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Abstract

Background: Animals adjust activity budgets as competing demands for limited time and energy shift across life
history phases. For far-ranging migrants and especially pelagic seabirds, activity during breeding and migration are
generally well studied but the “overwinter” phase of non-breeding has received less attention. Yet this is a critical
time for recovery from breeding, plumage replacement and gaining energy stores for return migration and the next
breeding attempt. We aimed to identify patterns in daily activity budgets (i.e. time in flight, floating on the water’s
surface and active foraging) and associated spatial distributions during overwinter for the laysan Phoebastria immutabilis
and black-footed P. nigripes albatrosses using state-space models and generalized additive mixed-effects models
(GAMMs). We applied these models to time-series of positional and immersion-state data from small light- and
conductivity-based data loggers.

Results: During overwinter, both species exhibited a consistent ‘quasi-flightless’ stage beginning c. 30 days after
initiating migration and lasting c. 40 days, characterized by frequent long bouts of floating, very little sustained
flight, and infrequent active foraging. Minimal daily movements were made within localized areas during this time;
individual laysan albatross concentrated into the northwest corner of the Pacific while black-footed albatross spread
widely across the North Pacific Ocean basin. Activity gradually shifted toward increased time in flight and active
foraging, less time floating, and greater daily travel distances until colony return c. 155 days after initial departure.

Conclusions: Our results demonstrate that these species make parallel adjustments to activity budgets at a daily
time-scale within the overwinter phase of non-breeding despite different at-sea distributions and phenologies. The
‘quasi-flightless’ stage likely reflects compromised flight from active wing moult while the subsequent increase in
activity may occur as priorities shift toward mass gain for breeding. The novel application of a GAMM-based approach
used in this study offers the possibility of identifying population-level patterns in shifting activity budgets over extended
periods while allowing for individual-level variation in the timing of events. The information gained can also help to
elucidate the whereabouts of areas important at different times across life history phases for far-ranging migrants.
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Background
As resource needs and availability change across life
history phases, animals must adjust activity budgets to
spend proportionally more or less time engaged in dif-
ferent activities with varying potential for net energy
gain. Far-ranging migrants in particular make drastic
adjustments to daily activity budgets as they move
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between vastly separated areas important at different
phases in the annual cycle [1,2]. Marine species can
present a challenge in that comprehensively understanding
activity budgets requires knowledge of behaviour and dis-
tributions for regions that may be separated by thousands
of kilometres, often in inaccessible pelagic locations. For
species that rely on land to breed, the breeding period
is typically well studied while much less is known of
activities during the non-breeding period, despite the
important influence of this time on population dynamics
[3]. Seabirds, for example, need the non-breeding period
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to recover from the demands of raising offspring, replace
plumage and prepare for the next migratory journey and
breeding attempt [3-5].
Among the world’s most impressive migrants, larger

members of the ‘tube-nosed seabirds’ (shearwaters and
albatrosses of the O. Procellariiformes) are relatively well
studied throughout breeding, as well as certain aspects of
non-breeding. Some of the swiftest and most far-reaching
migrations known are accomplished by tubenoses (but see
[6]). For example, sooty shearwaters Puffinus griseus spend
extended periods engaged in flight and little time resting
while in migratory transit across transequatorial routes
around the Pacific [7]. These birds travel at rates of up to
1000 km/day, accomplishing round-trip journeys of over
70,000 km between breeding and non-breeding overwin-
tering grounds [7]. However, as for most seabirds, daily
activity and potential energetic needs or constraints within
the “overwinter” phase of non-breeding have been exam-
ined in comparatively little detail relative to these often
spectacular outbound and inbound migrations.
Constant advancements in biologging technology and

data analysis are allowing increasingly detailed investiga-
tions into the at-sea activity of seabirds during different
phases of breeding and non-breeding (e.g. [8-19]). Many
shearwater and albatross species are ideal for deploy-
ment and retrieval of biologging devices because of their
ties to a predictable ‘central place’ [20] at convenient
densities for study when nesting. External temperature
or wet/dry immersion loggers allow estimation of the
allocation of time toward different activities. For example,
prolonged warm/dry periods can indicate bouts of
sustained flight, prolonged cold/wet periods indicate
time on the water’s surface (e.g., [8,10]), and brief and
continuous wet/dry transitions indicate ‘active foraging’
(e.g., [17]). In combination with internal stomach tem-
perature logger data, it is possible to estimate the relative
potential net energy gained when engaged in each activity.
For example, while active foraging bouts have been found
to account for the majority of prey ingestion, some prey
can still be captured when floating (a ‘sit-and-wait’ foraging
strategy) and also occasionally during sustained flight bouts
(a ‘fly-and-forage’ strategy [9,11]).
Using these techniques, the overwinter phase has been

broadly characterized for some species by reduced flight
activity and frequent long bouts on the water relative to
all other life history phases (e.g. [13,14,19]). This may be
due to a combination of lower energetic demands from
the lack of a central place constraint to the nest and
locally productive foraging conditions (e.g., four alba-
tross spp. [14]), along with possible constraints to mobil-
ity from moulting (e.g., sooty shearwater [18]). However,
the non-breeding period can be lengthy (e.g. c. 200 days
for sooty shearwaters [7] or c. 18-months for grey-headed
albatross Thalassarche chrysostoma [21]). For many species,
the vast majority of this time is spent in overwintering
areas between swift migratory phases. Because energetic
priorities and constraints inevitably shift within this long
timespan, we could expect that average overwinter activity
budgets likely mask major short-term changes in activity
during this important time. Generalizations may conceal
fine-scale modifications to activity, and may make identifi-
cation of more sensitive time periods or important at-sea
areas challenging.
The present study aimed to objectively identify patterns

in activity and associated at-sea distributions across the
overwinter phase of non-breeding using two North Pacific
tubenoses as model species. The laysan (Phoebastria
immutabilis, LAAL) and black-footed (P. nigripes, BFAL)
albatross range widely across the North Pacific during
non-breeding after they have vacated breeding colonies
found mostly in the Northwestern Hawaiian Islands [22].
These two species differ in diet and habitat preferences
but breed sympatrically and are similar in size and breed-
ing phenology [22,23]. A number of anthropogenic threats
have lead to LAAL and BFAL listing as ‘Near Threatened’
[24]. Much is known from biologging studies of habitat
use and behaviour of both species during breeding [25-29]
and of at-sea distributions during non-breeding [29-34].
For the largest colony of both species at Midway Atoll
National Wildlife Refuge, (herein ‘Midway’; 70% of
worldwide LAAL and 35% of BFAL [22]), however,
non-breeding activity and habitat use are mostly
undocumented beyond coarse-scale distributions of
BFAL during the month of August [34].
Using small light- and conductivity-based archival data

loggers, we examined daily activity budgets across the
entire non-breeding season of LAAL and BFAL from
Midway. Specifically, we identified patterns in time
allocation between sustained flight, floating and active
foraging, and associated distributions, by applying state-
space models [35,36] and generalized additive mixed-
effects models [37] to time-series of positional and
immersion-state data. This allowed evaluation of patterns
in activity not only by broad phases of non-breeding but
also at a daily time-scale, elucidating new insights into
population-level patterns and commonalities among species
in the likely energetic constraints faced during this time.

Methods
Logger deployment
Fieldwork was conducted over five field seasons (2008,
2009, 2010, 2011 and 2012) at Sand Island, Midway
Atoll (28.12°N, 177.23°W, Figure 1). Midway is home to
roughly 408,000 breeding pairs of LAAL and 22,000 pairs
of BFAL [22]. We deployed leg-mounted geolocation-
immersion loggers (herein ‘GLS’; Lotek LAT2500, Lotek
Wireless Inc, St John's, Newfoundland, CA) on equal
numbers of opportunistically selected breeding adults of



Figure 1 Overwinter destinations of laysan and black-footed albatross from Midway. Kernel density analysis of 95%, 75%, 50% and 25%
utilization distribution (UD) contours, in increasingly darker shades of blue, for GLS-tracked laysan albatross (n = 18, top panel) and black-footed
albatross (n = 15, bottom panel) during the overwinter phase of non-breeding in 2008, 2009, 2011 and 2012. The solid black circle indicates the
colony at Midway Atoll National Wildlife Refuge.
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both species (sex unknown) during incubation or early
chick rearing (between December and March) and re-
covered GLS during incubation in the subsequent
breeding season (between early-December and early-
January). GLS were mounted on a plastic leg band
using UV resistant cable ties and quick-setting epoxy
(logger + attachment ~6 g, <1% body mass; well below
the recommended limit for albatrosses [38]). While it
was not possible to formally assess tag effects in this
study, deployments and retrievals took no longer than
10 min and did not appear to interfere with nesting
behaviour. Further, visible inspection upon retrieval
indicated that attachments did not cause any physical
harm. GLS deployments at other colonies of LAAL
have resulted in no detectable short-term effects on re-
productive success [29]. Of 119 GLS deployed over five
seasons, 77% were recovered. Upon download, 62% of
those recovered revealed technological failures causing ap-
preciably spurious or missing light or immersion data,
yielding 35 GLS with complete concurrent time series of
both location and immersion data for this study. All tags
recovered from the 2010 deployment season (n = 20)
failed to produce reliable immersion data and were not
used in subsequent analyses.
All recovered and functional GLS recorded light levels

at 10-minute intervals to estimate daily locations and
saltwater immersion to estimate on/off water activity
patterns (determined by conductivity between two
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external pins). GLS recorded instantaneous immersion
state (wet or dry) at a programmed interval and pro-
duced time series of states with resolutions between 32
and 100 seconds depending on tag programming in the
year of deployment (2008: 100-sec, LAAL n = 3, BFAL
n = 4; 2009: 90-sec, LAAL n = 8, BFAL n = 6; 2011/
2012: 32-sec, LAAL n = 9, BFAL n = 5). Immersion state
changes occurring in <90 seconds were excluded, ensur-
ing all time series reflect similar behavioural changes
[17]. Light data was processed with automated template
fitting software, producing a single location per day
using sunrise and sunset times and estimate latitude
from day length and longitude from the time of local
noon/midnight [39]. The accuracy of latitude estimates
during equinox periods is unavoidably compromised, as
day length depends only weakly on latitude at this time
[39]. For this study, locations on 15 days of either side
of the fall equinox were excluded based on consistently
suspect latitude estimates.

Positional data processing
Cloud cover, feather shading or large daily travel dis-
tances can further compromise light signals causing
short periods of spurious or missing locations [40].
Unrealistic location estimates are often discarded from
a dataset based on subjective criteria [41]. We used
recently developed hierarchical time-series state-space
models (SSMs) estimated with Bayesian techniques to
avoid unnecessary data loss. This approach comprises
two probabilistic components: a process model of the
biological mechanisms influencing locations and an
observation model of how the location estimates were
obtained. SSMs correct observed locations for tag error
and biological realism to make inferences about the true
‘hidden state’ or locations [35,36]. Estimates of tag error
have been derived elsewhere by ‘double-tagging’ experi-
ments in which LAAL and BFAL carried both GLS and
higher-accuracy satellite Platform Terminal Transmitter
(PTT) tags (LAAL longitude error SD = 1.9° and latitude
error SD = 1.2°, BFAL longitude error SD = 3.8° and
latitude error SD = 1.9°; [40] further refined in [33]).
Latitude estimates in these studies were derived using an
algorithm that matches remotely-sensed SST-gradients
to SST data recorded on-board the GLS. We did not
have reliable SST data for all GLS in this study and
therefore observed latitudes are more likely to have
errors similar to those estimated for longitude. We took
a conservative approach by fixing the SSM tag error
parameter estimates for both latitude and longitude of
both species equal to the maximum estimated error for
longitude in [33]. Positions falling over continental land-
masses were constrained toward the marine environ-
ment in the SSM by a land mask. The SSM was fitted
using Markov Chain Monte Carlo (MCMC) sampling.
For each bird, two independent and parallel MCMC
chains each of length 100,000 were run and a sample
of 2,000 from the joint posterior probability distri-
bution was obtained by discarding the first 80,000
iterations and retaining every 20th of the remaining
iterations. MCMC algorithm convergence was assessed
using the ratio of variances for parameters between
the retained MCMC chains (the potential scale reduc-
tion factor or R-hat statistic); when models are well
converged, the values are near 1. The final SSM-
processed once-daily true-position estimates were
obtained from the mean of appropriately converged
posterior distributions [35].

Individual seasonal phenology
We estimated the timing of non-breeding departure and
return based on known travel rates using patterns in
positional data and great circle distance to the colony.
Both species are known to travel >30 km/h on foraging
trips from the colony with an unlikely but not impos-
sible maximum daily distance travelled of 720 km [28].
The date of initiation of the non-breeding season (i.e.
definitively no longer visiting the colony) was deter-
mined as the first day an individual was estimated
>720 km from the colony with all subsequent locations
increasingly distant without return. Similarly, we deter-
mined the final day of the non-breeding season as the
first day with distance to the colony <720 km with a
clear pattern of decreasing distance to the colony before
this date and locations indicating potential colony visits
after this date.
We delineated the three phases of non-breeding for

each bird through visual inspection of daily movement
patterns and individual non-breeding phenology: out-
bound transit (series of consecutive movements follow-
ing departure directed away from the colony with daily
travel rates >100 km/day), overwinter (beginning with
the first prolonged series of days with decreased travel
rate and directed movements), and inbound transit
(series of travel days terminating on the probable colony
return date as determined above, Table 1). For two
LAAL, initiation of the inbound transit phase overlapped
the end of the equinox window; therefore daily activity
parameters for these birds are only used to describe the
full non-breeding period.
We examined patterns of at-sea distribution among

individuals with kernel density analysis [42] applied to
SSM-processed locations using software written in Matlab
(MathWorks Inc, USA; IKNOS Toolbox). The geographic
coordinates of each bird location for each phase were
transformed to Cartesian coordinates using a Lambert
Cylindrical Equal Area projection and 2D Gaussian kernel
densities computed on a 0.25° × 0.25° grid. We estimated
the smoothing parameter (h) using an adaptive method



Table 1 Phenology of non-breeding season phases for
laysan (n = 20, or if *, n = 18) and black-footed (n = 15)
albatross from Midway Atoll (mean ± SD), 2008-2012

Laysan
albatross

Black-footed
albatross

Colony departure 29-Jun ±16 days 25-Jun ±14 days

Duration of outbound transit 10 ± 6 days 12 ± 8 days

Overwinter arrival 10-Jul ±16 days 02-Jul ±11 days

Duration of overwinter 125 ± 18 days* 126 ± 21 days

Overwinter departure 12-Nov ±5 days* 05-Nov ±8 days

Duration of inbound transit 9 ± 4 days* 10 ± 8 days

Colony return 18-Nov ±13 days 16-Nov ±14 days
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to estimate an optimal local value [43]. Each cell was
normalized for bird effort by dividing the number of lo-
cations within each cell by the number of birds contrib-
uting to the cell [28,44]. We divided the density surface
into concentric polygons to calculate utilization distri-
bution (UD) contours of 95% (active range), 75%, 50%,
and 25% (core hotspot areas).

Immersion state data processing
We used immersion state time series (wet/dry) to calcu-
late the following parameters related to daily at-sea
activity: 1) the number and duration of sustained bouts
of flight, floating and active foraging each day (details
below) and 2) the proportion of each day spent in sus-
tained flight, floating on the water and actively foraging.
Wet or dry intervals that overlapped the cut-off transi-
tion between days at midnight were excluded [18,45].
To identify different bout types, we assessed patterns

in the immersion state time series. A period of relatively
brief and continuous wet-dry transitions resulting from
an episode of frequent landing and take-off events from
the ocean’s surface can be used as an indicator of ‘active
foraging’ in non-diving seabirds (e.g., [9,17]). A small
number of these episodes could also indicate other activ-
ities including conspecific interactions, but at least
reflect periods of active movements and increased
energy expenditure [45-47], given birds are alighting
from and landing on the water while flying relatively
short distances between landings, probably requiring at
least some flapping flight. Longer periods of sustained
wet or dry states are taken to indicate bouts of pro-
longed floating on the water’s surface (wet) or flight
(dry). The temporal interval breakpoint that separates
periods of rapid wet-dry transitions and periods of pro-
longed wet or dry activity can be identified as a bout
ending criteria or BEC using a maximum-likelihood
approach [48]. This approach has been employed widely
on diving animals with time-depth recorders (e.g., [49-51])
but much less on non-diving seabirds that do not forage
below the first few meters of the ocean surface. Following
methods outlined in [17], individual BECs were calculated
using the diveMove package [52] developed for the soft-
ware R and were used to identify bouts within a bird’s
immersion state time series as: 1) a probable active for-
aging bout (a series of wet/dry event transitions lasting
less than the BEC), 2) a sustained flight bout (any dry
event lasting longer than the BEC) or 3) a floating bout
(any wet event lasting longer than the BEC). We used
individual BEC’s to delineate bout types within each
bird’s immersion time series due to a high degree of
individual-level variation (LAAL 33.5 ± 8.6 min and
BFAL 45.6 ± 9.5 min, mean ± SD). Future studies apply-
ing this approach should assess BEC variation before
proceeding to delineate bouts using either a single value
across all birds [17] or assessing individuals independ-
ently (this study). From the bout-type classifications
along the time series, daily activity parameters were
calculated for each bird as noted above.
Statistical analysis for day-to-day activity patterns
Data exploration indicated potentially non-linear rela-
tionships in daily activity parameters with time, thus
we implemented generalised additive mixed models
(GAMMs) to assess patterns in daily activity budgets over
the course of non-breeding [37]. Due to a large number of
zeros in the data, a two stage hurdle model was used to
analyse sustained flight as either: 1) the time when birds
were detected to be in sustained flight (proportion of sus-
tained flight) or 2) whether birds were in sustained flight
(flight: yes/no). As a smoothing function, this model
included days since departure (DSD) from the colony. The
time spent while floating on the water and actively for-
aging was used as the response variables for two additional
models. Fixed categorical factors for all models included
non-breeding phase and species. Individual bird was mod-
elled as a random effect (intercept-only) as birds contrib-
uted repeatedly and unevenly with respect to data [53].
Adequacy of model fit was examined via autocorrelation
lag plots, variograms, and the normalized residuals against
independent variables including those not in the models
(e.g. spatial location). Because our data consisted of a time
series and were found to be autocorrelated, we included a
temporal correlation structure (corExp, which also then
accounted for associated spatial autocorrelation as posi-
tions close in time are also close in space, [54]). Includ-
ing a correlation structure and random effect allowed us
to model compound correlation between observations
from the same bird and the temporal correlation
between all observations from the same bird and DSD
[54]. Backward model selection was performed until all
terms were significant, and the correlation structure
and random effect improved model fit for all three
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response variables. Models were again validated using
the techniques described by [53].

Results
Overwinter movements and destinations
From colony departure to return, LAAL travelled on
average 22,134 ± 3,825 km (mean ± SD, range 17,000-
30,000 km). Total distance travelled ranged more widely
for BFAL (17,997 ± 4,688 km, mean ± SD, range 11,000-
28,000 km). Outbound and inbound transit phases were
clearly identifiable for all birds, lasting 2 to 16 days for
LAAL and 2 to 20 days for BFAL (Table 1). Periods of
limited localized movements during the c. 125 days of
overwinter were contained within one to three distinct
areas for each bird with larger movements between areas
lasting two to five days. For LAAL, birds were found
mostly within the following three main regions (25% UD
contour, Figure 1): (1) 75% of birds (15 of 20) ranged
between the southern tip of the Kamchatka Peninsula,
Russia, to the Commander Islands and the western side
of the mid-to-northern Emperor Seamount, (2) 60% of
birds used areas between 300–1000 km east of Honshu
Island and Hokkaido Island, Japan and, (3) 30% ranged
south of the southern-most islands of the Southern
Aleutian Arc, Alaska. Three individuals spent 5–14 days
in the pelagic mid-North Pacific to the northwest of the
colony as their second or third overwinter destination,
and one individual spent the first 73 days around the
Aleutians before moving 1000 km W of the Oregon
coast for 33 days. For LAAL that used only a single
overwinter area (n = 4), two spent all of their time
around the Kamchatka Peninsula and two east of the
Japanese continental margin.
For BFAL, 53% (8 of 15) of birds spent at least some por-

tion of the overwinter period centred around Unalaska Is-
land of the Aleutians, ranging around 400 km north–south
and 500 km east–west along the Alaskan Peninsula (25%
UD contour, Figure 1); four birds remained in this region
for the entire duration of the overwinter period. Another
53% of individuals spent time ranging comparatively widely
Table 2 Summary of daily activity among three phases of non
(n = 15) from Midway Atoll (mean ± SD)

Laysan albatross

Out OW

Sustained flight bouts (/day) 2.8 ± 1.0 1.2 ± 0.3

Floating bouts (/day) 2.9 ± 1.4 3.4 ± 0.8

Active foraging bouts (/day) 4.3 ± 1.1 3.4 ± 0.7

Flight bout length (mins) 105 ± 32 67 ± 18

Float bout length (mins) 169 ± 65 264 ± 56

Forage bout length (mins) 77 ± 20 65 ± 16

Distance travelled (km/day) 285 ± 19 105 ± 4

Out = outbound transit, OW = overwinter, In = inbound transit.
across the mid-North Pacific, mostly north and northwest
of the colony toward the Emperor Seamounts; three
birds remained in this broad area making only localized
movements throughout the overwinter period. Two BFAL
used areas southeast of Honshu Island and Hokkaido Is-
land, Japan, while one individual spent 30 days off the
SW coast of Vancouver Island, BC, Canada, then
35 days in the Gulf of Alaska before finishing the over-
winter phase in the mid-eastern North Pacific.

Seasonal activity patterns
For both species, sustained flight bouts comprised a high
proportion of inbound and outbound transit days; 27 to
44% of each day was spent engaged in 1 to 4 flight bouts
lasting roughly 2 hours each (Table 2; Figure 2). During
overwinter, limited time was spent in sustained flight
each day (Table 2, Figure 2). For the entire overwinter
phase, LAAL spent on average 46.9 ± 16 days without
engaging in any bouts of sustained flight accounting for
37 ± 10% of each individual’s overwinter phase, and
BFAL 52.3 ± 14 days (43 ± 14% of overwinter). The vast
majority of time during overwinter was detected as long
and frequent floating bouts for both species (Table 2;
Figure 2). Floating also comprised a high proportion of
the day throughout both inbound and outbound transit
phases but with less frequent short bouts (Table 2;
Figure 2). For all phases and both species, on average 21
to 31% of each day was spent engaged in active foraging
split between 2 to 5 individual bouts (Table 2; Figure 2).

Daily activity patterns
For both species, the proportion of each day spent
in sustained flight followed a similar overall pattern
with increasing DSD, but differed significantly in their
smooth functions (Table 3; Figure 3). Both species
showed an initial decrease in time spent in sustained
flight over the first 30 days. LAAL exhibited a more
rapid decline followed by an extended period of few
daily flight bouts before increasing again. This differs
slightly from the more gradual decline in daily flight
-breeding for laysan (n = 18) and black-footed albatross

Black-footed albatross

In Out OW In

3.4 ± 1.3 2.3 ± 1.0 1.2 ± 0.5 2.8 ± 1.1

2.3 ± 1.0 2.0 ± 0.7 2.5 ± 0.5 1.5 ± 0.6

4.3 ± 1.5 3.9 ± 1.1 2.8 ± 0.7 3.0 ± 1.2

114 ± 27 114 ± 36 77 ± 20 120 ± 37

133 ± 55 270 ± 123 315 ± 63 175 ± 87

75 ± 30 103 ± 18 84 ± 20 95 ± 35

433 ± 19 273 ± 22 76 ± 9 305 ± 48



Figure 2 Non-breeding activity budgets by phase for laysan and black-footed albatross from Midway. Activity budgets derived from
immersion-logger data for laysan albatross (n = 18, top panel) and black-footed albatross (n = 15, bottom panel) during the non-breeding period.
The proportion of each day within each phase of non-breeding spent engaged in three different activity bout types are reported as mean ± SE.
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time for BFAL, which reached a low around 50 days
before gradually rising once more (Figure 3). Neither
species displayed a noticeable shift in flight activity
upon initial arrival at the first overwinter area, but
instead steadily decreased time in sustained flight
following arrival. The same pattern held true for the
initiation of colony return for BFAL; these birds stead-
ily increased the time spent in sustained flight bouts
each day after the low-point in flight activity, gradually
increasing flight time before and during their inbound
transit journey. LAAL exhibited a slight rise in flight
activity within ten days of the initiation of inbound
transit, but overall show a less smooth but consistent
pattern between species of increased flight activity
following an approximately 40-day window of low flight
activity from 30–70 DSD.



Table 3 Results from the generalized additive and linear mixed-effects components of the GAMM output

Model # Response Model term df F P-value

1. Sustained flight, >0 s(DSD):sp(LAAL) 6.78 12.82 < 0.0001

s(DSD):sp(BFAL) 3.88 39.97 < 0.0001

Non-breeding Phase 2 9.86 < 0.0001

Species 2 15.98 < 0.0001

Phase:Species 2 4.01 0.0181

2. Sustained flight (0,1) s(DSD) 4.50 23.73 < 0.0001

Non-breeding Phase 2 10.07 < 0.0001

3. Floating s(DSD) 5.78 16.83 < 0.0001

Non-breeding Phase 2 11.26 < 0.0001

4. Foraging s(DSD):sp(LAAL) 3.12 7.67 < 0.0001

s(DSD):sp(BFAL) 3.58 6.19 < 0.001

Non-breeding Phase 2 6.55 0.0014

Degrees of freedom for the smoothers are taken from the model hat matrix. Proportion of time spent daily in sustained flight was zero-inflated (>35% zeros) and
thus was modelled in two parts as a hurdle model with both quasi-binomial and binary distributions (Models 1 and 2).

Gutowsky et al. Movement Ecology 2014, 2:23 Page 8 of 14
http://www.movementecologyjournal.com/content/2/1/23
The temporal pattern in time spent engaged in
floating bouts over the non-breeding period did not dif-
fer significantly between species (Table 3; Figure 3). An
approximate 40-day window from 30–70 DSD also co-
incided with the highest proportion of time on the wa-
ter’s surface. Again, the proportion of each day spent
on the water continually increased before and after ar-
rival at the first wintering area. After 70 days, all birds
began to slowly decrease the proportion of each day
floating until inbound transit began; at which point the
amount of time floating each day reached a low but
consistent level. The pattern in time spent active for-
aging for both species mirrored closely that seen for
time spent in sustained flight as a similar overall pat-
tern with increasing days since colony departure, but
differing significantly in smooth functions between spe-
cies (Table 3; Figure 3). Daily time spent engaged in ac-
tive foraging activity gradually declined until a low
around 60 DSD for LAAL and around 10 days earlier
for BFAL, before rising once again. A period of low
active foraging activity is again detectable roughly
between 30–70 DSD for both species.
The date of overwinter arrival and departure, and thus

outbound and inbound transit phases, were determined
based on spatial data, whereas the consistent pattern in
activity between 30–70 DSD emerged from immersion-
state activity budgets. We re-visited the spatial data
within this window to examine whether the distribution
of birds at-sea during this period differed from that of
the c. 125-day overwinter phase as a whole (Figure 4).
Indeed, the range of nearly all individuals during this
time remained restricted within one of the previously
identified overwintering areas; no birds made directed
movements between major overwinter areas within this
window. While all LAAL were confined to a small area
of the northwest Pacific relative to the broader distribu-
tion of BFAL (Figure 4), the average daily distance trav-
elled by individual LAAL was 77 ± 18 km/day, and by
BFAL was 61 ± 26 km/day.
The number of days between 30–70 DSD with

complete absence of sustained flight bouts detected was
21 ± 5 days for LAAL (ranging from 13–30 days) and 25
± 6 days for BFAL (ranging from 14–33 days). All birds
of both species spent at least one full day during this
time entirely floating on the water. Further, LAAL on
average spent 7 ± 5 days floating on the water’s surface
for >90% of the day and 16 ± 7 days floating for >80% of
the day. Similarly, BFAL on average spent 10 ± 7 days
floating for >90% of the day and 18 ± 7 days floating for
>80% of the day. In the time following this 40-day win-
dow until the birds initiated return inbound transit,
LAAL travelled on average 50 km further each day, and
BFAL 23 km each day (LAAL, 127 ± 27 km/day over 64
± 19 days; BFAL, 84 ± 45 km/day over 66 ± 18 days) but
this average value represents highly variable daily travel
distances which generally increased following 70 DSD
until colony return for both species (Figure 5).

Discussion
Our study is the first we know of to examine seabird be-
haviour over the course of non-breeding at a detailed
daily time-scale, allowing new insights into the modifi-
cation of daily activity budgets as constraints on time
and energy shift through this demanding life history
phase. We also document associated movements and
habitat use across the North Pacific Ocean basin,



Figure 3 Non-breeding season patterns in daily activity of laysan and black-footed albatross from Midway. Partial residual plots of daily
patterns in non-breeding activity for laysan and black-footed albatross. Estimated smoothing functions (solid lines) with 95% point-wise confidence
intervals (delineated by the grey shaded area) estimated from the proportion of daily time spent floating on the water’s surface (top panel), engaged in
sustained flight (middle panels) and actively foraging (bottom panels) smoothed by the days since colony departure (DSD). The relationship differed
significantly between species for sustained flight and active foraging bouts although the general pattern over time is similar. Vertical lines
depict the average duration of each non-breeding phase, with outbound transit followed by arrival day at the first overwinter area, and then
inbound transit initiation (mean ± SD).
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revealing distinct areas important throughout overwin-
ter for both LAAL and BFAL. Over two-thirds of world-
wide LAAL and one-third of BFAL return to the
Midway Atoll colony to breed each year [22]. Our work,
while restricted in sample size, adds to a limited body of
research (i.e., [34]) explicitly examining at-sea habitat
use and behaviour of these ‘Near Threatened’ residents
[24] at any time in the breeding or life cycle.



Figure 4 At-sea distributions of laysan and black-footed albatross during the ‘quasi-flightless’ stage of overwinter. Individual GLS-tracked
laysan albatross (n = 20, top panel) and black-footed albatross (n = 15, bottom panel) during the ‘quasi-flightless’ stage of the overwinter
phase (40-day window between 30–70 days since colony departure) in 2008, 2009, 2011 and 2012. Individual birds are indicated with
unique colours.
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Overwinter destinations
During overwinter, LAAL and BFAL from Midway
revealed discrete patterns in distributions throughout
the North Pacific Ocean (Figure 1). Not surprisingly,
these movements are associated with areas of known
localized current convergence and upwelling that pro-
mote high primary and secondary productivity thus
attracting fish, squid, and ultimately LAAL and BFAL
[55]. Differences in habitat use among species were
also expected and mostly follow that known from
tracking studies of birds captured at-sea and from
other smaller colonies throughout the annual cycle
[25-34]. There were however some notable exceptions
in the use of the Russian Kamchatka Peninsula region
[29,31,32], California Current System [30,32] and more
pelagic areas [29,31]. Together, the known distributions of
non-breeding LAAL and BFAL indicate that these species
range widely across the North Pacific during the four
months when not tied to the colonies, crossing through
multiple national and international jurisdictions and well
into the high seas, with high individual- and colony-level
variation in the use of broad overwinter areas. Future
work should investigate variation within and between
breeding colonies spanning the entire annual cycle of
these species as necessary next-steps in the complete
assessment of spatial ecology and population dynamics
[3,22].

Activity during transit phases of non-breeding
Outbound and inbound transit lasted around 9 to
12 days, although this ranged predictably between indi-
viduals depending on colony proximity to the first and
last overwinter areas. Non-breeding LAAL and BFAL
spent less time in flight than breeding birds on foraging
trips from Tern Island during the brooding period [10].
Although [10] simply summed the number of 3-second
intervals where immersion loggers registered as dry
(thereby including time in sustained flight and flights
within active foraging bouts), the average daily propor-
tion of time off the water’s surface (90%) still far exceeds
the combined time in flight and active foraging at any
point in the non-breeding season (Figure 2). Brooding
birds likely spent most of their time in flight searching
out widely dispersed prey within close proximity to the



Figure 5 Daily distance travelled (km) during non-breeding for laysan and black-footed albatross from Midway. All raw data of daily
distance travelled (km) from colony departure (DSD = 0) to return (varies by individual) from GLS-tracks of laysan albatross (n = 20) and black-
footed albatross (n = 15) during the non-breeding season. A LOESS smoother was added to aid visual interpretation.
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colony. Migrating birds can rest more frequently and
avoid areas of low productivity by adopting an oppor-
tunistic ‘fly-and-forage’ strategy similar to that reported
for other migrating tubenoses (e.g. cory’s shearwater
Calonectris diomedea [17]) and migratory birds of prey
(e.g. osprey Pandion haliaetus [56]).

Daily activity patterns during overwinter
It has been suggested that floating may comprise the vast
majority of time during overwinter due to relatively low
energetic requirements that are readily met while free
from central-place constraints and chick-provisioning
demands [14]. For example, comparable maximum flight
bout durations during breeding and non-breeding in four
species of southern hemisphere albatrosses could indi-
cate that movement is not restricted but that birds are
exercising the freedom afforded by low energetic de-
mands to rest after directed movements between profit-
able foraging areas [14]. Our results suggest that while
infrequent but long flight bouts during non-breeding
may be similar in duration to those taken during breed-
ing, the proportion of each day spent engaged in different
activity types and the daily distances travelled are still
likely to differ, especially if non-linear day-to-day tem-
poral shifts in activity are considered. Differences in aver-
age activity budgets between overwinter and transit
phase days did not reflect immediate modifications to
daily activity budgets upon arrival to overwintering areas,
but instead masked a gradual shift in activity toward a
‘quasi-flightless’ stage (where birds appear to be flight-
limited though not completely) followed by an increasing
trend in flight and active foraging until colony return
(Figure 3).
The ‘quasi-flightless’ stage is matched by highly re-

stricted ranges and daily movements of individual birds
(Figures 4 and 5) and coincides with a known period of
intensive flight feather moult and loss of body fat stores
[57]. The sandy breeding habitat of LAAL and BFAL
causes severe abrasion to the outermost primary flight
feathers, leading to P8-P10 replacement annually over-
winter, and an overall complex moult strategy [58]. The
most intensive moult (all four series) causes 25% of
LAAL and BFAL to skip breeding in the following sea-
son; time and energy are too limiting to accomplish both
[59]. All of the birds in this study returned to Midway
and were captured on the nest, so we assume none of
these birds underwent a complete intensive moult but
that all replaced at least their first three primaries along
with initiating one or two other moult series during the
‘quasi-flightless’ stage of overwinter.
Approximately 40–60 days are required to complete

moult during which at least one to three feathers within
each series of each wing are missing or growing at any
time [57,58]. Albatross have highly specialized anatomy
for exceptionally efficient gliding flight, where rigid fea-
ther “sails” on long, slender, pointed wings are supported
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by specially adapted wing muscles and joints [23,60].
Worn, missing and growing feathers can compromise
the wing’s airfoil through fluttering, creating asymmet-
ries in wing shape and aspect ratio, and increasing wing
loading from decreased wing surface area [61-64]. Lower
body mass during moult may aid lower wing loading
[57], but this likely does not compensate for increased
flight costs given the high sensitivity of albatrosses to
even small reductions in flight dynamics [64]. Added
flight and feather synthesis costs likely constrain birds
from relying heavily on ‘active foraging’ or ‘fly-and-for-
age’ strategies and from engaging in long bouts of soar-
ing flight. Occasional larger movements may occur
when the benefit of travelling from a crowded or poor
foraging area outweighs the cost of flight, when small
moult extents are accomplished more quickly for some
individuals, or when strong currents simply carry float-
ing birds away from a particular region (Figures 4 and
5). Effectively, both LAAL and BFAL likely experience c.
40 days of facultative quasi-flightlessness where foraging
strategies shift to predominantly ‘sit-and-wait’ tactics.
Similar U-shaped temporal patterns in overwinter for-

aging activity have been documented in other tubenoses
(e.g. manx shearwater Puffinus puffinus [19]). Birds may
be intensely foraging after initial arrival to the overwin-
tering grounds, possibly to replace body condition lost
during breeding and to build up energy and nutrients
needed for upcoming feather replacement [15]. Following
the ‘quasi-flightless’ stage, LAAL and BFAL may begin a
‘post-moult rush’ to gain mass in preparation for breeding.
Moult status and fat scores of drowned birds salvaged from
drift-net fisheries showed a marked increase in body condi-
tion from relatively low fat stores during active moult to
significantly higher following moult termination (10-20%
gain in body mass [57]). Further, other albatrosses initiate
egg formation c. 30 days before colony arrival [65], and
both sexes of LAAL and BFAL are known to arrive to
the Midway colony with extensive fat deposits and fe-
males with eggs in the oviducts [66]. The period of rapid
fat accumulation and probable egg formation coincides
with the gradual increase in sustained flight and active
foraging along with less time floating on the water as
colony return approaches (Figure 3). This ‘pre-migra-
tory hyperphagia’ suggested for some other tubenoses
(e.g. cory’s shearwater [17]) appears to progress steadily
following the ‘quasi-flightless’ stage (Figures 3 and 5)
and is likely a crucial ‘post-moult rush’ for breeding
preparation as birds become increasingly mobile and ac-
tively seek out fruitful foraging areas before departing
on their inbound transit journey.

Conclusions
Importantly, the shift in activity budgets and habitat use
within the overwinter period would have gone undetected
if patterns were not assessed at a daily time-step relative
to individual-level DSD from the colony. Other tubenose
species, even those that tend to replace primary feathers
biennially during non-breeding, may also exhibit identi-
fiable stages during non-breeding if patterns in daily ac-
tivity are examined at a daily temporal resolution.
Because colony departure dates varied (across 54 days
for LAAL and 39 days for BFAL), the calendar days when
individuals at sea are undergoing these drastic adjustments
to activity budgets span half the year, from June to
November. The oceanic areas important during overwin-
ter spread across nearly the entire North Pacific Ocean
basin for birds from the large Midway colony, and likely
further still into the California Current for birds from
other colonies [30,32].
For LAAL from Midway, the Northwest corner of the

Pacific Ocean is clearly a critical area for the potentially
vulnerable ‘quasi-flightless’ stage (Figure 4) and for
nearly all birds at some point during non-breeding
(75% of LAAL in this study used this region for at least
one of three overwinter areas). These waters must offer
immense productivity to support birds mostly feeding
opportunistically while floating on the water’s surface.
Many other non-breeding tube-nosed seabirds also
target this area including the ‘Vulnerable’ short-tailed
albatross Phoebastria albatrus [67] and several trans-
equatorial migratory shearwater species [7,68,69]. The
productive Russian Far East is also the focus of an in-
dustrial demersal long-line fishery estimated to kill an
average 6,500 seabirds/year, making the Russian Exclu-
sive Economic Zone a prime candidate for marine
protective measures [70]. In contrast, individual BFAL
from Midway are spread widely across the North
Pacific during this time but individuals tend to remain
in relatively localized areas, likely with sufficient
resources for meeting the nutritional demands of fea-
ther replacement and days spent mostly on the water
(Figure 4). The wide distribution of BFAL may buffer
against potential threats during this vulnerable time,
but would pose a challenge to targeted protected areas.
It is well accepted that events occurring outside of

breeding critically influence the demography of migra-
tory populations [3]. The restricted distributions and
modifications to activity during the non-breeding period
for LAAL and BFAL are likely at least in part due to
energetic constraints imposed by the necessity of plum-
age replacement. This may be even more pronounced in
birds that skip breeding to undergo complete moult
extents [59]. For at least a 40-day window of each year,
these birds are relegated mostly to the ocean’s surface.
This is probably to recover from and prepare for the
taxing demands of an extreme life history strategy
leaving little time to refresh flight feathers critical to
their long-distance oceanic travels. Clearly, far-ranging
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migrants must carefully manage trade-offs in the alloca-
tion of limited time and energy toward shifting energetic
demands as primacies shift throughout distinct life
history phases and also at a finer day-to-day scale within
these periods.

Abbreviations
LAAL: Laysan albatross Phoebastria immutabilis; BFAL: Black-footed albatross
Phoebastria nigripes; DSD: Days since (colony) departure (for non-breeding
season initiation).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
SAS, MDR and MBN conceived and initiated the study and conducted
fieldwork along with SEG. SEG prepared data for analysis and SEG, IDJ and
LFGG developed and carried out the analyses. SEG, MLL, SAS and LFGG
prepared the manuscript. All authors read and approved the final manuscript.

Acknowledgements
We thank the US Fish & Wildlife Service (USFWS) volunteers and staff and the
Chugach Corporation at Midway Atoll National Wildlife Refuge for logistical
and data collection support in the field. This study was supported by grants
from the National Geographic Society Committee for Research and Exploration,
NOAA Fisheries National Seabird Program, the Gordon and Betty Moore
Foundation, David and Lucile Packard, Alfred P. Sloan Foundations, the National
Ocean Partnership Program, the Office of Naval Research and the National
Sciences and Engineering Research Council of Canada. The Hawaiian Islands
National Wildlife Refuge, US Fish & Wildlife Service, Department of the
Interior granted permission to conduct research on Midway Atoll National
Wildlife Refuge (although opinions expressed in this publication do not
necessarily reflect those of the agency). The Institutional Animal Care and
Use Committee at the University of California, Santa Cruz, approved all
protocols employed in this study.

Author details
1Biology Department, Dalhousie University, Halifax, NS, Canada. 2Fish Ecology
& Conservation Physiology Lab, Carleton University, Ottawa, ON, Canada.
3Department of Biological Sciences, Macquarie University, Sydney, NSW,
Australia. 4USFWS, Pacific Region, Migratory Birds and Habitat Programs,
Portland, OR, USA. 5Department of Biological Sciences, San Jose State
University, San Jose, CA, USA. 6Institute of Marine Sciences, University of
California, Santa Cruz, CA, USA.

Received: 21 July 2014 Accepted: 9 October 2014

References
1. Stearns SC: The Evolution of Life Histories. Oxford: Oxford University Press;

1992.
2. Dingle H: Migration. Oxford: Oxford University Press; 1996.
3. Calvert AM, Walde SJ, Taylor PD: Nonbreeding-Season Drivers of

Population Dynamics in Seasonal Migrants: Conservation Parallels Across
Taxa. Avian Conserv Ecol 2009, 4:E5. http://www.ace-eco.org/vol4/iss2/art5/.

4. Lack D: Bird Migration and Natural Selection. Oikos 1968, 19:1–9.
5. Alerstam T, Hedenström A, Åkesson S: Long-distance migration: evolution

and determinants. Oikos 2003, 2:247–260.
6. Egevang C, Stenhouse IJ, Phillips RA, Petersen A, Fox JW, Silk JRD: Tracking

of Arctic terns Sterna paradisaea reveals longest animal migration.
Proc Natl Acad Sci U S A 2010, 107:2078–2081.

7. Shaffer SA, Tremblay Y, Weimerskirch H, Scott D, Thompson DR, Sagar PM,
Moller H, Taylor GA, Foley DG, Block BA, Costa DP: Migratory shearwaters
integrate oceanic resources across the Pacific Ocean in an endless
summer. Proc Nat Acad Sci 2006, 103:12799–12802.

8. Wilson RP, Weimerskirch H, Lys P: A device for measuring seabird activity
at sea. J Av Biol 1995, 26:172–176.

9. Weimerskirch H, Wilson RP, Lys P: Activity pattern of foraging in the
wandering albatross: a marine predator with two modes of prey
searching. Mar Ecol Prog Ser 1997, 151:245–251.
10. Fernández P, Anderson DJ: Nocturnal and Diurnal Foraging Activity of
Hawaiian Albatrosses Detected With a New Immersion Monitor. Condor
2000, 102:577–584.

11. Catry P, Phillips RA, Phalan B, Silk JRD, Croxall JP: Foraging strategies of
grey-headed albatrosses Thalassarche chrysostoma: integration of
movements, activity and feeding events. Mar Ecol Prog Ser 2004,
280:261–273.

12. Phalan B, Phillips RA, Silk JRD, Afanasyev V, Fukuda A, Fox J, Catry P, Higuchi
H, Croxall JP: Foraging behaviour of four albatross species by night and
day. Mar Ecol Prog Ser 2007, 340:271–286.

13. Guilford T, Meade J, Willis J, Phillips RA, Boyle D, Roberts S, Collett M,
Freeman R, Perrins CM: Migration and stopover in a small pelagic seabird,
the Manx Shearwater Puffinus puffinus: insights from machine learning.
Pro Roy Soc B 2009, 276:1215–1223.

14. Mackley E, Phillips R, Silk J, Wakefield E, Afanasyev V, Fox J, Furness R: Free
as a bird? Activity patterns of albatrosses during the nonbreeding
period. Mar Ecol Prog Ser 2010, 406:291–303.

15. Catry P, Dias MP, Phillips RA, Granadeiro JP: Different means to the same
end: long-distance migrant seabirds from two colonies differ in
behaviour, despite common wintering grounds. PLoS One 2011,
6:E26079. doi:10.1371/journal.pone.0026079.

16. Dean B, Freeman R, Kirk H, Leonard K, Phillips RA, Perrins CM, Guilford T:
Behavioural mapping of a pelagic seabird: combining multiple sensors
and hidden Markov models reveals at-sea behaviour and key foraging
areas. J R Soc Interface 2012, 10(78): doi:10.1098/rsif.2012.0570.

17. Dias MP, Granadeiro JP, Catry P: Do seabirds differ from other migrants in
their travel arrangements? On route strategies of Cory’s shearwater
during its trans-equatorial journey. PLoS One 2012, 7:E49376.
doi:10.1371/journal.pone.0049376.

18. Hedd A, Montevecchi W, Otley H, Phillips R, Fifield D: Trans-equatorial
migration and habitat use by sooty shearwaters Puffinus griseus from the
South Atlantic during the nonbreeding season. Mar Ecol Prog Ser 2012,
449:277–290.

19. Freeman R, Dean B, Kirk H, Leonard K, Phillips RA, Perrins CM, Guilford T:
Predictive ethoinformatics reveals the complex migratory behaviour of a
pelagic seabird. J Roy Soc Interface 2012, 10(84): doi: 10.1098/rsif.2013.0279.

20. Orians GH, Pearson NE: On the theory of central-place foraging. In Analysis
of Ecological Systems. Edited by Horn DJ, Mitchell RD, Stairs GR. Columbus,
Ohio: Ohio University Press; 1979:154–177.

21. Croxall JP, Silk JRD, Phillips RA, Afanasyev V, Briggs DR: Global
circumnavigations: tracking year-round ranges of nonbreeding
albatrosses. Science 2005, 307:249–250.

22. Arata JA, Sievert PR, Naughton MB: Status Assessment of Laysan and
Black-footed Albatrosses, North Pacific Ocean, 1923–2005: A USGS Scientific
Investigations Report 2009–5131. U.S. Geological Survey, Reston, Virginia:
USGS; 2009.

23. Tickell WLN: Albatrosses. London: Yale University Press; 2000.
24. International Union for the Conservation of Nature: Red List of Threatened

Species. 2014. http://www.iucnredlist.org.
25. Fernández P, Anderson DJ, Sievert PR, Huyvaert KP: Foraging destinations

of three low-latitude albatross (Phoebastria) species. J Zool 2001,
254:391–404.

26. Hyrenbach KD, Fernández P, Anderson DJ: Oceanographic habitats of two
sympatric North Pacific albatrosses during the breeding season. Mar Eco
Pro Ser 2002, 233:283–301.

27. Hyrenbach KD, Keiper C, Allen SG, Ainley DG, Anderson DJ: Use of marine
sanctuaries by far-ranging predators: commuting flights to the California
Current System by breeding Hawaiian albatrosses. Fish Oceanogr 2006,
15:95–103.

28. Kappes MA, Shaffer SA, Tremblay Y, Foley DG, Palacios DM, Robinson PW,
Bograd SJ, Costa DP: Hawaiian albatrosses track interannual variability
of marine habitats in the North Pacific. Prog Oceanogr 2010,
86:246–260.

29. Young LC, Vanderlip C, Duffy DC, Afanasyev V, Shaffer SA: Bringing home
the trash: do colony-based differences in foraging distribution lead to
increased plastic ingestion in Laysan albatrosses? PLoS One 2010, 4:e7623.
doi:10.1371/journal.pone.0007623.

30. Hyrenbach KD, Dotson RC: Post-breeding movements of a male
Black-footed albatross Phoebastria nigripes. Mar Ornithol 2001, 29:7–10.

31. Fischer KN, Suryan RM, Roby DD, Balogh GR: Post-breeding season
distribution of Black-footed and Laysan albatrosses satellite-tagged in

http://www.ace-eco.org/vol4/iss2/art5/
http://www.iucnredlist.org


Gutowsky et al. Movement Ecology 2014, 2:23 Page 14 of 14
http://www.movementecologyjournal.com/content/2/1/23
Alaska: Inter-specific differences in spatial overlap with North Pacific
fisheries. Biol Conserv 2009, 142:751–760.

32. Hyrenbach D, Hester M, Adams J, Michael P, Vanderlip C, Keiper C, Carver M:
Synthesis of Habitat Use by Black-footed Albatross tracked from Cordell Bank
National Marine Sanctuary (2004–2008) and Kure Atoll Seabird Sanctuary
2008: A Special Report to NOAA. NOAA; 2010.

33. Block BA, Jonsen ID, Jorgensen SJ, Winship AJ, Shaffer SA, Bograd SJ, Hazen
EL, Foley DG, Breed GA, Harrison A-L, Ganong JE, Swithenbank A, Castleton
M, Dewar H, Mate BR, Shillinger GL, Schaefer KM, Benson SR, Weise MJ,
Henry RW, Costa DP: Tracking apex marine predator movements in a
dynamic ocean. Nature 2011, 6:1–5.

34. Gutowsky SE, Tremblay Y, Kappes MA, Flint EN, Klavitter J, Laniawe L,
Costa DP, Naughton MB, Romano MD, Shaffer SA: Divergent post-breeding
distribution and habitat associations of fledgling and adult Black-footed
Albatrosses Phoebastria nigripes in the North Pacific. Ibis 2014, 156:60–72.

35. Jonsen ID, Myers RA, Flemming JM: Meta-analysis of animal movement
using state-space models. Ecology 2003, 84:3055–3063.

36. Jonsen ID, Flemming JM, Myers RA: Robust state-space modelling of
animal movement data. Ecology 2005, 86:2874–2880.

37. Wood SN: Generalized Additive Models: An Introduction with R. Boca Raton,
Florida: Chapman and Hall⁄CRC press; 2006.

38. Phillips RA, Xavier JC, Croxall JP: Effects of satellite transmitters on
albatrosses and petrels. Auk 2003, 120:1082–1090.

39. Ekstrom PA: An advance in geolocation by light. Mem Nat Inst Polar Res
Spec Issue 2004, 58:210–226.

40. Shaffer SA, Tremblay Y, Awkerman JA, Henry RW, Teo SLH, Anderson DJ,
Croll DA, Block BA, Costa DP: Comparison of light- and SST-based
geolocation with satellite telemetry in free-ranging albatrosses. Mar Biol
2005, 147:833–843.

41. Thiebot J, Pinaud D: Quantitative method to estimate species habitat use
from light-based geolocation data. Endanger Species Res 2010, 10:341–353.

42. Worton BJ: Kernel methods for estimating the utilization distribution in
home-range studies. Ecology 1989, 70:164–168.

43. Wood AG, Naef-Daenzer NB, Prince PA, Croxall JP: Quantifying habitat use
in satellite-tracked seabirds: application of kernel estimation to albatross
locations. J Avian Biol 2000, 31:278–286.

44. Shaffer SA, Weimerskirch H, Scott D, Pinaud D, Thompson DR, Sagar PM,
Moller H, Taylor GA, Foley DG, Tremblay Y, Costa DP: Spatiotemporal
habitat use by breeding sooty shearwaters Puffinus griseus. Mar Ecol Prog
Ser 2009, 391:209–220.

45. McKnight A, Irons DB, Allyn AJ, Sullivan KM, Suryan RM: Winter dispersal
and activity patterns of post-breeding black-legged kittiwakes Rissa
tridactyla from Prince William Sound, Alaska. Mar Ecol Prog Ser 2011,
442:241–253.

46. Weimerskirch H, Guionnet T, Martin J, Shaffer SA, Costa DP: Fast and
fuel-efficient? Optimal use of wind by flying albatrosses. Proc Roy Soc Lon
B 2000, 267:1869–1874.

47. Shaffer SA, Costa DP, Weimerskirch H: Behavioural factors affecting foraging
effort in breeding wandering albatrosses. J Anim Eco 2001, 70:864–874.

48. Luque SP, Guinet C: A maximum likelihood approach for identifying dive
bouts improves accuracy, precision and objectivity. Behaviour 2007,
144:1315–1332.

49. Luque SP, Arnould JPY, Guinet C: Temporal structure of diving behaviour
in sympatric Antarctic and subantarctic fur seals. Mar Ecol Prog Ser 2008,
372:277–287.

50. Regular PM, Hedd A, Montevecchi W: Fishing in the dark: a pursuit-diving
seabird modifies foraging behaviour in response to nocturnal light
levels. PLoS One 2011, 6:E26763. doi:10.1371/journal.pone.0026763.

51. Leung E, Chilvers B, Moore A, Robertson B: Mass and bathymetry
influences on the foraging behaviour of dependent yearling New
Zealand sea lions (Phocarctos hookeri). New Zeal J Mar Freshw Res 2013,
47:38–50.

52. Luque SP: Diving behavior analysis in R. R News 2007, 7:8–14.
53. Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM: Mixed Effects Models and

Extensions in Ecology with R. New York: Springer; 2009.
54. Pineiro JC, Bates DM: Mixed Effects Models in S and S-Plus. New York:

Springer-Verlag; 2000.
55. Shuntov VP: Seabirds and the biological structure of the ocean: National

Technical Information Service TT-74-55032. US Department of Commerce:
Washington, DC; 1972 [translated from Russian].
56. Strandberg R, Alerstam T: The strategy of fly-and-forage migration,
illustrated for the osprey (Pandion haliaetus). Behav Ecol Sociobiol 2007,
61:1865–1875.

57. Edwards AE: Large-scale variation in flight feather molt as a mechanism
enabling biennial breeding in albatrosses. J Avian Biol 2008, 39:144–151.

58. Edwards AE, Rohwer S: Large-Scale Patterns of Molt Activation in the
Flight Feathers of Two Albatross Species. Condor 2005, 107:835–848.

59. Rohwer S, Viggiano A, Marzluff JM: Reciprocal Tradeoffs Between Molt and
Breeding in Albatrosses. Condor 2011, 113:61–71.

60. Meyers RA, Stakebake EF: Anatomy and histochemistry of spread-wing
posture in birds. 3. Immunohistochemistry of flight muscles and the
“shoulder lock” in albatrosses. J Morphol 2005, 263:12–29.

61. Hedenstrom A, Sunada S: On the aerodynamics of moult gaps in birds.
J Exp Biol 1999, 202:67–76.

62. Bridge E: Influences of morphology and behavior on wing-molt strategies
in seabirds. Mar Ornithol 2006, 19:7–19.

63. Suryan RM, Anderson DJ, Shaffer SA, Roby DD, Tremblay Y, Costa DP, Sato F,
Ozaki K: Wind, waves, and wing loading: Their relative importance to
the at-sea distribution and movements of North and Central Pacific
albatrosses. PLoS One 2008, 3(12):E4016. doi:10.1371/journal.pone.0004016.

64. Langston NE, Rohwer S: Molt-breeding tradeoffs in albatrosses: Life
history implications for big birds. Oikos 1996, 76:498–510.

65. Astheimer LB, Prince PA, Grau CR: Egg formation and the pre-laying
period of Black-browed and Grey-headed Albatrosses Diomedea
melanophris and D. chrysostoma at Bird Island, South Georgia. Ibis 1985,
127:523–529.

66. Frings BH, Frings M: Some biometric studies on the albatrosses of
midway atoll. Condor 1961, 63:304–312.

67. Suryan RM, Dietrich KS, Melvin EF, Balogh GR, Sato F, Ozaki K: Migratory
routes of short-tailed albatrosses: Use of exclusive economic zones of
North Pacific Rim countries and spatial overlap with commercial fisheries
in Alaska. Biol Conserv 2007, 137:450–460.

68. Rayner MJ, Taylor GA, Thompson DR, Torres L, Sagar PM, Shaffer SA:
Migration and diving activity in three non-breeding Flesh-footed
shearwaters Puffinus carneipes. J Avi Biol 2011, 42:266–270.

69. Carey MJ, Phillips RA, Silk JRD, Shaffer SA: Trans-equatorial migration of
Short-tailed Shearwaters – testing old theories with new technology.
Emu in press.

70. Anderson O, Small C, Croxall J, Dunn E, Sullivan B, Yates O, Black A: Global
seabird bycatch in longline fisheries. Endanger Species Res 2011, 14:91–106.

doi:10.1186/s40462-014-0023-4
Cite this article as: Gutowsky et al.: Daily activity budgets reveal a
quasi-flightless stage during non-breeding in Hawaiian albatrosses.
Movement Ecology 2014 2:23.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Logger deployment
	Positional data processing
	Individual seasonal phenology
	Immersion state data processing
	Statistical analysis for day-to-day activity patterns

	Results
	Overwinter movements and destinations
	Seasonal activity patterns
	Daily activity patterns

	Discussion
	Overwinter destinations
	Activity during transit phases of non-breeding
	Daily activity patterns during overwinter

	Conclusions
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <>
    /GRE <>
    /HEB <>
    /HRV <>
    /HUN <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.440 793.440]
>> setpagedevice


