
RESEARCH Open Access

Quantifying drivers of wild pig movement
across multiple spatial and temporal scales
Shannon L. Kay1, Justin W. Fischer1, Andrew J. Monaghan2, James C. Beasley3,4, Raoul Boughton5,
Tyler A. Campbell6, Susan M. Cooper7, Stephen S. Ditchkoff8, Steve B. Hartley9, John C. Kilgo10,
Samantha M. Wisely11, A. Christy Wyckoff12,13, Kurt C. VerCauteren1 and Kim M. Pepin1*

Abstract

Background: The movement behavior of an animal is determined by extrinsic and intrinsic factors that operate at
multiple spatio-temporal scales, yet much of our knowledge of animal movement comes from studies that examine
only one or two scales concurrently. Understanding the drivers of animal movement across multiple scales is crucial
for understanding the fundamentals of movement ecology, predicting changes in distribution, describing disease
dynamics, and identifying efficient methods of wildlife conservation and management.

Methods: We obtained over 400,000 GPS locations of wild pigs from 13 different studies spanning six states in
southern U.S.A., and quantified movement rates and home range size within a single analytical framework. We used a
generalized additive mixed model framework to quantify the effects of five broad predictor categories on movement:
individual-level attributes, geographic factors, landscape attributes, meteorological conditions, and temporal variables.
We examined effects of predictors across three temporal scales: daily, monthly, and using all data during the study
period. We considered both local environmental factors such as daily weather data and distance to various resources
on the landscape, as well as factors acting at a broader spatial scale such as ecoregion and season.

Results: We found meteorological variables (temperature and pressure), landscape features (distance to water sources),
a broad-scale geographic factor (ecoregion), and individual-level characteristics (sex-age class), drove wild pig
movement across all scales, but both the magnitude and shape of covariate relationships to movement differed across
temporal scales.

Conclusions: The analytical framework we present can be used to assess movement patterns arising from multiple
data sources for a range of species while accounting for spatio-temporal correlations. Our analyses show the
magnitude by which reaction norms can change based on the temporal scale of response data, illustrating the
importance of appropriately defining temporal scales of both the movement response and covariates depending on
the intended implications of research (e.g., predicting effects of movement due to climate change versus planning
local-scale management). We argue that consideration of multiple spatial scales within the same framework (rather
than comparing across separate studies post-hoc) gives a more accurate quantification of cross-scale spatial effects by
appropriately accounting for error correlation.
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Background
Movement capacity, or an individual’s tendency to move
based on various internal and external factors, is a central
component of animal movement ecology [1]. Understand-
ing the drivers of this capacity can assist in guiding deci-
sions about how to best conserve or manage animal
populations [2–4], in predicting how climate change and
anthropogenic influences will affect wildlife population dy-
namics [5, 6] and in predicting disease spread [7]. Recent
technological advances in GPS devices have allowed for the
collection of increasingly fine-scaled location data, and have
resulted in a rich source of information for quantifying ani-
mal movement capacity. However, as costs increase dramat-
ically with GPS fix resolution, the duration of the study, and
the number of individuals collared, it is often not feasible to
have a large sample size of long-term, high-resolution data.
Thus, much of our knowledge of animal movement cap-
acity comes from studies which focus on relatively small
sample sizes and a single ecological scale, despite the fact
that the capacity for animals to move is determined by the
interaction of many factors acting on numerous spatial and
temporal scales [8, 9]. By examining movement capacity
across multiple spatio-temporal scales within a single ana-
lytical framework, we can identify general trends in animal
movement, quantify factors that limit movement, and gain
a more in-depth understanding of how multi-scale factors
interact in driving movement capacity.
Ecologists often deal with a variety of processes that act

on numerous temporal and spatial scales. Identifying the
appropriate scale (s) within which to test hypotheses about
ecological mechanisms continues to be a developing ideol-
ogy in ecology [10–12]. In many cases, one scale of data is
analyzed and used to extrapolate to other scales. For ex-
ample, “top-down” or “bottom-up” approaches where
population-level analyses are used to extrapolate to the
individual-level, or individual-level analyses are used to
extrapolate to the population-level [13]. However, envir-
onmental processes can be more influential at one scale
than another. For instance, [14] found movement re-
sponses of woodland caribou were scale-dependent when
they classified movement as either interpatch or intra-
patch, such as cover type which had a greater effect on
intrapatch movements than interpatch movements. Fur-
thermore, movement responses may differ based on geo-
graphic location, and hence, environmental factors may
have stronger effects depending on evolutionary adapta-
tions to local resources [15]. Therefore, examining factors
that affect animal movement across different temporal
and spatial scales provides a more thorough understand-
ing of movement capacity in the broader context of ani-
mal movement behavior.
To gain a better understanding of how multiple spatio-

temporal scales affect animal movement, we examined
movement capacity of wild pigs (Sus scrofa) using GPS

telemetry data from 14 studies [16–20] conducted across
the southern U.S. from 2004 to 2014. Wild pigs are an inva-
sive species that cause a substantial amount of crop and
property damage [16–20] and pose a significant disease
threat to livestock operations [21–24], which could have
cataclysmic effects on the economy. Wild pig populations
are abundant across much of the U.S. in a variety of habi-
tats, and appear to have few constraints on habitat invasion,
making them an ideal study species for examining move-
ment capacity across ecological scales. It’s suggested that re-
source abundance and distribution affect the movement
behavior of wild pigs, where they can reduce their energy-
expenditure and travel less when resources are readily avail-
able and plentiful [25]. Additionally, it has also been sug-
gested that anthropogenic alterations to the landscape such
as development [26] and using bait for trapping [27] may
modify wild pig movement patterns. Thus, by pooling data
from various regions and examining movement across a
large geographical gradient, we are able to identify factors
that affect wild pig movement capacity across landscapes,
and predict how they may constrain movement locally. Pre-
diction of movement levels can be useful in planning man-
agement actions (i.e., optimal time and places to find
individuals) and preventing invasions (i.e., understanding
how far individuals may move during new invasions in dif-
ferent habitats). Furthermore, wild pigs are one of the least
studied ungulate species in terms of their movement ecol-
ogy, with many wild pig movement studies examining gen-
etic differences between populations [28]. Of the few
studies that focused on wild pig movement ecology (e.g.,
[29–33]), most were generally limited in spatial or temporal
scope (although see [34]). Thus, our basic understanding of
factors affecting wild pig movement capacity across their
distribution is weak, making it challenging to predict move-
ment constraints.
To address gaps in our fundamental understanding of

movement capacity across spatio-temporal scales, we ex-
amined movement capacity of wild pigs at three different
temporal scales: daily, monthly, and overall. We mea-
sured movement capacity using three simple metrics, in-
cluding the maximum distance moved in a day (MxD),
the average distance moved in an hour (MHD), and
home range size. The MxD response represents the
maximum straight-line distance we would expect an in-
dividual to travel in a day during typical daily activities
(e.g., foraging and mating). The MHD response is com-
monly used in wildlife movement analyses to reflect
short-term movement habits, and average rate of speed
[31, 35, 36]. We also used home range size as an add-
itional response to represent the size of the area in
which wild pigs tend to exploit at both the monthly and
overall scales. Collectively, these movement metrics can
help managers design optimal control strategies by
quantifying the effects of factors driving wild pig
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movement, and predicting movement trends in areas
that have been recently invaded.
Based on previous work [25, 34], we hypothesized that

five types of predictor variables may predict the movement
ecology of wild pigs: meteorological, landscape, geographic,
individual-based and temporal. We also hypothesized that
the importance of different environmental predictors would
differ across temporal scales of movement. For example, we
hypothesized that movement capacity on the daily scale
would be affected by current environmental conditions that
could reflect weather events (e.g., temperature, precipita-
tion, barometric pressure, wind speed, saturation, humidity)
because these factors have been shown to affect movement
in other wildlife species [31, 37–42]. In contrast, we hy-
pothesized that movement at the monthly and overall
scales would be influenced by biotic productivity (i.e., mea-
sured by weather patterns over longer timescales), land-
scape features such as distances to various types of
resources, and time of the year, because these factors likely
affect the seasonal variation in movement due to resource
availability [43, 44]. Studies have shown differences in social
behavior between male and female wild pigs [45, 46], so we
hypothesized that individual-level characteristics such as
sex and age would be important at all scales. In addition,
we hypothesized that broad-level geographic characteristics
(i.e., ecoregion) would also explain variation in movement
patterns because these factors encompass numerous vari-
ables that act on many different scales. Thus, we expected
ecoregion could be useful for predicting movement levels
and shaping management practices regionally.
We employed a two-step approach to analyzing move-

ment rates and home range sizes by first using a machine-
learning algorithm, random forest regression, to identify the
most important factors affecting our response variables on
each scale. We then fit generalized additive mixed models
(GAMMs) using the resulting predictor variables from the
machine-learning algorithm to quantify effects of covariates
while accounting for spatio-temporal and biological correla-
tions. Our results describe drivers of movement capacity
that can aid managers in identifying the most effective tech-
niques and spatio-temporal implementation strategies for
successful population control. Furthermore, our analytical
approach should inform future large-scale movement stud-
ies using diverse datasets, and our results are relevant to
predicting the effects of future urban development and cli-
mate change on animal movement.

Methods
Data processing
We analyzed GPS data from individual pigs in studies
across six states including Florida, Georgia, Louisiana, Mis-
souri, South Carolina, and Texas. The full dataset included
more than 400,000 total locations (Additional file 1: Figures
S1 and S2) arising from 226 individuals that were

monitored from 2004 to 2016. Individuals consisted of both
male and female sub-adult and adult wild pigs, as well as
two juvenile (i.e., < 1 year old) females. Note that 89/226 in-
dividuals did not have an associated age class. Monitoring
times varied considerably across studies, with some individ-
uals only monitored for a few days and others monitored
for almost 2 years. However, most individuals were moni-
tored for 2–4 months. Temporal resolution between GPS
fixes varied substantially across studies (from locations re-
corded every 15 min to an average of two locations per
day), although there were no strong trends between move-
ment metrics and fix rates (Additional file 1: Figure S3).
The average number of locations per pig per day was 14,
which is approximately one relocation every 1.5 h. We
accounted for the variable fix rates through various combi-
nations of random effects and weighting structures, which
are described in detail in the following section.
Data were first screened by requiring that each indi-

vidual was (1) monitored for at least 20 days, (2) had at
least two recorded locations per day, and (3) that each
monthly average movement rate or home range size esti-
mate was based on at least 15 days of monitoring.
Therefore, days which had fewer than two locations, and
months for which the individual was not monitored for
at least 15 days were discarded. Locations with dilution
of precision (DOP) values greater than 10 were also re-
moved to ensure at least moderate accuracy of locations
[47]. Finally, since it is generally accepted that wild pig
activity is primarily nocturnal due to hunting and heat
avoidance [46, 48], we only used nightly locations in our
analyses which were defined to be between 6 pm and
8 am the following morning. Thus, all references to
“daily movement” are in fact reflective of nocturnal and
crepuscular movement.

Response variables
Two types of movement values were assessed at all three
temporal scales (daily, monthly, and overall): MxD and
MHD (Fig. 1). MxD was defined to be the maximum dis-
tance between any two locations in a day, and represented
a general movement metric that reflected the farthest dis-
tance an individual would travel in one night (e.g., search-
ing for food or mates). Most of these daily maximum
distances (approximately 95%) were based on telemetry
fixes that were more than 3 h apart, and did not appear to
have any relationship with fix rate (Additional file 1: Fig-
ure S3). MHD was calculated by averaging distances that
were approximately 1 h apart within a day (Fig. 1), and
provided an idea of how much an individual moved in a
short time period (e.g., foraging). For an arbitrary example,
if an individual had fixes every half hour starting at 8:00
and ending at 10:30, four distances would be used to cal-
culate the average MHD (two from on the hours at 8, 9,
and two more from the half hour at 8:30 and 9:30).
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Therefore, sample sizes differed between the two move-
ment responses because MxD only required two locations
per day (n = 227 individuals) whereas the MHD required
at least two sequential locations within approximately 1 h
of each other per day (n = 180 individuals from all studies
except one from Texas). Consequently, the mean fix rate
per pig per day for MHD was 17, which was slightly
higher than average fix rate of 14 for all pigs. However, the
median fix rates of 12 locations/pig/day and 13 locations/
pig/day were almost identical between the two groups.
We then averaged daily movement values for each individ-
ual at the monthly and overall (all values combined)
scales. Together, these movement metrics provide an indi-
cation of how much and how far an individual tends to
travel in a day, which helps us understand an individual’s
daily movement capacity.
In addition to the movement metrics, factors affecting

home range size at the monthly and overall scales were also
explored (Fig. 2). Home range size estimates at the daily
scale were not estimated due to limitations in sample size.
To be consistent with previous literature, estimation of
monthly and overall home range size was done with 95%
minimum convex polygons (MCP) using the adehabitatHR
package [49] in the statistical computing software R [50].
Effects of sample size (number of fixes) on home range size
estimation at the overall scale is shown in Additional file 1:
Figure S4D. Overall home range size was also estimated
using autocorrelated kernel density estimation (i.e., akde in
the ctmm package; [51, 52] to understand potential ramifi-
cations of using MCP for understanding drivers of home
range size and for comparison to current and future litera-
ture. AKDE is a more modern method that accounts for
spatial autocorrelation which is inherent in GPS data with

frequent fixes (e.g., hourly), allowing for better projection of
future home range use, and thus is thought to be more rep-
resentative of home range use over a longer timescale [52].
In order to implement the AKDE method an appropriate
autocorrelation structure must be identified within a
continuous-time movement model (CTMM). We selected
initial autocorrelation parameter estimates by visually asses-
sing pooled population variograms for individuals within
each study (i.e., variogram.fit in RStudio; [51]). We used a
population approach based on locations within unique
studies for choosing the intial autocorrelation structure
since fix rates and individual behaviors were most consist-
ent within studies. These parameter guesses were then used
as the starting values for fitting the CTMM, from which
AKDE estimates of home range size were obtained. We
show differences in MCP versus AKDE estimates in
Additional file 1: Figures S4A-C and S5.

Predictor variables
Meteorological data
Daily-scale weather data were obtained by aggregating
hourly values from the 1/8th degree meteorological for-
cing dataset for Phase 2 of the North American Land
Data Assimilation System (NLDAS-2) [53, 54]. The
observation-constrained meteorological variables of
NLDAS-2 span 1979-present and are considered to be
of suitable quality for use in biological and ecological
modeling applications over North America [55]. Daily
NLDAS-2 variables included in the analysis were max-
imum/minimum/mean air temperature (°C), mean rela-
tive humidity (%), mean saturation vapor pressure deficit
(mm Hg), total precipitation (mm), mean surface pres-
sure (Pa), mean wind speed (m s−1) and total growing

Fig. 1 Schematic illustrating how daily movement values of wild pigs were calculated. Maximum distance is defined as the maximum distance
between any two locations in a day (right panel) while average 1 h distance is calculated by averaging distances that are approximately 1 h apart
(left panel)
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degree days with respect to 10 °C (GDDs) (Additional file
1: Table S1). Daily data were then aggregated to monthly
average maximum/minimum/mean temperature (°C) and
monthly total precipitation (mm) for lags of up to 1 year.
The monthly lagged data were included as proxies for
biotic productivity to reflect seasonal fluctuations in
environmental conditions, which could also be an indica-
tor of resource availability. All environmental predictor
variables were interpolated using the daily or monthly
home range centroids (mean latitude and longitude) of
the wild pig locations.

Landscape data
Distances from home range centroids to various re-
sources including water bodies, streams, agricultural
fields, and forest cover were compiled at the daily,
monthly and overall scales (Additional file 1: Table S1).
Distances to the nearest major, medium, and minor
roads (e.g., interstates, highways, and unpaved roads)
were also included. Several road classes were used to ac-
count for differences in traffic density and speed, as well
as anthropogenic activity. All distance measurements
were calculated in ArcGIS 10.3 [56].

Geographic data
Ecoregion types were also obtained for the daily, monthly,
and overall scale wild pig home range centroids. There
were nine unique level III ecoregion types in our study
area including Southern Coastal Plain, Southeastern
Plains, Mississippi Alluvial Plain, Western Gulf Coastal
Plain, South Central Plains, Ozark Highlands, Central Ir-
regular Plains, East Central Texas Plains, and Southern
Texas Plains [57].

Individual-level attributes
Sex as well as age class information was available for
most of the individuals included in our analyses. In
addition, some of the original studies included manage-
ment effects such as trapping, hunting, or harassment
(chasing with dogs, helicopters, etc.) and therefore, we
also explored the effects of management as an indicator
variable in our analyses (Additional file 1: Table S1).

Statistical analyses
We independently tested five broad categories of predic-
tors for each response (MHD, MxD, and home range
size) at each scale (daily, monthly, overall): individual-

Fig. 2 Schematic illustrating the three temporal scales (circles; 1st column) analyzed from wild pig location data in the southeastern U.S.A. from
2004 to 2016 along with which movement response variables were assessed at each temporal scale (rectangles; 2nd column). The last column on
the right shows the five general categories (temporal, geographic, landscape, meteorological, and individual-level) affecting movement and home
range size that were tested for each temporal scale
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level attributes, meteorological conditions, temporal fac-
tors, geographic characteristics, and landscape-level fac-
tors (Fig. 2; Additional file 1: Table S1). We quantified
the relationships of these five categories of predictor var-
iables separately for each response at each scale using
non-linear, parametric models that accounted for spatial
dependencies among observations. We also explored the
effects of management activities that were conducted in
our individual studies, although none significantly af-
fected movement rates on the scales we examined.
Since most of our meteorological variables were highly

correlated, we used a two-step approach to modeling the
effects of meteorological conditions (Additional file 1:
Figure S6). We first employed random forest regression
to initially screen predictor variables because of its abil-
ity to deal with large datasets, high-order interactions,
and multicollinearity [58, 59]. Then, the top uncorre-
lated (r < 0.5) meteorological predictors for each re-
sponse on each scale were carried forward into the
parametric model for interpretation (Additional file 1:
Figures S7-S10) since regression with many correlated
variables may result in biased inference. However, in the
meteorological models for MHD at the monthly scale
and MxD at the overall scale, the GAMM models would
not converge due to the particular combination of pre-
dictor variables. In these cases, we visually assessed the
variable importance plots provided by the random forest
regression (Additional file 1: Figures S9 and S10) to re-
duce the number of predictor variables, and included
the top uncorrelated predictors in the GAMM models
for which adding additional predictor variables did not
significantly improve the predictive accuracy of the
models (Additional file 1: Figure S6).
To quantify the effects of the covariates, we employed

GAMMs [60] that allowed us to account for non-linear re-
lationships between our responses and predictor variables,
as well as caveats associated with our data. GAMMs can as-
sume smooth, non-linear relationships between response
and predictor variables by expanding the projection space
of predictor variables through the use of basis functions
[61–64]. In our analyses, we used a regularization approach
to prevent overfitting models and employed penalized cubic
regression splines with equally spaced knots for our smooth
terms that shrink parameter estimates towards zero when
they are less influential [60, 63, 65]. All meteorological co-
variates were non-linearly related to our response variables
so they were included as smooth terms in all models while
distance measures were considered to be linearly related.
Differences in temporal resolution between studies and

individuals were accounted for in several ways depending
on the scale of the data. In the daily scale models, we ad-
justed for precision of movement values by weighting by
the number of locations per wild pig per day. We also
accounted for repeated observations by the same

individuals and variation among studies by specifying the
wild pig and study identification factors as random effects.
Because of strong autocorrelation at the daily scale, we in-
cluded a linear autoregressive term in all daily-scale models.
At the monthly scale, repeated observations and variation
among studies were accounted for in the same way as in
the daily models. However, the average number of locations
each wild pig had per month were used as weighting factors
to account for precision. In the overall scale models, study
identification was used as a random effect while weighting
was based on the average number of locations per day for
each wild pig. To control for spatial correlation, we
included latitude and longitude as smooth terms in all
models.

Results
Descriptive statistics
Average MxD was between 0.80 km and 2.12 km with
standard deviations ranging from 0.51 to 0.8 km, while
average MHD was lower and varied from 0.35 to 0.42 km
with corresponding standard deviations ranging from 0.34
to 0.51 km across temporal scales. The average monthly
home range size (MCP method) was 3.4 km2 (sd = 4.6 km2)
with a median of 1.8 km2 – indicating that most values
were smaller than 3.4 km2. The overall average home range
size was: 6.1 km2 (sd = 7.8 km2; MCP) and 12.4
(sd = 21.0 km2; AKDE); twice as high for AKDE relative to
MCP (Additional file 1: Figure S4A). However, median
overall home range sizes by both methods were comparable
(3.4; MCP and 4.7; AKDE) and 70% of the estimates by
both methods were within 2 km2, indicating that home
range sizes are typically quite small by both methods
(Additional file 1: Figure S4B, C). When AKDE and MCP
were not in agreement, AKDE tended to estimate much
higher home range sizes relative to MCP (up to ~95 km2

higher; Additional file 1: Figure S4A-C). Visual inspection
of movement data showed: 1) for AKDE < MCP, longer
movements were made on average and both metrics esti-
mated relatively large home ranges (Additional file 1: Figure
S5, middle column), 2) for AKDE > > MCP, average move-
ments tended to be quite low but there appeared to be
trends in time with movement (Fig. 5, right column), and
3) for AKDE ≈ MCP, movements tended to be low on aver-
age and there were no patterns in the magnitude of move-
ment over time (Fig. 5, left column). Considering all the
data, AKDE did not converge for 10 out of 227 individuals
(4.4%), with total fixes ranging from 278 to 8281.
Missouri and Texas had the greatest average movement

rates, while South Carolina had the lowest. Similarly, the
average home range size was greatest in Missouri, but
lowest in Florida (Additional file 1: Figure S2). Average
movement rates were only slightly greater, but statistically
insignificant, for individuals (or studies) that experienced
some management effect (e.g., hunting, trapping, chasing
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with dogs, or other types of harassment) with a mean
MxD and MHD of 0.81 and 0.43 km with management,
and 0.79 and 0.41 km without management, respectively.
Similarly, overall average home range sizes were also
slightly greater with management (6.2 km2 for MCP and
15.6 km2 for AKDE) than without management (6.1 km2

for MCP and 11.2 km2 for AKDE).

Maximum distance (MxD)
Individual-level attributes (sex and age), ecoregion, atmos-
pheric surface pressure, and distance to the nearest water
source were significantly associated with MxD across all
temporal scales (Fig. 3). Both the shape and magnitude of
the relationships of these predictors and movement dif-
fered across scales (Fig. 4). Males moved more than fe-
males at the monthly and overall scales (largest
difference ~ 1.3 km), whereas sub-adult males did not
move more than sub-adult females at the daily scale. Pres-
sure displayed a similar, concave (i.e., upside-down “U”)
pattern in MxD across daily and overall scales with above-
average movement occurring between 97,000 and
101,250 Pa (28.6–29.9 Hg). However, at the monthly scale
the relationship of pressure and movement was linear, in-
dicating more movement at lower pressure (Fig. 4). In
addition to pressure, temperature and precipitation were
also significant in the meteorological model at the daily
scale (R2 = 0.26), while average growing degree days was
significant in the meteorological model at the monthly
scale (R2 = 0.19). Like pressure, temperature at the daily

scale also exhibited a concave relationship with MxD,
while precipitation had a negative relationship with move-
ment (Additional file 1: Figure S11). The average growing
degree days at the monthly scale showed a weak, negative
relationship with MxD (Additional file 1: Figure S11). At
the monthly scale, only distance to the nearest water
source was significant in the landscape model (R2 = 0.14),
but had a greater impact on monthly and overall-scale
movement than on daily movement (Fig. 4). Distance to
the nearest road was also significant in the landscape
models at the overall (R2 = 0.26) and daily scales
(R2 = 0.27), and had a negative effect on MxD (Additional
file 1: Figure S11). The landscape model for MxD at the
daily scale also included a weak negative effect of distance
to the nearest forest cover (Additional file 1: Figure S11).
The variables year (Additional file 1: Figure S11) and
month (Fig. 4) were significant in the temporal model at
the daily scale (R2 = 0.1), where reduced movement oc-
curred in the summer months. Lagged precipitation and
lagged temperature were significant in the temporal
GAMM models at the monthly scale (R2 = 0.22), where
both had a generally positive effect on MxD (Fig. 4).

Mean hourly distance (MHD)
Similar to MxD, sex and age, ecoregion, and distance to
the nearest water source were significant across all tem-
poral scales for MHD, and the strength and shape of re-
lationships between movement and predictors were
dependent on temporal scale of movement (Fig. 3). Wild

Fig. 3 Venn diagrams which summarize the significant variables identified by the GAMM models for each response (MxD, MHD, and home range
size) at each temporal scale (daily, monthly, and overall). The top circle for each movement response represents the daily scale, while the bottom
left and right circles represent monthly and overall scales, respectively for movement responses and home range size. Variables are colored
according to category tested where red represents individual-level attributes, blue represents meteorological variables, purple depicts geographic
factors, green represents landscape variables, and orange depicts temporal factors. Factors contained in all circles (i.e., top, left, and right) such as
ecoregion, sex-age, and distance to water, were significant in models across the three temporal scales
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pigs in the Mississippi Alluvial Plain (MAP) ecoregion
were found to have the lowest MHD, and wild pigs in
the Southern Texas Plain were found to have the great-
est MHD across all scales (Fig. 5). As with MxD, dis-
tance to the nearest water source was not as influential
on MHD at the daily scale and a stronger, positive effect
was detected with distance to the nearest stream at the
monthly and overall scales (Fig. 3). Temperature was sig-
nificant in the meteorological models at the daily
(R2 = 0.14) and overall scales (R2 = 0.28), while average
pressure was significant at the monthly (R2 = 0.13) and
overall scales (Additional file 1: Figure S12). Comparable
to MxD, temperature displayed a concave relationship
with MHD at the daily scale, but was linearly related to
movement at the monthly and overall scales (Fig. 5). In
addition to distance to the nearest water sources, dis-
tance to the nearest road was significant and had a nega-
tive effect on movement in the landscape model for
MHD at the monthly (R2 = 0.09) and overall (R2 = 0.18)
scales (Additional file 1: Figure S12). Distance to the
nearest forest cover was also significant and had a nega-
tive effect on MHD in the landscape model at the daily
scale (R2 = 0.15; Additional file 1: Figure S12). Year was
significant in both temporal models at the daily
(R2 = 0.1) and monthly (R2 = 0.16) scales where below-
average MHD was predicted for summer months (Fig. 5

and Additional file 1: Figure S12). Precipitation with a
lag was also significant at the monthly scale (Additional
file 1: Figure S12), where more movement was predicted
when there was more precipitation several months prior.

Home range size
Significant predictors of home range size across monthly
and overall scales were similar to the movement re-
sponses, where sex and age, ecoregion, and distance to
the nearest water source or agriculture were significant
(Figs. 3 and 6). As with the movement responses, male
wild pigs had home ranges 3.5—5 km2 larger than fe-
males (Fig. 6). Smaller home ranges were found in the
Mississippi Alluvial Plain (MAP), Southern Coastal
Plains (SCoP), Western Gulf Coastal Plains (WGCP) and
Southeastern Plains (SEP) ecoregions relative to those
found in the Ozark Highlands (OH) ecoregion (Fig. 6).
Pressure was the only significant meteorological variable
at both scales using MCP, while temperature was the
only significant meteorological variable using AKDE.
Similar to other movement response variables, pressure
and temperature were negatively related to home range
size, and did not show a concave relationship as with
daily scale metrics of movement (Fig. 6) (although the
relationship of AKDE home ranges and temperature was
non-linear). Distance to the nearest water source was

Fig. 4 Relationships between significant variables for the average maximum daily distance (MxD) analyzed from wild pig location data in the
southeastern U.S. from 2004 to 2016 across temporal scales. Top row depicts the daily scale, middle row shows the monthly scale, and bottom row
depicts the overall scale. Columns correspond to the five broad categories of predictor variables tested
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positively related with home range size at both scales
(Additional file 1: Figure S13), although it was not sig-
nificant using the AKDE estimates. Distance to the near-
est agricultural field was significantly negative and linear
at the overall scale only, for both MCP and AKDE esti-
mates, although the relationship was weaker for AKDE
estimates (Fig. 6). The variables month and precipitation
with a lag were significant at the monthly scale (Add-
itional file 1: Figure S13), while year was significant at
the overall scale for MCP but not AKDE home range
size estimates (Fig. 6).

Discussion
Drivers of movement capacity may differ in shape and
magnitude depending on the temporal scale of movement
and spatial extent of the data. Understanding spatial differ-
ences in reaction norms could be important because driv-
ing factors may constrain movement differently across
space and time. For example, we found a distinct move-
ment reaction norm in response to temperature, but our
data were limited to the southern U.S.A. Wild pigs occur-
ring in colder climates may not display the same con-
straints or reaction norm shape. Elucidating these
relationships across a wide geographic gradient will help
us understand which factors driving movement are pri-
marily a result of physiological constraints, and which

factors affecting behavior may be driven by surrounding
landscape characteristics.
The temporal scale of movement analyzed should coin-

cide with the specific research questions, and the covari-
ates used in the analyses should complement processes
that act on the same temporal scale. For example,
reproduction in some wildlife species is thought to affect
home range sizes around the time of birth [45], but this
phenomenon could be overlooked at certain scales. In fact,
one sow had a monthly home range size half as large as
usual when she gave birth, but this could not be deter-
mined at the overall scale. Thus, our results emphasize
the importance of choosing the correct spatial and tem-
poral scales for conducting analyses aimed at predicting
movement due to climate or other factors.
We also found evidence of regional differences in the

magnitude of various factors affecting movement capacity,
such as proximity to water resources, which reflect locally-
adapted behaviors. For example, the slope on the linear re-
lationship between MHD and distance to the nearest water
body is twice as large for wild pigs in one area of Texas
(β = 0.32) as it is for wild pigs in an area of Florida
(β = 0.14). This difference is likely because water resources
are less prominent in Texas than in Florida so wild pig
movement in Texas is more affected by distance to the
nearest water body. Conversely, if the data from Georgia or

Fig. 5 Relationships between significant variables for the average hourly distance moved (MHD) analyzed from wild pig location data in the
southeastern U.S.A. from 2004 to 2016 across temporal scales. Top row depicts the daily scale, middle row shows the monthly scale, and bottom
row depicts the overall scale. Columns correspond to the five broad categories of predictor variables tested
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Louisiana are analyzed individually, no significant effect of
distance to the nearest water body is detected because there
are abundant water resources available (i.e., no wild pigs in
our study from Georgia or Louisiana were more than
1.05 km away from a stream or water body).
Furthermore, general patterns in movement responses

can be determined from pooling and analyzing data from
multiple sources, so that common relationships between
variables affecting movement can be quantified. Add-
itionally, these patterns in behavior can be predicted for
different areas, and used to provide guidelines for man-
agement purposes. Due to the resource limitations of
many studies, the statistical power necessary to identify
certain factors affecting movement capacity may be lim-
ited because of small sample sizes. In many cases, GPS
collars malfunction or fall off the animal prematurely,
resulting in unbalanced statistical designs. In other cases,
there may not be sufficient resources available to moni-
tor more than a handful of individuals over a short
period of time so examining seasonal effects on move-
ment capacity can be challenging. Thus, general infer-
ence can be acquired on mechanisms affecting wildlife
species across broad spatial and temporal scales with an
approach similar to what we present here, which is use-
ful for developing optimal strategies for managing or
conserving species.

Meteorological effects
Pressure was highly influential to both movement responses
and home range size across all temporal scales, which has
been observed in other species including deer [41], red fox
[37], coyote [42], domestic cattle [40], and moose [38]. The
concave relationship between pressure and MxD at the
daily scale suggests an optimal range for pig movement
(97500–101,250 Pa), which corroborates previous work
where increased wild pig activity has been observed when
pressure is high than low, typically preceding a frontal
boundary (Martin J. Factors Affecting Hog Movement.
USDA. personal communication). Similarly, [66] found a
behavioral response in mountain sheep with changing pres-
sure, conceivably in anticipation of an extreme weather
event. Likewise, the correlation with monthly home range
size and pressure could be a result of seasonal variation in
weather patterns. At the daily scale, very low pressures re-
duced movement rates (i.e., likely during a storm), whereas
at the monthly scale, low pressure systems from storms
were averaged across the month and thus the concave rela-
tionship was too weak to observe (and was not even signifi-
cant using the AKDE method of estimation). This implies
that using monthly or longer meterological averages may
not be a good predictor of changes in animal movement for
applications such as determining optimal baiting condi-
tions, or predicting impacts of climate change, which could

Fig. 6 Relationships between significant variables for home range size analyzed from wild pig location data in the southeastern U.S.A. from 2004
to 2016 across temporal scales where the top row depicts the monthly scale and the middle and bottom rows depict the overall scale for MCP
and AKDE estimates of home range size, respectively. Columns correspond to the five broad categories of predictor variables tested. *NS indicates
variables that were not significant with AKDE home range values
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affect movement on finer spatial scales. Nonetheless, using
easy-to-obtain meteorological variables such as pressure on
small spatial scales to summarize severe storm conditions
can help determine how movement behaviors are affected
by extreme weather.
Temperature also appeared to be highly influential

on wild pig movement across all scales where move-
ment was reduced during extreme conditions. Similar
to pressure, the relationship between temperature and
movement at the daily scale was concave, whereas a
linear (or non-concave, non-linear for AKDE) rela-
tionship was found at broader scales – thus not only
the magnitude but also the shape of the reaction
norm changed depending on temporal scale. Since
there is a consistent pattern in the shape of relation-
ships between movement rates and our meteorological
variables, these relationships may in fact reflect sea-
sonal weather fluctuations. For example, it has been
suggested that wild pig behavior is primarily noctur-
nal during the summer months, but tends to be more
diurnal during the fall, winter, and spring months [45,
67]. Coyotes have also been shown to have seasonal
variation in home range size as a result of fluctua-
tions in resource availability and behavior [68]. Quan-
tifying the magnitude and shape of these reaction
norms is important for predicting constraints in ani-
mal movement capacity due to climate change or in-
vasion into new geographic areas.

Temporal effects
In addition to current meteorological conditions, we tested
the effects of lagged meteorological conditions on move-
ment assuming that weather conditions in the past may de-
termine current food abundance due to seasonality or
interannual variation in weather patterns. Examining sea-
sonal effects this way as opposed to using month as a cat-
egorical variable was more informative because of the large
geographical scale we examined – e.g., January in Florida is
not the same as January in Missouri. We found relation-
ships between the 2-month temperature and 9-month pre-
cipitation lag variables and monthly home range size, which
could reflect seasonal differences in movement patterns
resulting from interannual fluctuations in food abundance.
Our results are consistent with [44, 69, 70] which found
evidence of range shifts in wild pigs due to fluctuations in
resource availability arising from seasonal changes, such as
migration towards agricultural areas during the summer
months. Other studies have also found seasonality to sig-
nificantly affect home range size of species such as coyote,
raccoon, mule deer, and elk as a result of food availability
[43, 68, 71, 72]. Thus, lagged meteorological variables may
be a useful means of quantifying seasonal effects across
large spatial scales which show different weather patterns
throughout the year.

Landscape effects
We found that distances to various resources, especially
water, roads or agriculture, significantly affected move-
ment rates across all scales, but the magnitude of this ef-
fect was greater at the monthly and overall scales. Many
wild pigs in our analyses were likely near surface water
such as puddles, small marshes, and vernal pools, and
hence may not have been affected on a daily basis by the
need for more substantial bodies of water. However,
water bodies such as ponds, lakes, and rivers may be uti-
lized more diurnally and thus their effect may only be
reflected across longer time frames as in our monthly
and overall scales.
Distance to the nearest major road was also found to

affect wild pig movement across all scales. Roads can nega-
tively affect wildlife species by creating barriers to move-
ment [73]; however, the spread of invasive species can also
be facilitated by roads [74]. Additionally, many vehicle colli-
sions with wild pigs and other wildlife occur on roadways
[75–78]. Therefore, studying the effects of roads as barriers
or facilitators to animal movement will continue to be a
critical component of wildlife conservation and will help re-
duce the risk of human-wildlife conflict.
Wild pigs are known to commonly exploit cropland,

causing high monetary losses [16]. However, home range
size, using both MCP and AKDE estimates, was found
to have a negative, linear relationship with distance to
the nearest agriculture predicting lower movement rates
for wild pigs residing further away from agricultural re-
sources. As most pigs were within 5 km of agriculture in
our dataset (i.e., within reasonable distance to travel
regularly to crops for feeding), the negative relationship
suggests that pigs residing further away from crops, may
not travel to the crops routinely (as we would expect a
positive relationship in that case), and instead be using
another food resource [70, 79, 80]. Our results also sug-
gest that crops may influence wild pig movement ecol-
ogy – pigs residing near crops, a massively abundant
food resource, move less than those living further away
and using different food sources.

Geographic effects
Ecoregion was a significant factor in all models and across
all scales, demonstrating the predictive utility of under-
standing the effects of broad geographic differences on
movement capacity. Wild pigs in drier ecoregions (South-
ern Texas Plains and Ozark Highlands) had above-average
movement rates across all scales, while pigs in mesic ecor-
egions (Mississippi Alluvial Plain and Southern Coastal
Plain) had below-average movement rates. Wild pigs in
the drier ecoregions are predicted to move more because
water resources are further away on average. Thus, eco-
region may describe numerous characteristics of a land-
scape, and could be a simple predictor of movement levels
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which is valuable for planning management programs
across a large spatial scale [81, 82].

Individual-level effects
Sex and age had a significant effect on wild pig home
range size and movement rates across all temporal scales.
Unsurprisingly, adult male wild pigs were found to have
larger home range sizes and greater movement rates than
female pigs [31, 45, 83], which has also been observed in
many other species such as raccoons [72, 84], bobcats
[85], and moose [86]. Thus, individual-level attributes
such as sex and age reflect social behaviors that affect
movement and are important to consider for prediction
and management. For example, female wild pigs are
known to reside with other females and therefore large
traps are more effective for capturing several females at
the same time [87]. However, male wild pigs are known to
be solitary, so hunting with dogs has found to be more ef-
fective at capturing males than females [45].

Effects of MCP versus AKDE home range estimates
Our comparison of MCP and AKDE estimates showed
that MCP captured a similar home range estimate as
AKDE 70% of the time, but otherwise AKDE led to ex-
tremely high (up to 900% higher than MCP) or slightly
lower (up to 36% lower than MCP) estimates. When
AKDE < MCP, movements and home range sizes tended
to be much larger for both estimates, relative to when
MCP = AKDE or when AKDE > > MCP. When AKDE
> > MCP, movements were lower on average but there
were trends over time in maximum movement, which
could indicate dispersal-type (non-stationary) behavior.
The AKDE method we applied is based on the assumption
that movement patterns are consistent in time such that
these large estimates of home range using AKDE could be
biased. When the movement data are non-stationary, the
underlying movement model of AKDE anticipates more
long-range movements in the future leading to a larger
home range estimate. In addition, although AKDE is more
statistically sound than MCP [52], the very high AKDE es-
timates do not match the trends seen in our movement
metrics (MxD and MHD) at the overall scale (where MAP
ecoregion individuals moved less relative to other ecore-
gions as MCP predicts), and they are large outliers relative
to the general patterns of home range size, further sup-
porting the idea that the movements in these individuals
were not captured well by the model, producing biased
estimates.
The large, outlier AKDE estimates also likely explain

some of the differences in significance of predictors of
MCP versus AKDE home ranges. For example, with the
AKDE method, the ecoregion effect was removed and
individuals in the MAP did not show lower than average
home ranges as they did with MCP. However, this

discrepancy was likely because of a large estimate for
one individual. Specifically, considering all estimates
from the MAP, the AKDE did not converge on an esti-
mate for 3 individuals in the MAP (23% of the MAP
data), was very close to MCP for 8 individuals (61.5% of
the MAP data) but estimated a home range size 50 times
higher for one individual (7.7% of the MAP data). Thus,
some of the discrepancies among MCP and AKDE home
range estimates in terms of the significance of predictors
could be due to the much larger variation in AKDE ver-
sus MCP; specifically the very high estimates which may
have been biased.

Caveats and considerations
Using metrics such as maximum distance and home
range size are beneficial because they can be calculated
from a wide variety of temporal sampling schemes, and
are commonly used making comparison with previous
studies easier. On the other hand, metrics like MHD are
more data-limiting because resolution can only be as
fine as the most temporally sparse dataset. Furthermore,
there were many times for which GPS fixes could not be
obtained, or where fixes were insufficiently accurate to
be included (e.g., had high dilution of precision). Aside
from temporal resolution of telemetry data, there may
be other discrepancies between studies which must be
considered such as length and timing of monitoring in-
dividuals, which we accommodated using weights. We
were unable to include all top predictor variables in two
of our models (overall meteorological MxD and monthly
temporal MHD) due to convergence issues. Therefore,
for these models we only included variables in the subse-
quent GAMMs that highly affected the predictive accur-
acy in the random forest regression. One could also use
a stepwise approach to choose an optimal set of pre-
dictor variables, or use alternative spline types or larger
penalties in the GAMM model if convergence problems
are encountered. However, a stepwise selection proced-
ure may be computationally intensive, especially if there
are a large number of data points, whereas a computa-
tionally efficient and non-parametric variable selection
procedure such as random forests can be utilized with-
out the need for extensive knowledge of spline regres-
sion. Therefore, our approach allowed for general
inference of wild pig movement across the southern
U.S.A. by including data from several different studies
while accounting for differences in their designs and ad-
dressing issues with multicollinearity.
For simplicity of presentation, we did not look at inter-

actions between extrinsic and intrinsic factors in our
analysis. However, it is possible that extrinsic factors
such as weather could result in different movement reac-
tion norms as a function of individual-level attributes.
For example, perhaps adult males show a different
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reaction norm to temperature relative to females such as
[81] found, where home range sizes of males were not
affected by drought conditions but female home range
sizes changed according to food availability and
temperature constraints. Quantifying these individual-
based differences in reaction norms could improve our
fundamental understanding of movement capacity and
lead to better prediction of how meteorological changes
may impact population ecology.

Conclusions
Our analyses show how simple metrics can be used to
quantify movement capacity across multiple spatio-
temporal scales. Numerous challenges exist in combining
multiple datasets, but these can be accounted for with a
flexible modeling approach such as machine-learning algo-
rithms and/or generalized additive models. Since the eco-
logical community will inevitably continue collecting large
telemetry datasets due to the increased availability of GPS
technology, further analytical research could include devel-
oping novel methods to explicitly address challenges associ-
ated with using data from many different sources with
varying degrees of resolution. Nonetheless, our approach is
straightforward and easily implemented using existing
packages in R with commonly known syntax, making it
computationally feasible to apply to numerous temporal
scales of data (see SI code). Therefore, similar to [1], we ad-
vocate for more cross-scale studies which inherently exam-
ine different components of movement across multiple
scales within a single framework. While it is always
important to focus data collection on an appropriate
spatio-temporal scale for a target question, understanding
cross-scale effects can provide additional insights that may
help movement prediction as environments change. Also,
movement constraints at one scale may be affected by con-
ditions at another scale, generating different reaction norms
for movement depending on the cross-scale context. To
achieve the goal of increasing the frequency of cross-scale
movement studies, we encourage the collaboration between
wildlife researchers and managers by sharing data directly
or through open-source databases (e.g., EURODEER,
EUROBOAR, MoveBank, etc.).
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