
METHODOLOGY ARTICLE Open Access
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Abstract

Background: Animal-borne data loggers today often house several sensors recording simultaneously at high
frequency. This offers opportunities to gain fine-scale insights into behaviour from individual-sensor as well as
integrated multi-sensor data. In the context of behaviour recognition, even though accelerometers have been used
extensively, magnetometers have recently been shown to detect specific behaviours that accelerometers miss. The
prevalent constraint of limited training data necessitates the importance of identifying behaviours with high
robustness to data from new individuals, and may require fusing data from both these sensors. However, no study
yet has developed an end-to-end approach to recognise common animal behaviours such as foraging, locomotion,
and resting from magnetometer data in a common classification framework capable of accommodating and
comparing data from both sensors.

Methods: We address this by first leveraging magnetometers’ similarity to accelerometers to develop
biomechanical descriptors of movement: we use the static component given by sensor tilt with respect to Earth’s
local magnetic field to estimate posture, and the dynamic component given by change in sensor tilt with time to
characterise movement intensity and periodicity. We use these descriptors within an existing hybrid scheme that
combines biomechanics and machine learning to recognise behaviour. We showcase the utility of our method on
triaxial magnetometer data collected on ten wild Kalahari meerkats (Suricata suricatta), with annotated video
recordings of each individual serving as groundtruth. Finally, we compare our results with accelerometer-based
behaviour recognition.

Results: The overall recognition accuracy of > 94% obtained with magnetometer data was found to be comparable
to that achieved using accelerometer data. Interestingly, higher robustness to inter-individual variability in dynamic
behaviour was achieved with the magnetometer, while the accelerometer was better at estimating posture.

Conclusions: Magnetometers were found to accurately identify common behaviours, and were particularly robust
to dynamic behaviour recognition. The use of biomechanical considerations to summarise magnetometer data
makes the hybrid scheme capable of accommodating data from either or both sensors within the same framework
according to each sensor’s strengths. This provides future studies with a method to assess the added benefit of
using magnetometers for behaviour recognition.

Keywords: Magnetometer, Behaviour recognition, Biomechanics, Machine learning, Angular velocity, Earth’s
magnetic field, Accelerometer, Meerkats
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Background
Behaviour is a central component of any animal’s life
and the result of important biotic and abiotic inter-
actions. Its accurate description is therefore crucial for a
full appreciation of an animal’s biology. Small, light-
weight animal-borne data loggers have proved to be
indispensable as they bypass the logistical difficulties of
directly observing animals and enable data to be col-
lected on an animal as it goes about its daily life in its
natural environment [1]. Data loggers today can often
house several sensors (e.g. [2, 3]), each measuring differ-
ent physical quantities such as acceleration, magnetic
field intensity, angular velocity, light level, and depth.
Simultaneously recorded high-frequency multi-sensor
data offer the opportunity to gain fine-scale insights into
behaviour by leveraging information not only from
individual data streams, but also by fusing data from
multiple sensors.
In the context of animal behaviour recognition, triaxial

accelerometers [4] and magnetometers [5] have both
been used to identify movement patterns in animals.
Though accelerometers have by far been used more ex-
tensively (e.g. [6–10]), it has recently been shown that
magnetometers can better resolve certain low-acceler-
ation behaviours of biological importance, e.g. thermal
soaring in Andean condors (Vultur gryphus) [11]. In fact,
a recent comparison of accelerometers and magnetome-
ters has demonstrated that there can be quantifiably
large differences in recognition capability between the
two sensors for certain specific behaviours [5]. Future
behaviour recognition algorithms may thus seek to lever-
age the complementarity of these two sensors by fusing
data from both sensors within a single classification
framework. However, it is not known how recognition
capability differs between the two sensors for the case of
common animal behaviours such as foraging, loco-
motion, and resting.
One of the reasons for the success of accelerometers

in recognising animal behaviour may be their ability to
measure both static tilt with respect to Earth’s gravity
vector as well as dynamic acceleration resulting from
animal motion. Despite the numerous advantages of the
accelerometer, however, the sensor has some inherent
limitations that may render it unsuitable for use in cer-
tain situations. Firstly, during dynamic movements, the
accelerometer is sensitive to both body segment tilt and
dynamic acceleration due to motion. Dynamic accele-
ration interferes with the change of tilt, and the two can-
not be separated. In extreme cases, such as when an
animal is ‘pulling g’ [5] or in freefall, the accelerometer
cannot be used to measure tilt because the total mea-
sured acceleration approaches zero. Secondly, for the
same activity, signal magnitudes vary greatly depending
upon sensor location on the body [12]. This may be

problematic for fine-scale estimation of behavioural pa-
rameters. For instance, in human accelerometer-based
pedometer applications, the accuracy of step counting
changes if the pedometer is attached to any location
other than the waist [13]. Thirdly, accelerometers may
not be well-suited to detection and characterisation of
dynamic behaviours involving slow, especially rotation-
based, movement [11].
Magnetometers bear surprising similarities to acceler-

ometers: they can measure a static component through
inclination with respect to Earth’s magnetic field as well
as a dynamic component corresponding to changes in
sensor inclination over time. The static component has
been used extensively to obtain animal heading and per-
form dead-reckoning (e.g. [14–16]). The resulting move-
ment paths have been used to, for instance, quantify
differences between straight-line and tortuous-path
travel to infer underlying behaviour [17, 18], and under-
stand animals’ sense of orientation [19]. The dynamic
component of the magnetometer has been used to ex-
tract metrics describing angular velocity for human
wearable sensing applications [20, 21]. In spite of these
similarities, magnetometers are not prone to the prob-
lems highlighted above for accelerometers. Firstly, the
magnetometer directly measures sensor tilt. The dynamic
component is not mixed with the static component of the
signal, and may be obtained by differentiating the signal
with respect to time [20]. Note, however, that when the axis
of rotation happens to align exactly with the local magnetic
field line – an unlikely scenario over extended time – the
dynamic component will be zero [5]. The equivalent oper-
ation for the accelerometer (i.e. integration with respect to
time) does not directly provide velocity because of the need
to resolve the constant of integration through knowledge of
initial or final velocity from a different source. Secondly,
since it is likely that a wild animal’s natural habitat will be
far from man-made sources of magnetic field disturbances,
the signal magnitude will be the same regardless of activity
type or sensor location on the body. Note, however, that
the presence of magnetic field disturbances might preclude
comparison of signal-derived metrics between different
locations. Thirdly, magnetometers have been shown to be
capable of resolving behaviours that are not easily discerned
using accelerometers, such as thermal soaring in Himalayan
griffon vultures (Gyps himalayensis) [5]. Despite the mag-
netometer’s potential for behaviour telemetry, there is a
lack of an end-to-end method for identifying common ani-
mal behaviours from magnetometer data.
Here, we demonstrate that biomechanically relevant

features describing posture, movement intensity, and
periodicity can be derived from static and dynamic com-
ponents of recorded magnetometer data. These can be
combined with an existing framework (based on acce-
leration data, [10]) that combines biomechanics and
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machine learning to assign accelerometer signals into
behavioural categories. We showcase the application of
these principles for data collected on wild meerkats (Sur-
icata suricatta), a social foraging, < 1 kg carnivore inha-
biting the Kalahari and Namib deserts of Southern
Africa [22], where the classification of their main
activities such as vigilance, foraging, resting, and run-
ning, is essential for characterising their individual and
social behaviour. We provide a comparison of magnet-
ometer-based behaviour recognition performance with
the accelerometer-based one, discuss the strengths and
weaknesses of the magnetometer as a standalone sensor
for behaviour recognition, and discuss possibilities for
fusing data from both sensors to achieve more accurate
and robust behaviour recognition.

Methods
Deriving biomechanical descriptors of movement using
magnetometer data
In a recent study on behaviour recognition using acceler-
ometers [10], posture, movement intensity, and periodicity
were used as biomechanical descriptors of static and dy-
namic behaviours.

Behaviour separation using posture estimated from
magnetometer data can be achieved when a given axis of
the sensor aligns in two opposite directions along the
vertical axis for the two static behaviours to be separated
(Fig.1). [10] used the accelerometer’s surge axis, which
corresponds to the same direction as that of the magne-
tometer’s roll axis in the present study, for quantifying
posture since values along this axis were least susceptible
to changes caused by possible rotations of the collar
around the axis of the meerkat’s cylindrical neck. Let

B
!

E be the local magnetic field vector with dip angle δ at
the sensor location. During meerkat vigilance (Fig. 1a),
in an idealised case, the roll axis would point directly up-
wards, perpendicular to the horizontal plane (the latter
shown as a salmon-pink disk), and the sensor’s roll axis

would measure j B!Ejsinδ . During curled-up resting (Fig.
1b), on the other hand, the roll axis would point down-
wards, perpendicular to the horizontal plane, and the

sensor’s roll axis would measure −jB!Ejsinδ . We
hypothesised that this polarity (positive and negative

value of jB!Ejsinδ ) would enable discrimination of the
two static behaviours, vigilance and curled-up resting.
When the roll axis lies in the horizontal plane (Fig. 1c),

a b

c

Fig. 1 Using magnetometer data to distinguish between different meerkat postures. The Earth’s magnetic field B
!

E (green arrows) inclined at a
dip angle of δ with respect to the horizontal plane (salmon-pink disk) subtends components (blue arrows) equal in magnitude and opposite in
sign along the collar sensor’s (in red) roll axis during (a) vigilance, and (b) curled-up resting, demonstrated in the simplified case when the roll
axis is perfectly aligned with the local vertical direction. When the roll axis lies in the horizontal plane, as shown in (c), the measured component

of B
!

E is further affected by the possibly arbitrary azimuthal angle α
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however, the measurement along the roll axis of the pro-

jection of B
!

E onto the horizontal plane, jB!Ejcosδ, would
be affected by the azimuthal orientation of the animal
(angle α between the direction faced with respect to
magnetic North in the horizontal plane), and the mea-

sured value would now be jB!Ejcosδcosα. Since values of
α may vary arbitrarily between 0° and 360°, the roll axis

would record measurements in the range of [−jB!Ejcosδ ,
j B!Ejcosδ ] when it lies in the horizontal plane. Thus,
static behaviours such as belly-flat resting as well as dy-
namic behaviours such as foraging and running may be
difficult to separate only on the basis of posture, since
the sensor’s roll axis can be oriented arbitrarily with re-
spect to the North direction.
In carrying out dynamic activities such as running, the

collar sensor would follow in the wake of movements
made by the torso and neck as the animal heaves and
sways, and rotate around the animal’s neck. Thus, the
magnetometer’s axes would continuously change orien-
tation with respect to the local magnetic field lines. The
more intense the bodily movement is, the faster the sen-
sor would change orientation with respect to the local
field lines. For instance, large oscillations in triaxial
magnetometer signals recorded during cheetah (Acino-
nyx jubatus) running behaviour have previously been
reported [2]. If this motion is periodic, the change in
sensor orientation will also be periodic. Thus, the mag-
nitude of change in recorded signal values could be used
as an indicator for the intensity of movement, and help
distinguish between static and dynamic behaviours. Fur-
ther, the periodicity of the rate of change in recorded
signal values could be used to distinguish between the
dynamic behaviours: for meerkats, running has been
shown to be highly periodic, and foraging to be relatively
aperiodic [10]. Measures of both intensity and period-
icity may be characterised either by computing the
amount of variation in the recorded signal itself, through
measures such as standard deviation, or by computing
the amount of variation in the time-differentiated signal.

Data collection and groundtruthing
Data from eleven recording sessions of three hours each
were collected on ten adult meerkats at the Kalahari
Meerkat Project, as described in [10]; one of the individ-
uals was recorded twice. The individuals bore collars
equipped with an inertial measurement unit (IMU)
(adapted version of Physilog IV, GaitUp SA, Switzerland)
containing a triaxial accelerometer (recording at 100 Hz/
axis) and triaxial magnetometer [23], the latter recording
at a sampling frequency of 50 Hz/axis with a range of ±
1000 μT and 16-bit resolution. The size of the collar
case (IMU and battery) was 35mm × 29mm × 19mm,

and overall weight was < 25 g. The total geomagnetic
field intensity at the study site was 27.3 μT, with a dec-
lination angle of 17.9° pointing westwards and a dip (or
inclination) angle of 65° pointing upwards, according to
the International Geomagnetic Reference Field ([24];
values calculated from https://www.ngdc.noaa.gov/geo-
mag/calculators/magcalc.shtml#igrfwmm). Collars were
positioned on the animals so that the axes of the mag-
netometer were oriented as shown in Fig. 2. The mag-
netometer was calibrated prior to each recording
session according to the method by [25]. The software
used to read magnetometer data resampled the data to
100 Hz/axis using linear interpolation (with the 'interp1'
function in MATLAB R2016b) to match the sampling
frequency of the accelerometer also present on board
the recording device.
After the captured animal was collared and released, it

was filmed using a handheld video camera recording at 25
frames/second that was synchronised with the collar sensor
(see Appendix S1, Additional file 1 for more details). All
videos were annotated using Solomon Coder (version: beta
17.03.22). This video annotation served as the groundtruth-
ing data for our behaviour recognition scheme. Archetypal
behaviours observed across a wide range of species [10] –
foraging, running, and resting – were considered for the
ethogram. In addition, we also considered vigilance, a
behaviour typical for meerkats, where the individual is sta-
tionary and lifts its head and torso to survey its surround-
ings. Biologically significant information may be derived
from these four behaviours [10]: (1) general stress or alert-
ness level through vigilance, (2) periods of inactivity, mainly
due to fatigue or excessive heat, through resting (3) proxies
for body condition through foraging, and (4) high energy
expenditure and possible important events such as aggres-
sive interactions with rival groups through running. Any
behaviour dependent upon contextual information, such as
territory marking or dyadic social interactions, was ex-
cluded from the ethogram.

Developing candidate features to quantify biomechanical
descriptors of movement
Raw triaxial magnetic field intensity data were calibrated
and summarised in the form of features quantifying
posture, movement intensity, and periodicity. Feature
development followed from previous work done with ac-
celerometers [10]. We computed features on a sliding
window w of size two seconds with an overlap of 50% be-
tween successive windows. Windows containing data from
exactly one video-labelled behaviour were retained, and
those containing transitions between different behaviours
were excluded. For each biomechanical descriptor, the
candidate features (Table 1) were computed on each two-
second window w containing N = 200 calibrated triaxial
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magnetic field intensity values recorded along the roll
(mroll), pitch (mpitch), and yaw (myaw) axes.

Posture
We obtained a measure of neck inclination with respect
to the local magnetic field vector by computing the
mean of calibrated magnetic field intensity data recorded

in each window w along the roll axis (meanRoll, equa-
tion (1), Table 1).

Intensity
We developed four candidate features (#2 to #5,
Table 1) to quantify movement intensity: one
(stdRollw, equation (2), Table 1) was aimed at charac-
terising the extent to which mroll varied in window w,

Table 1 Feature development. Candidate features developed to describe the three biomechanical descriptors used in this study:
posture (#1), movement intensity (#2 to #5), and movement periodicity (#6 to #9)

S.No. Biomechanical
descriptor

Feature name Feature description Computation

1. Posture meanRoll Mean of data from roll axis ΣNmroll;w

N
(1)

2. Intensity stdRoll Standard deviation of data from roll axis std(mroll, w) (2)

3. meanAbsDiffRoll Mean of absolute values of time-differentiated roll data ΣN jddtðmroll;wÞj
N

(3)

4. axMaxMeanAbsDiff Maximum, across axes, of mean of absolute values of time-
differentiated data from each axis max

A∈roll;pitch;yaw
ðΣNj

d
dt ðmA;wÞj
N

Þ (4)

5. avgMeanAbsDiff Mean, across axes, of mean of absolute values of time-
differentiated data from each axis

X

A∈roll;pitch;yaw

ΣNj ddt ðmA;wÞj
3N

(5)

6. Periodicity rollFftPeakPower Maximum squared coefficient
of Fourier transform of data from roll axis

max
i∈1…L

ðc2f i ;roll;wÞ (6)

7. avgFftPeakPower Mean, across axes, of maximum squared coefficient of Fourier
transform of data from each axis max

i∈1…L
ðc

2
f i ;roll;w

þ c2f i ;pitch;w þ c2f i ;yaw;w
3

Þ
(7)

8. rollDiffFftPeakPower Maximum squared coefficient of Fourier transform of time-
differentiated roll data

max
i∈1…L

ðδ2f i ;roll;wÞ (8)

9. avgDiffFftPeakPower Mean, across axes, of maximum squared coefficient of Fourier
transform of time-differentiated data from each axis max

i∈1…L
ðδ

2
f i ;roll;w þ δ2f i ;pitch;w þ δ2f i ;yaw;w

3
Þ

(9)

Features were computed on each two-second window w containing N = 200 calibrated triaxial magnetic field intensity values recorded along the roll (mroll), pitch
(mpitch), and yaw (myaw) axes. Equation numbers are indicated on the right

Fig. 2 Meerkat with collar, axes, and Earth’s fields. The orientation of the axes of the triaxial magnetometer fixed to a collar on the meerkat along

with the directions of two of Earth’s naturally occurring fields: Earth’s magnetic field B
!

E pointing towards the magnetic North Pole, and Earth’s
gravity vector g! pointing vertically downwards
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whereas the three others aimed to quantify the rate
of change of sensor orientation through metrics based
on the time-differentiated signal (meanAbsDiffRollw,
equation (3); axMaxMeanAbsDiffw, equation (4); avg-
MeanAbsDiffw, equation (5), Table 1). Since the differ-
entiation operation results in amplification of sensor-
and analog-to-digital signal quantization-generated
noise at higher frequencies [26], the raw calibrated
magnetometer signal was first low-pass filtered using
a Butterworth filter of order 4 and cut-off frequency
10 Hz. MATLAB’s (version R2016b) 'diff' function was
used to compute differences between successive signal
samples, and each resulting difference was multiplied
by the sampling frequency (since, in d/dt, dt = 1/sam-
pling frequency for discrete signals) to complete the
time differentiation operation. To quantify the
amount of rate of change in features computed from
the time-differentiated signal (features #3, #4, #5 in
Table 1), we took the absolute values of each differ-
entiated sample and then computed the mean.

Periodicity
We quantified movement periodicity through the use of
the Fourier transform (FT). As done in [10], for each
window w, before computation of the FT, each input sig-
nal was filtered with a Butterworth low-pass filter of
order 4 and cut-off frequency 10 Hz, normalised, zero-
padded to smooth the frequency spectrum [27] by add-
ing 100 zeroes before and after each two-second input
signal, and windowed using the Blackman-Harris win-
dowing function. This processed signal was then trans-
formed with a frequency resolution of U = 0.01 Hz
(corresponding to FT computation at L = Fs/U = 10,000
frequencies), and the squared magnitude of each Fourier
coefficient (c2f i , i ∈ 1…L), corresponding to the power of

the signal at frequency fi, was computed. Triaxial signals
yielded three sets of coefficients, one for each axis: {
c f i;roll; c f i;pitch; c f i;yaw } in the case of the raw calibrated
triaxial signal, and { δ f i;roll; δ f i;pitch; δ f i;yaw } in the case of
the time-differentiated signal. For a triaxial signal, the
resulting FT was averaged across the three axes. From
the final FT, the maximum power obtained across all
frequencies fi (i ∈ 1…L) was chosen as a measure of the
signal periodicity. This FT-based operation was applied
to four different input signals in order to develop four
candidate features characterising movement periodicity:
(1) roll component of the local magnetic field (roll-
FftPeakPower, equation 6, Table 1), (2) triaxial magnet-
ometer signal (avgFftPeakPower, equation 7, Table 1),
(3) time-differentiated roll signal (rollDiffFftPeakPower,
equation 8, Table 1), and (4) time-differentiated triaxial
signal (avgDiffFftPeakPower, equation 8, Table 1). All
feature computation was done using MATLAB R2016b.

Feature selection
To enable direct comparison with the three-feature ac-
celerometer-based model in [10], we selected one feature
for each of the three biomechanical descriptors of pos-
ture, movement intensity, and periodicity. We tested fea-
tures quantifying movement intensity (feature # 2 to #5,
Table 1) for their efficacy in separating static and dy-
namic behaviours, and foraging and running. We tested
features quantifying movement periodicity (feature #6 to
#9, Table 1) for their efficacy in separating foraging and
running. We tested five different feature selection
methods based on the filter method (using the 'rankfea-
tures' function in MATLAB R2016b,© 2003–2016 The
MathWorks, Inc. See Appendix S3, Additional file 1 for
more details) to select one feature to quantify movement
intensity, and one to quantify periodicity. meanRoll (fea-
ture #1, Table 1), being the only candidate developed to
describe posture, was chosen by default.

Behaviour recognition scheme and cross-validation
The behaviour recognition scheme had the same hier-
archical tree-like structure and hybrid form as the one
found for meerkat behaviour recognition using acceler-
ometers [10]. The scheme consisted of three nodes, each
dividing a parent behavioural category (static or dy-
namic) into two daughter behavioural types (vigilance/
resting or foraging/running, respectively). A Support
Vector Machine (SVM) was used at each node to obtain
optimal feature-value thresholds in a completely auto-
mated fashion. At the first node, features encoding infor-
mation on posture and movement intensity were used to
separate static and dynamic behaviours. At the second
node, static behaviours were separated into vigilance and
resting using postural information. At the third node,
dynamic behaviours were separated into foraging and
running using information on movement intensity and
periodicity. The 'svm' learner in MATLAB R2016b’s 'fitc-
linear' function (© 2015–2016 The MathWorks, Inc.)
was used to train the SVM at each node.
To validate the predictions of the SVM-SVM-SVM hy-

brid model with the chosen features against groundtruth
video-annotated behaviours, two cross-validation
methods were tested: (1) stratified ten-fold cross-valid-
ation (STRAT), which evaluates model performance
when the frequency and duration of different behaviours
may be skewed, and (2) leave-one-individual-out cross-
validation (LOIO), which evaluates model performance
when inter-individual variability is taken into account
[10]. We used standard confusion matrix-based metrics
to evaluate and compare model performance. These per-
formance statistics included three behaviour-specific
metrics (sensitivity, precision, and specificity), and over-
all model accuracy (see Appendix S2, Additional file 1
for mathematical definitions, computation and
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interpretation). Custom software was written in
MATLAB R2016b to perform cross-validation.

Results
Collected data
A total of 82,550 two-second bouts of video-labelled be-
haviour were collected for the four behaviours of interest
(Table 2). The number of bouts collected per animal was
8255 ± 3229 (mean ± SE). The frequency and duration of
different behaviours were skewed: foraging (56.2%) was
the most common behaviour while running was the rar-
est (1%). No resting behaviour was observed during six
out of the eleven recording sessions; the number of rest-
ing bouts collected during the first recording session
(55.7% of all resting bouts) far outnumbered those col-
lected during the other recording sessions. Typical sig-
nals recorded for the four behaviours (Fig. 3) were found
to be in line with our biomechanical hypotheses: static
behaviours (bipedal vigilance and curled-up resting)
showed little change (Fig. 3, left), while dynamic behav-
iours (foraging and running) produced greater change in
the signals with large, periodic oscillations during run-
ning (Fig. 3, right).

Features to quantify biomechanical descriptors from
triaxial magnetometer data
Measures of posture (meanRoll, equation 1, Table 1) and
movement intensity (meanAbsDiffRoll, equation 3, Table 1)
were inputs to the first node to separate static behaviours
from dynamic ones (Fig. 4b). Posture (meanRoll) was
used to distinguish vigilance from resting in the sec-
ond node, and finally, movement intensity (meanAbs-
DiffRoll) and periodicity (avgDiffFftPeakPower,

equation 9, Table 1) were used to distinguish foraging
from running in the third node (Fig. 4b).
The use of meanRoll to quantify posture produced high

separability between bipedal vigilance and curled-up rest-
ing (Figs. 3 & 5). During the dynamic behaviours (foraging
and running), where the orientation of the animal’s body
caused the roll axis of the magnetometer to lie approxi-
mately in the horizontal plane, the values recorded along
the roll axis (Fig. 3) were in an intermediate range be-
tween the extreme positive and extreme negative values
recorded during bipedal vigilance (Fig. 1a) and curled-up
resting (Fig. 1b), respectively.
Among the features developed to quantify move-

ment intensity, meanAbsDiffRoll outperformed the
other three candidates with regard to separating both
static from dynamic behaviours (Table S2, Appendix
S3, Additional file 1), and foraging from running
(Table S3, Appendix S3, Additional file 1). Among
the features developed to quantify movement period-
icity, avgDiffFftPeakPower outperformed the other
three candidates for the separation of foraging from
running (Table S4, Appendix S3, Additional file 1).

Performance evaluation, and comparison with
accelerometer-based behaviour recognition
Magnetometer-based behaviour recognition performance
is presented and compared with that achieved with ac-
celerometer data in [10] for STRAT (Table 3) and LOIO
(Table 4), and through visual depiction of feature distri-
butions and resulting decision boundaries (Fig. 5).
For STRAT, all performance metrics for the most

common behaviours (foraging: 56.2% of dataset; vigi-
lance: 38.2% of dataset), and overall model accuracy,
were > 95% (Table 3). Good performance was obtained

Table 2 Summary of data collected

Recording Session Number Vigilance Resting Foraging Running Bouts per Recording Session

1 4594 2114 1562 69 8339

2 3896 120 5315 29 9360

3 1453 0 6278 38 7769

4 5221 0 2823 161 8205

5 1890 0 6134 169 8193

6 1639 744 4438 98 6919

7 4785 156 3498 40 8479

8 71 0 4841 20 4932

9 4283 0 1713 43 6039

10 1906 0 4407 84 6397

11 1782 661 5398 77 7918

Bouts per Activity 31,520 3795 46,407 828 82,550
(total bouts)

Table adapted from [10]. Triaxial magnetometer data were collected on ten unique individuals; data from recording session #4 and #7 were collected on the same
individual. A bout refers to a two-second window w containing one video-labelled behaviour
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Fig. 3 Five-second snapshots of calibrated triaxial magnetometer data for the four behaviours of interest for a typical individual (recording
session #1). The horizontal axis shows time in seconds, and the vertical axis represents calibrated, normalised magnetic field intensity measured
along the three axes of the sensor in each graph. The signals correspond, from left to right, to bipedal vigilance, curled-up resting, foraging,
and running

a

b

Fig. 4 Behaviour Recognition Scheme. (a) Flowchart showing feature computation: meanRoll quantifies posture, meanAbsDiffRoll movement
intensity, and avgDiffFftPeakPower periodicity. (b) Hierarchical classification scheme classifying behaviours as being either static or dynamic, then
static behaviours as being either vigilance or resting, and finally dynamic behaviours as being either foraging or running
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even for the rarer behaviours, resting (4.6% of dataset)
and running (1% of dataset), where all behaviour-specific
metrics remained > 83%. Further, overall as well as be-
haviour-wise recognition performance with the magnet-
ometer were similar to that with the accelerometer
(Table 3).

For LOIO, data from recording sessions numbers 3,
4, 5, 8, 9 and 10 were discarded since they did not
contain any resting behaviour (Table 2). Once again,
even when inter-individual variation was taken into
account, mean values of all performance metrics for
the most common behaviours (foraging and vigilance),

a d

b e

c f

Fig. 5 Decision boundaries and feature distributions obtained with accelerometer- (left) and magnetometer-based (right) behaviour recognition
with Support Vector Machines trained on the entire dataset for each of the three nodes of the hierarchical behaviour recognition scheme. mi and
ai refer to decision boundaries obtained with the magnetometer and accelerometer, respectively, with the subscript i indicating the node index

Table 3 STRAT cross-validation results

Sensor

Vigilance Resting Foraging Running Overall
Accuracy
(%)

Sen.
(%)

Spec.
(%)

Prec.
(%)

Sen.
(%)

Spec.
(%)

Prec.
(%)

Sen.
(%)

Spec.
(%)

Prec.
(%)

Sen.
(%)

Spec.
(%)

Prec.
(%)

Magnetometer 97 98.6 97.8 84.4 99.4 87.1 98.8 97.2 97.8 83.1 99.9 93.9 97.3

Accelerometer 97.1 98.8 98.1 85 99.4 87.1 99.3 97.8 98.3 85.9 99.9 92.1 97.7

The performance of the SVM-SVM-SVM hybrid model with magnetometer data is benchmarked against that obtained with accelerometer data reported in [10].
SVM: Support Vector Machine
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and overall model accuracy, were > 95%, and were
similar to those obtained with accelerometer-based
behaviour recognition (Table 4).

Discussion
We presented an end-to-end framework to identify com-
mon animal behaviours from magnetometer data. Using
data collected on 10 wild meerkats, we demonstrated
that accurate behaviour recognition can be achieved with
a magnetometer alone with performance comparable to
that with an accelerometer. Our results shed further
light on the magnetometer’s strengths and weaknesses in
the context of behaviour telemetry, and suggest possibil-
ities for leveraging the complementary merits of acceler-
ometers and magnetometers within a single
classification framework for more robust behaviour
recognition.

Distinguishing dynamic behaviour using magnetometer-
derived angular velocity
Differentiating magnetic field intensity with respect to
time corresponds to quantifying changes in angles sub-
tended by the Earth’s magnetic field vector onto the
three sensor axes with time, and provides an estimate of
angular velocity [20]. To separate behaviours based on
movement intensity, quantifying change in magnetometer-
derived angular velocity was more effective than quantifying
change in magnetic field values. This may be because even
when the change in sensor inclination angle is small, the
rate at which the angle changes may be high. meanAbsDiff-
Roll (equation 3, Table 1) was best at separating static and
dynamic, and the two dynamic behaviours. The superior
class separability of meanAbsDiffRoll implied that using
only the roll axis was more effective than when contribu-
tions from the other two axes, pitch and yaw, were in-
cluded. This may have been a consequence of the fact that
the roll axis succeeded in capturing both up-and-down, and
side-to-side bodily movements made by the meerkat’s neck
and torso during dynamic behaviours. The roll axis was also
more robust than the other two axes to collar rotations.
Magnetic field lines have, in general, a horizontal as well as
vertical component – the inclination angle of Earth’s mag-
netic field at the study site was 65° pointing upwards. The

pitch axis would have been insensitive to the up-and-down
movements, and the yaw axis insensitive to the side-to-side
movements. Further, collar rotations around the meerkat’s
cylindrical neck could have confounded class separation
through noisy variability in pitch- and yaw-axis contribu-
tions for the same activity. Note, however, that the pre-
cise choice of the feature describing movement
intensity may change when dynamic behaviours of
interest involve rotations about the roll axis, such as
washing at sea by a Magellanic penguin (Spheniscus
magellanicus) [5], or fast turning in cheetahs where
the weight of the tag causes the collar to rotate
around the neck due to centripetal acceleration [28].
Metrics based on magnetometer-derived angular vel-

ocity may be better suited than accelerometry for filter-
ing out signal artefacts caused by sensor impacts.
Compared to foraging versus running classification using
accelerometer data (a3 in Fig. 5c), with the magnetom-
eter there were fewer foraging bouts with low periodicity
and high intensity that crossed the decision boundary
m3 (Fig. 5f). While exploring the ground for prospective
hunting locations, the meerkat’s collar would often
bump against vegetation or the ground. Additionally,
while digging, the meerkat’s pectoral muscles would hit
against the collar. These impacts produced high, transi-
ent translational acceleration that led to a higher estima-
tion of bout intensity with the accelerometer. However,
the magnetometer, being insensitive to translational ac-
celeration [5], provided a lower estimate for bout inten-
sity due to relatively slow collar orientation changes.
Thus, such bouts were correctly classified as foraging
with the magnetometer since their intensity placed them
below the decision boundary m3 (Fig. 5f). This led to
higher precision in the detection of running (7.3% higher
mean precision and similar mean sensitivity with LOIO)
with much lesser inter-individual variability in perform-
ance (9.5% lower standard deviation for sensitivity and
7.7% lower standard deviation for precision) compared
to accelerometer-based classification. This was achieved
despite running being the rarest behaviour (outnum-
bered 1:56 by foraging in terms of number of recorded
bouts). In a similar fashion, fewer vigilance bouts yielded
high enough magnetometer-based intensity to cross over

Table 4 LOIO cross-validation results

Sensor

Vigilance Resting Foraging Running Overall
Accuracy
(%)

Sen.
(%)

Spec.
(%)

Prec.
(%)

Sen.
(%)

Spec.
(%)

Prec.
(%)

Sen.
(%)

Spec.
(%)

Prec.
(%)

Sen.
(%)

Spec.
(%)

Prec.
(%)

Magnetometer 95.2
± 2.4

97.9
± 1.9

95.2
± 6.2

65.4
± 25.9

98.9
± 0.9

77.3
± 31.1

98.4
± 0.9

97.0
± 1.2

95.5
± 0.5

86.5
± 3.7

100
± 0.0

96.4
± 3.4

96.0
± 1.5

Accelerometer 95.8
± 2.8

98.4
± 1.2

96.4
± 4.5

71.4
± 23.6

98.9
± 1.2

81.1
± 28.0

98.8
± 1.0

97.4
± 1.5

95.3
± 7.0

86.3
± 13.2

99.9
± 0.1

89.1
± 11.1

96.5
± 1.8

The performance of the SVM-SVM-SVM hybrid model with magnetometer data is benchmarked against that obtained with accelerometer data reported in [10].
Performance metrics were calculated separately for each test individual, and their mean and standard deviation across test individuals are shown here. SVM:
Support Vector Machine
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m1 (Fig. 5d) and get misclassified as dynamic behaviour
as compared to when the accelerometer (Fig. 5a) was
used (Tables S4 & S5, Appendix S4, Additional file 1).
The stringency of the magnetometer in assigning high

intensity to a bout of activity was not without its costs.
Comparing aggregate confusion matrices observed with
the magnetometer and accelerometer (Tables S4 & S5,
respectively, Appendix S4, Additional file 1), we ob-
served a higher number of relatively low-intensity for-
aging bouts getting misclassified as being static, thereby
reducing foraging detection sensitivity as compared to
accelerometer-based classification (especially for record-
ing sessions #6, #7 and #11, Table S9 in Appendix S4,
Additional file 1). This may have been because the amp-
litude and rate of body movement-generated change in
collar orientation during low-intensity foraging behav-
iour (for instance, during slow ground scratching while
keeping the head and torso in the same orientation) may
not have been sufficient to generate a large-enough sig-
nal detectable above the noise floor introduced by the
differentiation operation [26] during computation of
meanAbsDiffRoll.
Finally, it has been reported that a combination of ac-

celerometers and gyroscopes can lead to better activity
recognition in human wearable sensor applications than
when each sensor is used alone [20]. In animal studies,
the magnetometer may be a viable alternative to the
gyroscope for obtaining estimates of angular velocity due
to the former’s lower power consumption [29]. This
could be important for facilitating long-duration record-
ings on small animals.

Estimating posture using magnetometer data
While it was possible to estimate posture using the mag-
netometer, the accelerometer-based posture measure
was nevertheless found to be better at separating static
behaviours. In our observations of static behaviour, a
number of bouts of quadrupedal vigilance and belly-flat
resting were also recorded apart from bipedal or sitting
vigilance (Fig.1a), and curled-up resting (Fig. 1b). In
these postures, a significant component of the roll axis
lay in the horizontal plane. Possibly arbitrary azimuthal
orientation of the animal during these postures (Fig.1c)
confounded the distinction between quadrupedal vigi-
lance and belly-flat resting. This additional constraint
degraded the accuracy of resting detection compared to
that with the accelerometer (6% lower mean sensitivity,
3.8% lower mean precision. See also Fig. 5, middle
panel). In static behaviours, where the animal’s body re-
tains similar orientation with respect to the horizontal
plane, such as during standing and lying in cows (cf.
[30]), the confounding effect of possibly arbitrary azi-
muthal orientation may be particularly severe. Further,
our implicit assumption that the calibration parameters

computed at the beginning of each recording would be
valid throughout the recording was found to be only
partially true (see Appendix S5, Additional file 1).

Magnetometer versus accelerometer: similarity and
complementarity
Similar behaviour recognition performance with the two
sensors suggests that it may not be necessary to make
separate considerations for the choice of ethogram when
working with magnetometers when archetypal behav-
iours such as foraging, fast locomotion, and resting are
to be identified.
Our results reveal the selectivity of the magnetometer

for bodily movement, and relative immunity to signal ar-
tefacts arising due to sensor impacts. This may offer the
opportunity to study movement energetics using metrics
based on magnetometer-derived angular velocity [5],
which would be similar but complementary to the accel-
eration-based metrics ODBA [31] and VeDBA [32]. One
advantage of the magnetometer that could be exploited
in future studies is the weaker dependence of signal
magnitude on sensor location on the animal’s body.
When a body segment rotates about a joint, the magni-
tude of acceleration is higher for distal compared to
proximal parts, and this dependence on the location of
accelerometer attachment might be especially important
to take into account for larger animals. The magnitude
of the magnetometer signal during segment rotation,
however, would always be the same along a body seg-
ment regardless of body size or sensor placement. The
apparent pitfall of the accelerometer in confounding
bodily movement-produced signals with artefacts arising
from sensor impacts could nevertheless be turned to an
advantage for other applications where the detection of
specific events is desirable. Impact-generated acceler-
ation characteristics have, for instance, been used in the
detection of falls in humans [33].
Combining magnetometer and accelerometer data to

identify behaviour has been previously suggested [2]. In
this study, we develop this idea further and suggest spe-
cific aspects of these two sensors to combine for better
behavioural identification. Features derived from data
from one or both sensors may be chosen according to
their specific strengths as inputs for each node of the
hierarchical classification scheme (Fig. 4b). For instance,
at the first node tasked with separating static behaviours
from dynamic ones, the more reliable accelerometer-
based posture measure (meanSurge) [10] may be com-
bined with the more selective magnetometer-based
movement intensity measure (meanAbsDiffRoll). Then,
meanSurge could be used at the second node tasked with
separating vigilance from resting on the basis of posture.
At the third node, the magnetometer-based intensity
(meanAbsDiffRoll) and periodicity (avgDiffFftPeakPower)
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metrics may be used for higher-precision distinction be-
tween foraging and running. Finally, as has been done for
some human movement studies [34], accelerometer and
magnetometer data may by combined to give a more ac-
curate and robust three-dimensional estimation of posture
in such fused systems than either sensor alone.

Conclusion
Our findings demonstrate that magnetometers can be
used alone to achieve accurate and robust animal behav-
iour recognition. We showed that sensor tilt with respect
to Earth’s magnetic field, and metrics based on magnet-
ometer-derived angular velocity may be used to extract
biomechanically significant features to describe posture,
movement intensity, and periodicity. Through the directed
use of these features in a recently developed hybrid hier-
archical behaviour recognition framework combining
movement biomechanics and machine learning [10], we
found that magnetometer-based behaviour recognition (i)
produced similar results to those obtained with the accel-
erometer, (ii) was robust to inter-behaviour differences in
duration and frequency of occurrence, and (iii) exceeded
the accelerometer’s resilience to inter-individual variability
for dynamic behaviours.
Movements performed by free-living animals, broadly

speaking, generate both acceleration as well as angular
velocity. Our results reveal that, as long as a sensor can
measure a static and dynamic component of movement,
key biomechanical descriptors of motion can be quanti-
fied and used to recognise common animal behaviours
with high accuracy. The generality afforded by the usage
of biomechanical considerations to direct inertial sensor
data processing, and the simple structure and implemen-
tation of the hybrid behaviour recognition framework
make it possible to accommodate, compare, and leverage
data from accelerometers, magnetometers, and gyro-
scopes within a single behaviour recognition scheme.

Additional file

Additional file 1: Five appendices. ‘Appendix S1: Synchronisation of the
animal-borne IMU with the hand-held camera’, ‘Appendix S2: Metrics for
performance evaluation of classification models’, ‘Appendix S3: Feature
Selection’, ‘Appendix S4: LOIO Results’, and ‘Appendix S5: Variation in the
Norm of Magnetometer Data’. (DOCX 988 kb)
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