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movement: a study on tropical snakes
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Abstract

Background: Individual movement is critical to organismal fitness and also influences broader population
processes such as demographic stochasticity and gene flow. Climatic change and habitat fragmentation render the
drivers of individual movement especially critical to understand. Rates of movement of free-ranging animals
through the landscape are influenced both by intrinsic attributes of an organism (e.g., size, body condition, age),
and by external forces (e.g., weather, predation risk). Statistical modelling can clarify the relative importance of those
processes, because externally-imposed pressures should generate synchronous displacements among individuals
within a population, whereas intrinsic factors should generate consistency through time within each individual.
External and intrinsic factors may vary in importance at different time scales.

Results: In this study we focused on daily displacement of an ambush-foraging snake from tropical Australia (the
Northern Death Adder Acanthophis praelongus), based on a radiotelemetric study. We used a mixture of spectral
representation and Bayesian inference to study synchrony in snake displacement by phase shift analysis. We further
studied autocorrelation in fluctuations of displacement distances as “one over f noise”. Displacement distances
were positively autocorrelated with all considered noise colour parameters estimated as >0. We show how the
methodology can reveal time scales of particular interest for synchrony and found that for the analysed data,
synchrony was only present at time scales above approximately three weeks.

Conclusion: We conclude that the spectral representation combined with Bayesian inference is a promising
approach for analysis of movement data. Applying the framework to telemetry data of A. praelongus, we were able
to identify a cut-off time scale above which we found support for synchrony, thus revealing a time scale where
global external drivers have a larger impact on the movement behaviour. Our results suggest that for the
considered study period, movement at shorter time scales was primarily driven by factors at the individual level;
daily fluctuations in weather conditions had little effect on snake movement.
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Background
One of the most basic questions that can be asked in be-
havioural ecology is “when, and why, do animals move?”
Movement may be critical for an individual’s fitness
(influencing its ability to forage and find mates), and
may also contribute to its inclusive fitness (via dispersal
and concomitant reduction in kin competition). How-
ever, movement is also costly (in energy and predation
risk) and is constrained by external conditions (e.g., cold
temperatures constrain movement in ectotherms). The
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fundamental questions of when and why an animal
moves is difficult to resolve because multiple competing
factors influence an individual’s decision of when and
how far to move.
Typically, when analysing patterns of movement (or sur-

rogates such as encounter rates or “trapability”) over time,
researchers treat movement rates in each time period as
independent, and then correlate movement rates with en-
vironmental or state variables measured within each of
those time periods. This approach suffers from two major
drawbacks. First, movement decisions may be based on
some unmeasured (and/or unsuspected) aspect of the en-
vironment. In practice, this leads to testing for correlation
with a large number of potential explanatory variables,
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inflating type I error rates (e.g., [1]). Second, movement
between time periods is unlikely to ever be truly inde-
pendent, and the scale at which this non-independence
plays out may also not be discrete. That is, an individual’s
movement today may be influenced by what it did
yesterday (and indeed, throughout its earlier life). At-
tempts to test for correlations with explanatory vari-
ables may yield spurious results if the statistical
method employed doesn’t correctly account for the
autocorrelation [2]. One means of overcoming the risk
of misinterpreting autocorrelated data is the applica-
tion of statistical tests that allow explicit modelling of
autoregressive (AR) errors (e.g., time series analyses
[3,4]). Here, we take an alternative approach and simply
ask whether movement of individuals is synchronous.
Synchronous movement would indicate that activity is
driven or limited by external environmental factors that
affect the whole population, possibly in combination
with internal, rhythmic synchronization. A lack of syn-
chrony, however, would imply that neither environ-
mental nor rhythmic synchronization is occurring and,
therefore, that any search for global factors to explain
movement is pointless.
The importance of factors at the individual level vs

global external factors may further depend on the time
scale that is considered. At larger time scales, seasonal
patterns in food availability may cause synchronous
movement [5,6]. For animals with clear migratory behav-
iour, such as Monarch butterflies [7] or wildebeest [8],
synchronization may be obvious at the seasonal scale.
More subtle external synchronization may be present
within a season, but the time scale at which this occurs
may be less evident. Resolving this timescale can clarify
which external factors affect movement pattern, and con-
sequently what temporal resolution should be considered
when testing for explanatory variables. Further, the ap-
proach we use here (spectral analysis) clarifies the autocor-
relation structure of the data across multiple time scales,
thus identifying time scales of particular importance in the
movement pattern.
In this study, we investigate whether the movement of

a large tropical ectotherm, the northern death adder
(Acanthophis praelongus) is influenced by global (cli-
matic) variables, or by factors working at the individual
level; and how this relationship depends on the time
scale considered. The northern death adder is a relatively
large (up to 500 g) terrestrial ambush-foraging elapid
snake. As with all snakes, we might expect movement of
death adders to be sensitive to weather conditions, espe-
cially temperature. In temperate climates, most days of
the year may be too cold for snakes to move [9,10]. In
tropical environments however, thermoregulation may
cause snakes to stay out of the sun to avoid overheating
[11,12]. Snakes also alter their movement behaviour in
response to other climatic factors such as humidity
[13-15], wind speed [14] and precipitation [16].
Snake movement is also affected by trophic interactions.

Predation risk is generally higher when the individual is
active [17] and the individual may alter its movement be-
haviour in response to its perception of predation risk.
Prey availability may also influence snake movement in
several ways. Individuals are expected to perform area re-
stricted search if they perceive a high abundance of prey,
but to shift location if rates of prey encounter are low
[5,18]. Subsequent to catching prey, a snake is further
expected to reduce movement rates in order to digest the
prey. At a shorter time scale, these trophic interactions
are likely to influence movement mainly at the individual
level. However, large-scale fluctuations in prey availability
may cause synchronous (seasonal) movement of many in-
dividuals within a snake population [6].
Our aim here is to investigate if the movement of A.

praelongus is driven by some global, external factors
(such as weather conditions) that influence the displace-
ment of all snakes. Hastings [19] pointed out the value
of using phase shift analysis in order to study synchrony
in ecological time series and we here implement a
Bayesian approach for hypothesis testing based on Devi-
ance Information Criterion (DIC) [20]. In order to provide
insight into the relevant timescales of A. praelongus move-
ment ecology, we also study the autocorrelation patterns
of its movement. By spectral representation and (hierarch-
ical) Bayesian modelling, we analyse fluctuations in dis-
placement distances as “one over f noise” [21].

Methods
Study site and data collection
Here we use a subset of movement data that was col-
lected during a study designed to examine survival rates
in free-ranging death adders following the arrival of an
invasive species [22]. Snakes were tracked at Fogg Dam,
in the Northern Territory, Australia. In total, 54 individ-
uals were included in the study, but most of these were
only tracked for shorter periods, leaving them unsuitable
for the purpose of identifying synchrony at different time
scales. Our analysis also requires data to be continuous
(i.e., no breaks in the individual time series), and for
multiple individuals to be measured contemporaneously.
Of the total data collected for the work in Phillips et al.
[22], we therefore chose a 64-day period (beginning 3
February 2006, in the “Wet Season”) across which six
adders were relocated every day via radiotelemetry (for
detailed methods, see Phillips et al. [22]). All individuals
were males, which is likely to be a result of sex-biased
mortality in response to the cane toad invasion [23].
Although the restriction of our analysis to males prevents
us from investigating differences between males and fe-
males, it avoids problems with possible asynchronous
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behaviour induced by sexual dimorphism. Adders were
tracked on the Adelaide River Floodplain in Australia’s
Northern Territory adjacent to Beatrice Hill (all adders
were released at 12.640141°S, 131.315548°E).
Movement distances of death adders are positively

skewed, with higher probability of shorter movements.
In the spectral analysis below, we assume frequency
components to be independent and at moderate levels
of autocorrelation we should expect approximately zero
skewness [24]. In order to reduce the skewness of dis-
placement distances we performed a power transform of
the data by Xt;n ¼ Dc

t;n , where Dt,n is the displacement
distance of individual n at time t and c is calculated by

minimizing
XN
n¼1

Skewness Dc
⋅;n

� ���� ���. Here, D⋅,n refers to all

displacement distances of individual n and N is the
number of individuals (i.e. N = 6). We estimated c = 0.17
and performed the analysis of synchrony and autocor-
relation on Xt,n.

Synchrony of movement
We investigated whether adder movement was synchron-
ous and identified the time scale on which such synchrony
was present. We did this by extending a method presented
by Lindström et al. [25], based on a combination of phase
shift analysis and Bayesian inference. A time series of
length L has L/2 wave components, however when L is an
even number (as it is in this data set), the phase of the
highest frequency is either 0 or π and is here excluded
from the analysis of phase and we define l as the l = L/2-
1 = 31 We define θ as a matrix of dimensions l × N,
where θf,n is the phase of frequency f for the time series
of individual n.
The basic outline of the analysis is to determine if

phases of each considered frequency are better described
by some circular distribution, here a Wrapped Cauchy
Distribution (WCD), centred at a mean phase μf, or by a
uniform circular distribution, Uniform (0, 2π). The WCD
is given by

P θf ;njμf ; ρf
� �

¼ 1
2π

1−ρ2f

1þ ρ2f −2ρf cos θf ;n−μf
� � ð1:1Þ

where ρf is the mean cosine of the distribution of
phases for frequency f and describes the level of phase
synchrony for that frequency, with ρf = 0 indicating no
synchrony and ρf = 1 indicating perfect synchrony. We
want to find the frequency φ where the phase data is
better described as synchronous for 0 < f ≤ φ and ran-
dom for frequencies φ < f ≤ l, where l is the total num-
ber of frequencies. If we can locate such cutoff, we can
conclude that synchrony is present for time scales
modeled by f for 0 < f ≤ φ but not for φ < f ≤ l. The likeli-
hood is written

P θjμ; ρð Þ ¼
Yφ
f¼1

YN
n¼1

P θf ;njμf ; ρf
� �( )

2πð Þ−N l−φð Þ

ð1:2Þ

where μ and ρ are vectors of length l, containing the fre-
quency specific parameters μf and ρf, respectively, for f =
1,2…,l.
A caveat of this study is the number of individuals

available. With N = 6, only six data points are available
to assess the presence or absence of synchrony for each
frequency. One way to circumvent this problem would
be to construct a model where ρ1 = ρ2 =… ρφ. This how-
ever would assume identical phase synchrony for all fre-
quencies 0 < f ≤ φ, which seems too crude an assumption.
However, we may expect that synchrony is not entirely in-
dependent and by constructing a hierarchical Bayesian
model, we allow for “borrowing strength” [26] between
frequencies. The Bayesian model then has the form

P μ; ρ;M; νjθð Þ∝P θjμ; ρð ÞP ρjM; νð ÞP μð ÞP Mð ÞP νð Þ;
ð1:3Þ

where P(ρ|M, ν) is the hierarchical distribution for ρ.
This is here chosen to be a beta distribution defined by
its mode M and shape ν = α + β, where α and β are the
two shape parameters of the standard parameterization
of the beta distribution. Further, P (μ), P (M) and P (ν)
indicate (hyper) prior distributions.
We use Deviance Information Criterion (DIC) for model

selection, DIC ¼ 2pD þ D �ξ
� �

, where pD is the effective

number of parameters and D �ξ
� �

is the deviance of the ex-

pected value of parameters, �ξ ¼ �μ
�ρ

� �
. Here, �μ and �ρ are

vectors of length l, containing the arithmetic and circu-
lar mean, respectively, of the posterior estimates of μ
and ρ, respectively.

The colour of movement
While synchrony is the main focus of our study, the
autocorrelation pattern provides additional information
about processes influencing movement. Recent studies
[27,28] have demonstrated the power of spectral methods
to extract information from animal relocation data. The
relationship between frequency and amplitude can be
used to analyse autocorrelation patterns. This is conveni-
ently expressed in the periodogram, which contains infor-
mation about how the variability in the data is distributed
over different frequencies. Positively autocorrelated time
series are commonly denoted “red” because (like red light)
they are dominated by sine wave components of low
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frequencies. For the same reason, negatively autocorre-
lated time series are dominated by high frequencies and
denoted “blue”, and time series with no relation between
frequency and amplitude are considered “white”. The cal-
culations for obtaining the periodogram and phases of a
time series are based on Fast Fourier Transform (FFT)
and may be found in [25].
Within ecological studies of environmental fluctua-

tions, the analysis of time series colour is commonly per-
formed by what is known as “one over f noise” [21]. This
has proven to be a good model for both temporal [29]
and spatial [30] considerations of ecological systems and
assumes that Periodogram(f ) ∝ f− γ, where f is frequency
and the colour parameter γ is negative for blue noise,
positive for red, or zero for white. This model is linear
when considered on log-log axes and commonly γ is cal-
culated as the slope of this linear fit of log (f ) vs log (peri-
odogram). This however only provides a single point
estimate and does not include parameter uncertainty.
Here we instead use hierarchical Bayesian analysis and
thereby obtain posterior probabilities of parameters at
both the individual and population level. As such, we ac-
knowledge the uncertainty of parameters at the individual
level when estimating the population level parameters.
We define ψ as a matrix of dimensions l × N where

the element ψf,n s the periodogram ordinate of individual
n and frequency f. We follow the Whittle approximation
[31] for modelling of periodogram ordinates and model
the probability of the periodogram of frequency f of indi-

vidual n as Exp ψf ;njY −1
f ;n

� �
where Y f ;n ¼ anf

−γn . Here, γn

is the colour parameter for individual n and an is an in-
dividual specific nuisance parameter related to the over-
all magnitude of the fluctuations. Defining a as a1, a2…
aN, and γ1, γ2… γN, the full hierarchical Bayesian model
for the periodogram is written

P a; γ; ξa; ξγ jψ
� �

∝
YN
n¼1

Ym
f¼1

Exp ψf ;njY −1
f ;n

� �" #
P anjξað ÞP γnjξγ

� �" #
P ξað ÞP ξγ

� �
;

ð1:4Þ

where P(an|ξa) and P(γn|ξγ) are hierarchical priors with
hyper parameters ξa and ξγ, respectively, and hyper priors
P(ξa) and P(ξγ), respectively. We define ξγ≡ �γ ; σγ

� �
and

model γn eNormal �γ ; σγ
� �

. Because an is inherently posi-
tive, we define ξa≡(ālog, σa log) and model log(an) ~Normal
(ālog, σa log). The main hierarchical parameter of interest in
this study is �γ , which may be interpreted as a population
level measure of autocorrelation and is estimated such
that uncertainty at the individual level is incorporated.
Elicitation of hyper priors P(ξa) and P(ξγ) are treated in
Prior elicitation(below). Parameters are estimated by
Markov Chain Monte Carlo (MCMC) as described by
[25], and computation was performed in MATLAB (The
MathWorks, Inc., Natick, Massachusetts, United States).
In order to validate the choice of likelihood function

(i.e. 1/f model with independent, exponentially distrib-
uted ordinates) we also perform a residual test. This is
essential because the Whittle approximation may be vio-
lated when considering highly autocorrelated time series.
For each individual, we repeatedly generate realizations
of Y f ;n ¼ anf

−γn by random, joint draws of an and γn
from the posterior distribution (as given by the MCMC)
and calculate Zf,n = ψf,n/Yf,n. We test for autocorrelation
by calculating the Pearson correlation for autocorrelation
of lag one, five and ten and for each individual we analyse
the autocorrelation by the proportion of realizations that
generated a significant (by p < 0.05 limit) autocorrelation.
Similarly, we test for the assumption of exponentially dis-
tributed ordinates by the proportion of realizations that
tested significant by a Kolmogorov-Smirnov test. We con-
sider tests significant if more than 50% of the realizations
yields p < 0.05.
Prior elicitation
Our aim here is to use vague priors, hence making infer-
ence mainly based on the data. For synchrony parame-
ters, this is promoted by the alternative parameterisation
of the beta distribution used for P(ρ|M, ν). For the mode
parameter M, a vague prior can be defined as P(M) =
Uniform(0, 1). It is difficult to have informative a priori
beliefs about the shape parameter ν, and we therefore
define a vague hyperprior. For this purpose we want to
allow the possibility of both large and small values, corre-
sponding to small and large difference among frequency
specific synchronies ρ, respectively. For this purpose, we
specify P (ν) as a gamma distribution with 95% of its dens-
ity between five (large difference) and 200 (small differ-
ence). We further specify P(μ) = Uniform(−π, π).
To ensure that our results are insensitive to the choice

of prior, we perform a sensitivity analysis. First we investi-
gate the sensitivity to the choice of P (ν) and implement
two alternative priors: one that that has 95% density be-
tween five and ten (i.e. informative with high probability
of low values), and one that has 95% density between
100 and 200 (i.e. informative with high probability of
high values).
We also investigate the effect of P (M) by using two al-

ternative distributions: Beta (0.5,0.5) and Beta (5,5). Com-
pared to the uniform distribution, these distributions have
larger and smaller variance, respectively.
For the parameters used in the analysis of the auto-

correlation pattern, we implement conjugate priors �γ e
Normal γ̂ ; τ̂�γ

2
� �

and σ2
γ e Inv‐χ2 ν0; σ20

� �
, respectively,

where Inv ‐ χ2 is the scaled inverse χ2 distribution. We
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set γ̂ ¼ 0 and τ̂�γ
2 ¼ 4, hence specifying a prior for �γ that

has 95% of the density between -4 and 4. This prior be-
lief includes both highly negative and positive values of
population level autocorrelation �γ . Following sugges-
tions from Gelman et al. [26], the hyperparameters ν0
and σ2

0 were implicitly given from our prior beliefs of
about σ2γ in terms of the most likely value (i.e. the mode)

and some upper percentile. We use mode = 0.0625 and
an upper 95% percentile of one. The mode follows from
the assumption that the standard deviation of the distribu-
tion of γ around �γ is most likely 0.25 (i.e. approximately
95% of individual γn approximately within �γ � 0:5 ) and
the upper percentile follows from the assumptions that we
are 95% sure that σγ < 1 (i.e. 95% of individual γn approxi-
mately within �γ � 2).
A priori beliefs about ālog and σa log are intricate be-

cause a not only relate to the magnitude of the fluctua-
tions of displacement distances, but also depend on γ.
We therefore use an improper but flat prior with

P(ālog) ∝ 1 and P σ2
a log

� �
∝1.

Results
Table 1 provides some descriptive statistics and Figure 1
(top panel) shows the daily displacement of the different
individuals. The full data is available in Additional file 1:
Table S1.

Synchrony
Figure 2 plots ΔDIC, defined as the difference between
model DIC and DICmin, where the latter is the DIC of
the model with the lowest score. This was found for φ = 3,
which corresponds to a time scale of 21 days (given by
64/3). Spiegelhalter et al. [20] suggest that a difference
in DIC of more than three constitute a model with con-
siderably less support than the preferred model. Figure 2
shows that the jump between φ = 3 and φ = 4 is greater
than this cutoff, suggesting that the best model describes
the data as being synchronous only for frequencies equal
to and below this cutoff. Consequently, we conclude that
for these data, movement is synchronous at time scales
Table 1 Descriptive statistics of the six Acanthophis praelongu

Individual 1 2

Mean distance (m) 39 17

Standard deviation of distances (m) 55 32

Cumulative distance (m) 2487 1073

Maximum distance (m) 216 179

Start position (easting) 751346 751474

Start position (northing) 861438 861494

End position (easting) 751351 751645

End position (northing) 861778 861438

Distance measures refer to daily displacement and positions to UTM WGS84 datum
above three weeks but not at shorter time scales, indicat-
ing that factors that cause synchronization only act at
these larger time scales, whereas daily fluctuations of
movement are regulated by factors at the individual level
(such as internal drivers).
The sensitivity analysis showed that the results were

insensitive to the choice of hyperprior. The lowest DIC
was consistently found for φ = 3, with the model with φ =
4 having considerably less support than the preferred
model (ΔDIC within the range three to seven). Figures that
correspond to Figure 2 but with the alternative priors are
presented as an electronic supplement Additional file 2:
Figure S1 to this paper.

Colour
The colour parameter estimates of snake displacements
are shown in Table 2. Marginal posterior estimates for
both individual parameters (γ) and population parame-
ters ( �γ ) were all clearly positive, indicating that snake
movement is positively autocorrelated (that is, a snake
that moved a long way yesterday, is also likely to move a
long way today). In the residual analysis, individuals
three and five showed significant autocorrelation at lag
one, yet at lag five and ten, only individual three was
significant. The Kolmogorov-Smirnov test showed no
significant deviations from exponential distribution. The
model prediction (as by posterior predictive distribution)
and observed periodograms are presented in Figure 1
(lower panel) that aims to clarify time scales where the
model predictions deviate from the observed data. Al-
though individual snakes may deviate at some time scales;
generally Figure 1 illustrates a good fit between the log-
linear assumptions of the 1/f-noise model and the ob-
served periodograms of snake movements.

Discussion
Our analysis of snake movement consists of two parts: a
phase shift analysis, which analysed between-individual
synchrony, and a colour analysis which estimated autocor-
relation in daily displacements of individuals. The phase
shift analysis demonstrated that synchrony in displacement
s individuals included in the study

3 4 5 6

20 12 49 15

38 17 92 24

1261 749 3123 975

161 84 490 105

751470 751524 751784 751375

861700 861580 861572 861752

751400 751582 751321 751610

861930 861760 861769 861706

coordinates.



Figure 2 Difference in DIC (ΔDIC) for models describing the data as synchr
scale of L/f and the lowest value is found for φ = 3, corresponding to 21 da

Figure 1 Top panel: individual daily displacement of Acanthophis
praelongus. Lower panel: Observed (dots with one colour per snake
corresponding to legend in top panel) and posterior predictive
distribution (shaded with density as indicated by colourbar and
mean and 95% central density indicated by solid and dotted lines,
respectively) of periodogram (ψ).
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distances of snakes was only present at time scales above
three weeks. Our analysis therefore suggests that among
this sample of snakes, external, global factors were only
likely to be important at these larger time scales. At shorter
time scales, the movement behaviour of these radio-
tracked snakes was primarily driven by factors that varied
among individuals. If displacement distances are inter-
preted as a proxy for activity, daily fluctuations in global
conditions (such as daily temperature, humidity, or num-
ber of sunspots) did not determine activity of the snakes in
this study: at shorter time scales, the movement of one in-
dividual says very little about the movement of others. This
suggests that in order to find environmental drivers of
snake movement, we need to look for environmental vari-
ation acting at longer timescales (greater than 21 days).
We cannot identify the underlying cause for the tendency
towards synchrony above 21 days, but it is likely that sea-
sonal variation in climatic variables and/or food availability
affects the movement behaviour of A. praelongus at and
above this scale. Acanthophis praelongus changes its move-
ment pattern in response to wet-dry season cycles [32], as
do many other reptile species in Australia’s wet-dry tropics
[1,6]. In this analysis, we pinpoint the time scale where
such seasonal fluctuations affect movement behaviour.
Broader observations of strong seasonality further sug-

gest that at larger time-scales (greater than the 64 days
considered here), movement distances are likely to be
cyclic rather than fractal. We do not suggest that all sig-
nificant aspects of an animal’s behaviour can be captured
by the 1/f model. Rather, we use this as a general model
to analyse the presence of autocorrelation and the con-
sidered time scale. Figure 1 shows that the model fits
the data well. Our analysis thus supports the notion that
longer ecological time series typically exhibit more vari-
ance [33]. Also, the good fit of the 1/f model over the
whole spectra suggests that autocorrelations may not be
removed by down-sampling the data. Other methods of
onous for frequencies f ≤ φ. Each frequency corresponds to a time
ys.



Table 2 Mean estimates of the marginal posterior distribution of autocorrelation parameter γ for all six considered
snakes and population level parameter γ

Parameter γ1 γ2 γ3 γ4 γ5 γ6 �γ

Estimate 0.82 [0.48, 1.1] 0.72 [0.34, 0.97] 0.60 [0.16, 0.85] 0.91 [0.52, 1.2] 0.60 [0.25, 0.84] 0.89 [0.53, 1.1] 0.75 [0.32, 1.0]

Brackets indicate 95% central credibility interval.
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synchrony account for autocorrelation by AR models of
residuals [34]. Given that there is no apparent flattening
of the periodograms, such an approach would likely re-
quire a high order AR model with few degrees of free-
dom as a result. The phase-based approach, which is not
dependent on choice of AR model, may be most appro-
priate for analysis of synchrony in these adders.
The 1/f model used for analysis of the autocorrelation

pattern has been demonstrated to fit well with weather
fluctuations [29]. We here show that it is also an appro-
priate model for snake movement, suggesting that wea-
ther conditions may have been a major driver of snake
movements. However, because of the lack of synchrony
at time scales below three weeks, the impact of weather
conditions must have been limited at this level. Instead,
the daily movement of A. praelongus appears to be
largely driven by factors that vary at the individual level,
such as a snake’s internal state, its biotic interactions, or
microclimatic factors. In agreement with this conclusion,
Brown and Shine [1] analyzed activity of water pythons
(Liasis fuscus), slatey-grey snakes (S. cucullatus) and keel-
backs (Tropidonophis mairii) at a nearby site and found
that, after removing seasonal trends, daily weather factors
explained very little of the temporal variance in encounter
rates. Given that we would expect ectotherms to be highly
sensitive to environmental conditions, these are intriguing
results. One explanation for the weak effect of environ-
ment in these cases might be that conditions are almost
always suitable for movement at night in the tropics where
low daily and annual variation in temperatures is the rule
[1,12]. Similar studies in temperate regions may, thus,
yield different conclusions. Alternatively, subtle behav-
ioural modifications may strongly buffer individuals from
environmental variation at short time scales [11]. For
example, minor adjustments of a snake’s position can
dramatically change the amount of incident radiation it
absorbs. Large ectotherms are also buffered from envir-
onmental temperatures simply by dint of their mass and
thermal inertia [12]. Irrespective of the mechanism, our
results suggest that the daily displacement distances of
our sample of male A. praelongus were insensitive to
short-term weather changes during the wet season. The
broader climate (e.g., the regime of dry-wet season), or
seasonally-variable biotic factors (e.g. prey or habitat
availability), nonetheless appear to have a substantial
impact on the movement ecology of this species. We
may therefore find a different cut-off for synchrony dur-
ing the dry season, where climatic conditions place
more constraints on snake movement. Given that our
data set only consisted of male snakes, it is also possible
that different patterns could be found for females.
Another caveat of our analysis is the small sample size.

Although the original dataset followed 54 snakes, our re-
quirement for a long period of uninterrupted observa-
tions rapidly reduced our useable data to six snakes over
a 64-day period. Examination of other radiotelemetry
studies made available to us suggest that data incomplete-
ness, or short time intervals, are common issues with such
data. Nonetheless, although our dataset represents only
six individuals, the DIC based model selection was able to
identify a cut-off time scale of synchronicity. Weak data
would mask a difference between models; a situation we
didn’t encounter here. Furthermore, our sensitivity ana-
lysis revealed that the conclusions are insensitive to the
choice of hyperprior. Nonetheless, we advocate caution in
the interpretation of our results because the sample size
only allows us to compare simple models. With a larger
data set, it may be possible to include models that identify
multiple cut-offs: for example, where synchronies for
higher frequencies could be modelled as being lower,
but not necessarily exactly zero. Regardless, we can con-
fidently conclude that the method was able to identify
timescales of particular interest for synchrony in this
data set.
The analysis of colour parameters indicates that snake

movement is positively autocorrelated, since the posterior
density of all individual γn and population level parame-
ters �γ are larger than 0 (Table 2). Hence, if an individual
snake moves a long way one day (or week), it is likely to
move far the next day (or week) as well. A similar pattern
of autocorrelated movement was found in another snake
species at a study site adjacent to the one used in the
present study [35]. Slatey grey snakes (Stegonotus cuculla-
tus) moved over several successive nights, interspersed
with sedentary periods lasting several nights. This pattern
of positive autocorrelation among movements was attrib-
uted to bouts of foraging interspersed with periods of
inactivity to allow digestion [35]. Such patterns may be
common among snakes, which typically ingest relatively
large meals, but has also been demonstrated for other
ectoterms such as cane toads [36] and blue-tongue skinks
[37] tracked in the same area.

Conclusion
Our analysis illustrates the value of spectral analysis in
examining movement patterns. When combined with the
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hierarchical Bayesian framework, we show that the ana-
lysis is powerful enough to identify important time scales
even with data on only six individuals. By discovering the
lack of population-level synchrony at shorter time scales,
we obviate the need to check for correlations between
daily movement rates and a very long list of potential en-
vironmental drivers. We also show, through autocorrel-
ation analysis, that movement is primarily explained by
individual history, resulting in autocorrelation over long
time periods. Analyzing movement data using spectral
analysis will become increasingly important as new tech-
nologies (e.g. GPS and satellite tracking) generate large
quantities of continuous and highly resolved movement
data. We suggest that, for such data, a first critical step
will be to determine the autocorrelation structure, and
then, where multiple individuals are tracked, the time
scale at which synchrony becomes apparent. Explora-
tory analysis of this kind will rapidly narrow down the
possible list of global drivers of movement and the time
scales at which they come into effect. This will enable
us to make sensible inference about these drivers, their
influence, and how they might change in the future. In-
deed, studying synchrony can provide insight into the
drivers of fluctuations in many ecological systems [19,38].
Here we show that it is important to consider not only the
presence of synchrony, but also the timescale at which it
comes into effect.
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