which could in par-
ticular be of notable length in diving animals (e.g. [11]),
body pitch (rotation around the lateral axis) and roll (ro-
tation around the longitudinal axis) [12] derived from
ACC data have been used in reconstructing the move-
ment path of animals in between position fixes (e.g.
[13]). Thirdly, an animal’s acceleration changes with pat-
tern and frequency of locomotion, and also the environ-
ment in which it moves [14], thus allowing for the
estimation of e.g. fin, wingbeat or stride frequency. ACC
data have thus also allowed for biomechanics studies
(e.g. [15, 16]). Fourthly, because animal behaviours con-
sist of different postures and dynamic movement traits,
ACC data has been used to classify animal behaviours
(e.g. [7, 17–19]).
Quantifying animal behaviours by ACC requires elab-

orate processing to classify behaviour from raw sensor
data [20]. In general, there are three approaches for be-
haviour classification from ACC data. The first of these
is direct classification based on expert opinion. This ap-
proach may be suitable for behaviours that are

characterized by easily detectable ACC signatures (e.g.
[21]). However, lacking “ground-truthing” observations
makes this arbitrary approach impossible to validate (ex-
cluding situations where validation is not required, such
as discriminating active versus inactive behaviour). In
addition, an expert’s judgements make this approach dif-
ficult to generalize across studies involving different re-
searchers. Secondly, an approach using unsupervised
machine learning or clustering can be used, which
groups ACC data based on commonalities in the ACC
signal, where the grouping need not necessarily be asso-
ciated with different behaviours. An example of such
technique is k-means clustering (e.g. [17, 22]). Finally,
supervised machine learning classification approaches
based on “ground-truthing” observations can be used, in
which behaviours are assigned to ACC data for model
training. Using this approach researchers label captive or
free-ranging animals’ ACC data with a specified set of
behaviour categories through direct observation or
video-taping (e.g. [23, 24]). ACC data are commonly re-
corded in fixed (but possibly user-adjustable) length seg-
ments called “bouts”, sometimes also called “bursts” or
“epochs”. Bout length is selected by the user according
to the study goals, and is often set to contain only a sin-
gle episode of the behaviour(s) of interest. Then, for
each bout, the ACC data are used to calculate a range of
mathematical features such as mean, standard deviation,
correlation coefficient between the ACC axes, etc. [7]. In
the next step, the supervised machine learning method
is trained to use these feature data in automatically clas-
sifying the ACC data into appropriate behaviour categor-
ies. Commonly applied supervised classification methods
for animal behaviour classification include linear dis-
criminant analysis, support vector machine, decision
tree, random forest, and artificial neural network [19].
Generally, the trained classifiers are validated with a val-
idation set of labelled ACC data.
In current tracking research of free-ranging animals,

data recorded by trackers is either stored on board (e.g.
[22]) or transmitted through mobile networks (e.g. [25])
or satellites (e.g. [26]). The amount of data that can be
logged and transmitted from a tracker is often con-
strained by battery capacity, or solar radiation if solar-
powered trackers are being used. Compared with data
logging, the transmission process in trackers particularly
consumes much battery power [27]. Thus, data volume
through transmission and transmission rate are often
limited by power supply. In addition, the amount of data
that can be transmitted via satellites is limited [28].
Given these two limitations, many studies have applied
intermittent sampling of ACC data rather than continu-
ous recording (e.g. [29]). Obviously, intermittent sam-
pling comes at the expense of information. On-board
storage of continuously sampled ACC data is an
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alternative, but increases power consumption and re-
quires large device storage, which might increase the de-
vice’s weight and size. Moreover, it often requires
recapture or tag retrieval (e.g. by capturing the animal or
tag automatic drop-off) for data downloading. Thus, stud-
ies using continuous ACC data sampling either recaptured
their study objects multiple times to download data (e.g.
[30]) or only tracked animals for a short period of time
(e.g. [31]). Multiple recaptures may not only bear a time
and financial cost but also influence the behaviour of ani-
mals, while studies tracking animals for a short period of
time may have less ecological significance.
On-board data processing may provide a solution to

data-storage and data-transmission limitations and may
extend the possibilities to continuously record the be-
haviour of tracked animals for prolonged durations of
time. One way of on-board data processing is to trans-
form raw ACC data into features for transmission or
downloading (e.g. [32]). Alternatively, the complete clas-
sification procedure can be implemented in the tag that
only provides a data stream of classified behaviours in-
stead of the raw data. There are only a few on-board be-
haviour classification studies currently, and this is
mainly due to the large amount of data involved and the
complexity of the processing procedures [28]. Roux et al.
[33] used custom-made loggers for on-board behaviour
classification of Dohne Merino sheep, with five behaviour
categories, and rhinoceros (Ceratotherium simum and
Diceros bicornis), with three behaviour categories. They
used linear discriminant analysis on an initial ACC test
data set, after which the logger was programmed to use
the resulting algorithm for subsequent recording of be-
haviours via ACC. In another on-board data processing
study in juvenile southern elephant seals (Mirounga leo-
nine), Cox et al. [28] identified foraging behaviour by
user-defined thresholds based on expert opinion and val-
idated their method by comparison of on-board calculated
foraging behaviours with foraging behaviours identified from
archived raw ACC data. Korpela et al. [34] used on-board
behaviour classification through ACC data to detect foraging
behaviour of seabirds, triggering video-loggers to record the
foraging behaviour. Moreover, to our knowledge, no pub-
lished behaviour classification has compared the practicabil-
ity of the aforementioned more sophisticated classification
methods (i.e. support vector machine, decision tree, random
forest, and artificial neural network) on-board, probably due
to limitations of tracker storage and battery capacity. For
these behaviour classification methods to be successful, fea-
ture calculation and selection are crucial elements [35].
Computing and using large numbers of (complex) features
in on-board behaviour classification would require abundant
storage and be energy consuming. Thus, developing ways to
reduce computation while maintaining high behaviour classi-
fication accuracy also requires consideration.

In this study, we tested six supervised machine learn-
ing methods. Five methods among the six were applied
in other studies, including linear discriminant analysis
(LDA) (e.g. [33]), decision tree (DT) (e.g. [24]), support
vector machine (SVM) (e.g. [36]), random forest (RF)
(e.g. [37]), and artificial neural network (ANN) (e.g.
[19]). We added extreme gradient boosting (XGBoost)
to our study given its good performance in Kaggle ma-
chine learning competitions [38]. XGBoost is a tree-
based model which carries out the gradient boosting tree
algorithm with high speed [38]. In order to further re-
duce on-board calculation and thus power demand, we
also investigated these models’ performance using
greatly reduced feature sets, aiming at minimizing stor-
age requirements and runtime while maintaining high
classification accuracy. We applied our proposed animal
behaviour classification from ACC data to different ani-
mal taxa and different tracker-attachment methods (i.e.
ear tags, backpacks, neck collars, and leg bands) to
broaden the scope of our analysis. The combination of
continuous behaviour monitoring and GPS locations of
tracked animals will provide researchers with a powerful
tool to conduct research within the movement ecology
realm [39] and we therefore hope our study will facilitate
the development of next generation “smart” trackers that
have these features.

Methods
Data sources
Five different sets of ACC data were used including un-
published data from two Chinese Holstein dairy cows
(Bos taurus) and two common cranes (Grus grus), and
published data collected on eight roe deer (Capreolus
capreolus) [40], 32 griffon vultures (Gyps fulvus) [19]
and 23 white storks (Ciconia ciconia) (data available in
AcceleRater website: http://accapp.move-ecol-minerva.
huji.ac.il/, see [41]). Ear-mounted loggers in ruminants
are particularly suitable to pick up foraging and ruminat-
ing, where sudden change of daily rumination time is a
potential indicator of oestrus or illness [42]. The two lac-
tating dairy cows were held in pens measuring 15m × 8
m and were fitted with accelerometer data loggers (18 g
test model from Druid Technology Co., Ltd., China) in
Chengdu, China, between 2017/12/29 and 2018/01/26.
The ACC data logger was programmed to record at 25
Hz with 12-bit resolution in a ± 4 g (i.e. 1 g = 9.8 m/ 2)
range. The loggers were glued on the already present
Radio Frequency Identification Device (RFID) ear tags of
each dairy cow. The triaxial ACC data was continuously
recorded and transmitted through Bluetooth 4.0 to an
Android cell phone. Behavioural data was collected sim-
ultaneously through direct visual observation by Hui Yu
using a specially designed cell phone application “Utopia
Druid”. In total, 12.4 h of labelled ACC data across both
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dairy cows were collected. Cow ACC data was labelled
using three behavioural categories: eating (i.e. ingesting
food), ruminating (i.e. rechewing the cud to further help
break down the earlier ingested plant matter), and other
(i.e. behaviours not labelled as eating and ruminating).
Two captive common cranes, one adult in a pen and

one juvenile in a large semi-natural area with trees and a
bog, were fitted with GPS-ACC transmitters (Orni-
Track-L40, Ornitela, Vilnius, Lithuania) on a leg band.
The ACC data was recorded for 3.8 s at 10.54 HZ in 3-
axes, every 30 s. The birds were videorecorded allowing
manual matching with the recorded ACC data. In total
1830 of these 3.8 s long ACC observation bursts (i.e. ~
15 h of observation) were thus labeled using four behav-
ioural categories: feeding (i.e. ingesting food or collecting
food without movement), foraging (i.e. moving with
head down while looking for food and occasional swal-
lowing of food), moving (i.e. walking or running) and
resting (i.e. standing or preening).
Eight roe deer were tracked with GPS-ACC collars (e-

obs GmbH, Munich, Germany). The ACC data was re-
corded for 9.1 s at 10.54 Hz at either 1 min or 15 s inter-
vals. In total 6158 ACC observation bursts were labelled
totalling ~ 30 h of field observation. Thirty-two griffon
vultures were tracked with GPS-ACC backpacks (e-obs
GmbH). ACC data was recorded for either 9.1, 16.2,
20.4, or 24.6 s at 3.3 Hz at 10 min intervals. In total 488
ACC observation bursts were labelled totalling ~ 80 h of
field observation. Twenty-three white storks were
tracked with GPS-ACC backpacks (e-obs GmbH). The
ACC data was recorded for 3.8 s at 10.54 Hz at 5 min in-
tervals. In total 1746 ACC observation bursts were la-
belled during ~ 145 h of field observation.
For the published studies we combined a number of be-

haviour categories for a variety of reasons. For roe deer
[40] we combined “galloping” and “trotting” into “run-
ning” to create sufficient samples for cross validation. For
the same study we also combined “lying” and “standing”
behaviours into “static” since the ACC tracking neck col-
lars used in their study did not allow for discrimination
between these two static postures. The roe deer dataset
thus comprised five behaviours including browsing, run-
ning, static, walking and other (i.e. shaking, scratching
with antler, scratching with hoof, grooming). For griffon
vulture [19] we dropped the “lying down” behaviour be-
cause its sample size was too small for cross validation
and the behaviour was also not suitable to be combined
with any other behaviour classes. The griffon vulture data-
set thus ultimately had five behaviours: active behaviour
(preening, running and other active behaviours on the
ground), active flight (flapping), passive flight (soaring-
gliding), eating and standing. For white stork [41] we kept
all original five behaviour categories, which included: ac-
tive flight, passive flight, sitting, standing and walking.

Segmentation and feature calculation
Each of the five ACC datasets was divided into bouts
where the bout length was chosen such as to have a
maximum of ACC information while still reflecting only
one specific behaviour type. Any bouts reflecting more
than one behaviour were pruned from the datasets. For
the dairy cow dataset, the bout length was set to 1 min
(i.e. 1500 ACC records, where 741 out of 745 contained
one behaviour type only and were retained for training
and validation). This relatively long bout duration was
chosen because dairy cows typically show one type of
behaviour for prolonged periods of time and do not
change behaviour frequently [36]. Bout lengths of com-
mon crane, griffon vulture, roe deer and white storks
were considerably shorter. For common crane, the ori-
ginal ACC burst lengths of 3.8 s were used as bouts (i.e.
40 ACC records, where 1385 out of 1830 bouts
retained). Also, for white stork the burst length of 3.8 s
was used as a bout (i.e. 40 ACC records, all 1746 bouts
retained). In the griffon vulture study, bout lengths vary-
ing between 9.1 and 24.8 s were originally used [19],
which we altered to a standard 9.1 s (30 ACC records,
where all thus resulting 815 bouts were retained). For
roe deer (96 ACC records), the original bouts contained
up to five behaviours. We therefore halved the bout
length to 48 ACC records (i.e. 4.6 s) and retained bouts
with only one specific behaviour (10,576 out of the
resulting 12,316 bouts were retained).
For full feature set calculation, we used a total of 78

different features (also called summary statistics; Table 1)
being calculated for each bout. However, among others
due to correlation between features (see Machine-learn-
ing algorithms, below), the number of features could po-
tentially be greatly reduced without marked reduction in
explanatory power. We thus also used a greatly simpli-
fied feature set, consisting out of four or five features de-
pending on tracker placement. In white stork and griffon
vulture (backpack trackers in line with the thoracic
spine), roe deer (neck collars in line with the cervical
spine) and common cranes (leg mounted trackers in line
with the tibia), the surge (motion along the longitudinal
axis) and heave (motion along the vertical axis) axes
were considered the two main axes related with body
movement, of which we took both the mean and stand-
ard deviation of each in addition to ODBA (i.e. five fea-
tures in total). Of these five features, the means of the
surge and heave axes have earlier been shown to capture
body posture information [35]. We consequently used
their standard deviations to capture dynamic movement.
We also included ODBA in all simplified feature sets as
it captures dynamic movement strength and has been
successfully used as an index of energy expenditure [9].
For dairy cow (ear tags) we used only four features con-
sisting of the mean and standard deviation of the heave
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axes, ODBA and the main frequency component of the
heave axis. The latter was included aiming at recording
jaw movements. Despite its successful use in other studies
(e.g. [17]), we abstained from using frequency information
for any of the others species for two reasons: firstly, sam-
pling frequency may not always be adequate to log useful
frequency information [19] and secondly, frequency infor-
mation requires computationally demanding Fourier
transformation, whereas we were aiming to reduce com-
putational demands as much as possible.

Machine-learning algorithms
All analyses were conducted in R [43]. LDA typically
suffers from correlation of features [44]. To account for
this, we deleted highly correlated features from the set
of 78 features by setting the “cut off” parameter at 0.7 in
the “findCorrelation” function in R package “caret”. We
also applied DT (R package “rpart”), SVM with both a

linear and a radial kernel (R package “e1071”), RF (R
package “randomForest”), ANN (R package “nnet”), and
XGBoost (R package “xgboost”). In order to achieve
highest accuracies, we tuned parameter “cp” for DT (by
function “train” in “caret” package), “gamma” and “cost”
for SVM (by function “tune.svm” in “e1071” package),
“mtry” and “ntree” for RF (“train” in “caret”), and “size”
and “decay” for ANN (“tune.nnet” in “e1071”) (all pa-
rameters listed in Table S1). Performance of XGBoost
showed little or no improvement by parameter tuning in
all five datasets and its default settings (with “nrounds =
10”) were therefore retained. SVM with linear kernel
proved to be inferior to SVM with radial kernel and only
the latter was therefore retained.

Training and validation of machine-learning algorithms
We conducted stratified 10-fold cross-validations for
which each of the five ACC datasets was semi-randomly

Table 1 Description of 78 features used in the behavioural classifications of triaxial accelerometer data

Feature Explanation

Mean Mean of measurement along each axis

Variance variance of measurement along each axis

Standard deviation Standard deviation of measurement along each axis

Coefficient of variance Coefficient of variance of measurement along each axis

Skewness Skewness of measurement along each axis

Kurtosis Kurtosis of measurement along each axis

Maximum Maximum value of measurement along each axis

Minimum Minimum value of measurement along each axis

Range Range of measurement along each axis

Euclidean norm Euclidean norm of measurement along each axis

Covariance Covariance of measurements between two axes

Correlation Pearson correlation of measurements between two axes

Mean difference Mean difference of measurements between two axes

Standard deviation of difference Standard deviation of measurements between two axes

Variance of static body acceleration variance of static body acceleration along each axis

Variance of dynamic body acceleration variance of dynamic body acceleration along each axis

Mean dynamic body acceleration Overall dynamic body acceleration along each axis

Maximum dynamic body acceleration Maximum value of dynamic body acceleration along each axis

Overall Dynamic Body Acceleration Overall Dynamic Body Acceleration

Pitch Pitch angle of the device

Roll Roll angle of the device

Mean difference of continuous points Mean difference between two continuous points along each axis

Variance of difference of continuous points variance of difference between two continous points along each axis

Main frequency Frequency at the main frequency along each axis

Amplitude of main frequency Maximum amplitude of fft along each axis

25% quartile 25% quartile of measurement along each axis

50% quartile 50% quartile of measurement along each axis

75% quartile 75% quartile of measurement along each axis
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partitioned into ten subsets in which the various behav-
iour categories were proportionally equally represented
as in the full dataset. For each of the classification
models we conducted a training and validation proced-
ure consisting of ten runs, where in each run another
subsample was selected for validation and the remaining
nine subsamples were used for training of the model.
After each of the ten runs, we calculated a set of model
evaluation metrics. In each iteration of the 10-fold cross-
validations, the validation data was not used in the
model training and acted as a test dataset exclusively.
After all ten runs, the means and 95% confidence inter-
vals of the evaluation metrics were calculated. For each
behaviour category, we evaluated the prediction accuracy
as an F1 score:

F1 ¼ 2�Recall�Precision
Recall þ Precision

ð1Þ

where Recall ¼ TP
TPþFN , Precision ¼ TP

TPþFP, TP is true posi-
tive, TN is true negative, FP is false positive and FN is
false negative (see [41]).
Next, for each dataset, an overall accuracy score was

calculated across all behaviours dividing the number of
ACC data bouts where the behaviour was correctly clas-
sified by the total number of ACC data bouts (i.e. sum
of correct and incorrect classifications):

Overall accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

ð2Þ

We further tested model performance using the sim-
plified feature sets. We tuned parameters of DT, SVM
and ANN. We set “ntree = 20” for RF and “nrounds = 5”
for XGBoost to reduce model size. We conducted strati-
fied 10-fold cross-validations for five datasets by the six
models. We evaluated the model performances with F1
score and overall accuracy.

Runtime of feature calculations
To evaluate the runtime of the different feature calcula-
tions, we programmed all functions for feature calcula-
tion on-board of a tracker with nRF52840 SoC (system
on a chip), which has a 64MHz microprocessor, 1MB
Flash memory and 256 KB RAM memory. The pseudo-
codes for these feature calculations are provided in
Table S2. Since feature calculations for different datasets
would follow the same procedures, we only used the
white stork dataset as the demo dataset. The raw ACC
data of the first bout of this demo dataset was pre-
loaded together with the code for feature calculations
on-board the tracker. Because all bouts in the dataset
have the same length, the runtimes for the various fea-
tures of this first bout were taken to be representative.

Runtime and storage requirements of machine-learning
classifiers
To evaluate the runtime of the different machine learn-
ing classifiers (i.e. the outcomes of the machine learning
algorithms allowing behavioural prediction from ACC
data), we programmed the classifier functions on-board
the nRF52840 SoC described above. The classifier data
included “SV”, “coefs”, “x.scale”, “rho” and “nSV” for
SVM, “nconn”, “conn” and “wts” for ANN, trees for RF
(using “getTree” in “randomForest” package), and trees
for XGBoost (“xgb.dump” in “xgboost”). We tested clas-
sifiers with full and simplified feature sets. Only for the
full-feature set RF model we set “ntree” to 200 instead of
800 since there was not enough on-board storage for
800 trees. Parameters for SVM, ANN and XGBoost and
all other parameters except “ntree” for RF, were the
same as listed in Table S1. The pseudocodes for these
classifiers are provided in the supplementary material as
Supplementary Algorithms 1, 2, 3 and 4. Aside from the
classifiers, we also loaded the already calculated simpli-
fied feature set for the 1746 bouts in the white stork
dataset. Because runtime may vary across bouts when
using RF and XGBoost, we calculated the mean runtime
across all 1746 bouts for each of the classifiers. The on-
board storage requirements of the classifiers were also
recorded.

Results
Using the full feature set, SVM, RF and XGBoost had in-
distinguishable performance (i.e. overlapping 95% confi-
dence intervals) and always ranked as the top three
models by overall accuracy across all five datasets (Fig. 1).
DT and ANN performed better than LDA but worse
than the top three models. Using the simplified feature
set, DT, SVM, RF, ANN and XGBoost had similar over-
all accuracy across datasets except for the roe deer dataset,
where DT had significantly lower overall accuracy than
SVM and RF and also showed a tendency for a lower ac-
curacy than ANN and XGBoost (Fig. 1). Five of the six
models (i.e. DT, SVM, RF, ANN and XGBoost) generally
had slightly lower accuracy when using a simplified com-
pared to a full feature set, with a ~ 3.7% max mean accur-
acy difference. Interestingly, except in the roe deer case,
using a simplified feature set ANN had higher overall ac-
curacies than when using a full feature set, amounting to a
maximum of 3.6% mean difference.
For each data set, the relatively low variation in the F1

scores of the different classification methods within a cer-
tain behaviour in comparison to the variation across the
different behaviours was striking, either with full feature
set or simplified feature set (Fig. 2). This suggests that, al-
though some algorithms were clearly better than others,
all machine learning methods had similar classification/
mis-classification issues. This was best exemplified in the
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“active behaviour” and “eating” behaviours in griffon vul-
ture with very low F1 values across all machine learning
methods (Fig. 2), which was importantly due to misclassi-
fications between the two behaviours (Fig. 3).
The on-board runtimes for the 78 features (Table 2) to-

talled 2.73ms, whereas the runtime of the simplified fea-
ture set took only 0.31ms or 11% of the time required for
the calculation of the full feature set. Runtime evaluation
of the four classifiers varied between 0.134ms in XGBoost
up to a whopping 34.628ms in SVM with simplified fea-
ture set, and between 0.312ms in XGBoost up to 43.042
ms in SVM with full feature set. While ANN had the low-
est storage requirements of 3.42 kB with simplified feature
set and 10.764 kB with full feature set, again SVM topping
the charts with 26.724 kB with simplified feature set and
185.684 kB with full feature set (Table 3).

Discussion
In this study, we compared six machine learning
methods in their suitability to predict behaviours using
ACC datasets from five different species. Generally, the
classification accuracy across all five datasets was better
in SVM, RF, ANN and XGBoost than when using LDA
and DT. Yet, using these models with full feature sets
can be computationally demanding, potentially limiting
their use for on-board behaviour classification. However,
we next showed that calculation demand of the six
models could be greatly reduced through simplified

feature selection and by reducing the number of model
parameters (i.e. “ntree” of RF and “nrounds” of
XGBoost), without substantial reduction in accuracy.
After comparing storage requirements and runtimes of
the six models and given their similar prediction accur-
acy, ANN and XGBoost therewith have great potential
to be general-duty, on-board classification methods for
continuous behaviour tracking using ACC.
In our study, SVM, RF, ANN and XGBoost generally

performed well in regard to F1 score and overall accur-
acy, either with full or with simplified feature sets. Also
other studies found that the four methods – SVM, RF,
ANN and XGBoost – generally had good performance
on classification tasks. Weegman et al. [45] used the on-
line animal behaviour classification tool [41] in a behav-
ioural study of Greenland white-fronted goose (Albifrons
flavirostris), with RF reportedly having the highest classi-
fication accuracy of various models tested. Resheff et al.
[41] found that ANN performed better than 6 other al-
gorithms examined for the vulture dataset although the
RF method performed nearly as well (overall accuracy of
84.84% vs 84.02%, respectively). Rotics et al. [46] found
that SVM performed best of all other methods tested on
an extended white stork dataset (i.e. 3815 ground-
truthed ACC bouts) from the one used in this study,
reaching an overall accuracy of 92%. Yet, Sur et al. [37]
found that k-nearest neighbour is better than RF to dis-
tinguish more detailed behaviours such as straight flights

Fig. 1 Comparison of overall accuracies of six machine learning methods across five different datasets encompassing Common crane, Dairy cow,
Griffon vulture, Roe deer and White stork, with full features sets and simplified feature sets. Mean and 95% confidence interval using 10-fold
cross-validation are presented. LDA: linear discriminant analysis, DT: decision tree, SVM: support vector machine, RF: random forest, ANN: artificial
neural network, XGBoost: extreme gradient boosting
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and banking flights in golden eagle (Aquila chrysaetos),
although the two methods both achieved high accuracies
in classifying basic behaviours including flapping flight,
soaring flight and sitting. However, their conclusions
may have been flawed since they trained and evaluated
RF with features, whereas k-nearest neighbours was
trained and evaluated with raw data.
XGBoost has never before been used in animal be-

haviour classification. However, Ladds et al. [31] com-
bined RF and Gradient Boosting Machine learning to

form a super learner for behaviour classification in
three different species of fur seals (Arctocephalus
pusillus doriferus, Arctocephalus forsteri and Arctoce-
phalus tropicalis) and Australian sea lions (Neophoca
cinerea). The super learner improved ~ 1.4% overall
accuracy over RF alone. XGBoost is a scalable tree
boosting method which proved to be better than
other tree boosting methods and RF [38]. Thus, it’s
not a surprise that XGBoost had good performance in
this study.

Fig. 2 Comparison of F1 values of six different machine learning methods (see caption to Fig. 1 for abbreviations) across different behaviours in
five datasets for Common crane, Dairy cow, Griffon vulture, Roe deer and White stork, with full feature sets and simplified feature sets. Mean and
95% confidence intervals using 10-fold cross-validation are presented
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Fig. 3 Confusion matrix plot of Griffon vulture dataset based on six machine learning models. Dots are coloured according to classification results
(incorrect and correct; total sample size depicted for each behaviour combination) with grey shades highlight misclassifications between the
behaviours “active behaviour” and “eating”
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Obviously, behaviour classification accuracy from ACC
data not only relies on the algorithms of choice, but also
the functioning and placement of the ACC device, the
definition of the behaviour set and the segmentation of
the ACC data. For instance, the classification problems
distinguishing between active behaviour and eating of
griffon vulture (Fig. 3) may have arisen from device
placement. The griffon vultures were tracked by back-
packs, ACC data being importantly influenced by trunk
movements with possibly similar triaxial signal patterns
between some activity behaviours and eating. In a study
comparing behaviour classification performance for
Canada goose (Branta canadensis) equipped with neck-
bands and backpacks, Kölzsch et al. [24] possibly unsur-
prisingly found that neckbands were better able to
distinguish behaviours involving elaborate head move-
ments whereas backpacks were better at behaviours re-
lated to body movement. Defining the behavioural set
may also be crucial. Having a “remainder” behavioural

Table 2 On-board runtimes during feature calculations. Where features have been grouped in one row the total runtime for the
calculations of all features is total listed. Under “Note” any dependencies for the calculation of the feature are listed. “Gross time”
identifies the total runtime for the listed feature and its dependencies

Feature(abbreviation) Net time(ms) Gross time(ms) Number of features calculated Note

Mean(mean) 0.021 0.021 3

Variance(var) 0.025 0.046 3 mean

Standard deviation(sd) 0.003 0.049 3 mean, var

Coefficient of variance 0.002 0.051 3 mean, sd

Skewness 0.361 0.41 3 mean, sd

Kurtosis 0.367 0.416 3 mean, sd

Maximum(max) 0.029 0.029 3

Minimum(min) 0.029 0.029 3

Range 0.001 0.059 3 max, min

Euclidean norm 0.017 0.017 3

Covariance(cov) 0.033 0.054 3 mean

Correlation 0.002 0.084 3 sd, cov

Mean difference(meandiff) 0.026 0.026 3

Standard deviation of difference 0.035 0.061 3 meandiff

Variance of static body acceleration
Variance of dynamic body acceleration
Mean dynamic body acceleration
Maximum dynamic body acceleration
Overall dynamic body acceleration

0.279 0.279 13

Pitch 0.039 0.06 1 mean

Roll 0.049 0.07 1 mean

Mean difference of continuous points(meandl) 0.178 0.178 3

Variance of difference of continuous points 0.025 0.203 3 meandl

Main frequency
Amplitude of main frequency

0.258 0.258 6

25% quantile
50% quantile
75% quantile

0.94 0.94 9

Table 3 On-board runtime and storage requirement of four
machine learning methods with full feature sets and simplified
feature set

SVM RF ANN XGBoost

Runtime(ms)

Full feature set 43.042 2.154 1.044 0.312

Simplified feature set 34.628 0.186 0.826 0.134

Storage requirement(kB)

Full feature set 185.684 164.808 10.764 24.3

Simplified feature set 26.724 23.064 3.42 13.164

SVM Support vector machine, RF Random forest, ANN Artificial neural network,
XGBoost Extreme gradient boosting
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category such as “active behaviour” in griffon vulture
may be ecologically meaningful but may be problematic
to differentiate from more specific behavioural categor-
ies. A few studies compared behaviour classification per-
formance with varying numbers of behaviour categories,
finding that fewer categories generally yield higher clas-
sification accuracy [20, 31]. Variations in ACC data be-
longing to the same behaviour type will also influence
behaviour classification accuracy. Accelerometers that
shift their position on tracked animals cause intra-
individual variation. This source of variation is practic-
ally impossible to measure in most wild animals, hence
difficult to assess. Intraspecific variation among tracked
animals (e.g. age, sex and body mass) and differences in
placement of the accelerometer may cause inter-
individual variation. These sources of variation are com-
monly measured before an animal is tagged and released,
hence their effects can, in principle, be assessed. For the
white storks in this study, the classification accuracy ap-
peared unaffected by inter-individual variation, neither
wing length (p = 0.76, R2 = 0.005), weight (p = 0.45, R2

= 0.03), nor sex (p = 0.33, R2 = 0.05) having and effect
on classification accuracy. Using ACC data collected
from multiple individuals for model training may result
in more robust classifiers [47]. Furthermore, minimising
inter and intra-individual variation in behaviour-specific
ACC signals variations as much as possible remains of
paramount importance and can sometimes be achieved.
For example, in the roe deer case, the weight and the
low center of gravity of the batteries prevented the neck
collar from turning around the neck and made sure that
the accelerometer remained in a dorsal position. Also, a
thorough description and consistency of tracker attach-
ments [48] would help minimizing inter-individual varia-
tions. Finally, when committing to on-board behaviour
classification researchers should consider validating their
models over time when there is a possibility to do so.
The use of simplified feature sets for animal behaviour

classification is not only valuable for on-board calculation,
but potentially also important for broader use of ACC in
animal behaviour studies. Generally, the performance of
models with 78 features was only marginally better than
that for models using simplified features sets, which was
also found in [49]. The explanation for this finding im-
portantly resides in the fact that the original 78 features
contain highly correlated features that contain very little
additional information [50]. Although the potential on-
board calculation models – SVM, RF, ANN and XGBoost
– can adequately cope with correlations in data sets, cor-
relation among features unnecessarily consumes computa-
tional power and data storage. In addition, some features
may have a negative effect on model performance, such as
observed for the ANN model when used on the dairy cow,
common crane, griffon vulture and white stork datasets.

Parameter tuning is crucial for the performance of ma-
chine learning models. In this study, we noticed that
SVM and ANN need careful tuning to achieve good per-
formance. Importantly, when the input features for
model training were changed from full feature sets to
simplified feature sets, the parameters of SVM and ANN
needed retuning, requiring hours of computation time.
In contrast, RF and XGBoost proved much more user
friendly, performing well using most of their default set-
tings for all datasets used, except for user defined “ntree”
in RF and “nrounds” in XGBoost (see Table S1).
We segmented ACC data using fixed time intervals

with the unavoidable risk of obtaining bouts containing
multiple behaviour types, potentially limiting machine-
learning classification accuracy. Indeed, Bom et al. [51]
showed that variable instead of fixed time segmentation
improved behaviour classification in crab plover (Dro-
mas ardeola). Combination of variable time segmenta-
tion and ANN or XGBoost might thus be an interesting
avenue to further improve behaviour classification ac-
curacy and further reduce on-board computational de-
mands. Even further improvements might be achieved
by a combination of unsupervised and supervised ma-
chine learning methods. This relates to the common de-
ficiency of supervised machine learning models to
accurately classify rare behaviours. Such rare behaviors,
however, might constitute the main focus of particular
studies, and machine-learning methods could be selected
according to their ability to identify particular behaviors
(e.g. [52]), including rare ones. Whereas some rare be-
haviours may still be observed and recorded for model
training, their sample size may be too small for adequate
model training (e.g. [53]). This problem may be aggra-
vated when behaviours of importance are only temporar-
ily (e.g. seasonally) expressed, such as mating and
incubation behaviours during the breeding season and
animals moving through snow in winter. To overcome
this problem, future studies could investigate ways to
flexibly combine supervised and unsupervised machine
learning to also enable the classification of behaviours in
the absence of data for ground truthing. Another solu-
tion might be to retain those data that cannot be classi-
fied with high accuracy or transmit data summaries
when such unclassifiable events occur [32]. This proced-
ure would allow for more precise classification in the
lab, whereas all other data are deleted. When the rare or
seasonal behaviours are not the focal behaviours of key
interest, a basic behavioural classification (as e.g. just sta-
tionary, foraging or transiting) might also be applied.
The simplified feature set had a greatly reduced on-

board runtime from the full feature set. When the clock
speed of the on-board microprocessor is settled, its en-
ergy consumption is proportional to runtime. Thus, the
calculation of the here used simplified feature set only
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consumes ~ 11% of the energy needed to calculate the
full feature set. As has become clear here, different
trackers and animal systems may require alternative fea-
ture sets. Also, bout lengths and recording frequency
may vary across studies. Thus, the absolute runtimes for
feature calculation here presented for the white stork
dataset (Table 2) are not directly transferable to other
studies. Nevertheless, they may provide a very useful
index for evaluating the relative runtimes and relative
energy consumption requirements for a great variety of
features and alternative feature sets in any study wishing
to optimize real-time, on-board behaviour classification
from ACC data.
With the simplified feature set, the on-board runtime

test of classifiers showed that XGBoost was fastest,
followed closely by RF. The XGBoost and RF classifiers
make use of tree traversal (see Supplementary Algo-
rithms 3 and 4), which only involves comparison opera-
tions. XGBoost was faster than RF in this test because it
had fewer comparison operations involved. The ANN
classifier mainly involves multiplications and additions
(see Supplementary Algorithm 2). SVM took a much
longer runtime than the other three classifiers. SVM in-
volves kernel value calculations between the feature
values of a behaviour bout and all the support vectors
(see Supplementary Algorithm 1). The radial kernel
SVM requires exponent operations, which take much
longer time than add or multiply operations. Moreover,
there were as many as 666 support vectors in the SVM
classifier of the white stork example, explaining the con-
trastingly long runtime for this classifier.
With the simplified feature set, the on-board storage

requirements of classifiers showed that ANN required
least storage. The storage of the ANN classifier is related
to the number of weights, whereas the storage require-
ments of the RF and XGBoost classifiers depends on the
total number of nodes across all trees. The storage of
the SVM classifier is related to the number of support
vectors. Nevertheless, the maximum storage requirement
among the four classifiers – 27 kB of SVM – is still very
small considering the 1MB Flash memory used here and
the flash memory generally used in tracking devices.
The on-board runtime tests of feature calculation and

classifiers showed that the development and operation of
continuous-ethogram trackers is highly feasible from a
power requirement perspective. Since the energy usage
for ACC data recording is low [32], we here only take
the energy usage for on-board feature calculation and
behaviour classification into consideration. According to
the here presented data, a 200mAh battery can support
calculations of the fastest XGBoost classifier with five
simplified features continuously for approximately 11,
000 days (using the recording settings for white stork).
Also, the most energy hungry SVM would be able to run

for approximately 160 days. Whatever model used in this
fashion, the data compression rate using this strategy is
240:1 (120 ACC records × 2 bytes versus 1 byte identify-
ing behaviour type). In case data transmission is not
feasible, this would enable as much as 46 days of behav-
ioural data in 1MB of memory (without timestamp). Fi-
nally, based on 3G-transmission estimates made in our
lab in Chengdu, China, we estimated that transmission
of 1 day of continuous raw ACC records would on aver-
age take 5862 s and consume 244.08mAh of battery
power. By contrast, using the same network, transmis-
sion of 1 day of classified behaviour from ACC data
would take only 52 s or less than 1% of the time, and
consume 1.49mAh of battery power or only 0.6% of the
energy needed for raw data transmission.

Conclusions
On-board behaviour classification through ANN, RF or
XGBoost may enable researchers to study wildlife behav-
iours at a detailed and continuous scale. This new tool
therewith bears the promise of continuous and long-
term behavioural studies, addressing a wide range of be-
havioural and ecological topics, including allowing pre-
cise, behaviour-triggered sampling (e.g. [34]) and
interventions and experimental research. As an exten-
sion of such behavioural studies, the same data might
also be used to assist in assessing energy expenditure,
biomechanics and assist in track dead-reckoning. Other
than wildlife ecology, continuous behaviour monitoring
may also benefit captive and domestic animal manage-
ment and welfare improvement.
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