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Movement Ecology

Avoidance, confusion or solitude? Modelling 
how noise pollution affects whale migration
Stuart T. Johnston1* and Kevin J. Painter2 

Abstract 

Many baleen whales are renowned for their acoustic communication. Under pristine conditions, this communication 
can plausibly occur across hundreds of kilometres. Frequent vocalisations may allow a dispersed migrating group 
to maintain contact, and therefore benefit from improved navigation via the “wisdom of the crowd”. Human activi-
ties have considerably inflated ocean noise levels. Here we develop a data-driven mathematical model to investigate 
how ambient noise levels may inhibit whale migration. Mathematical models allow us to simultaneously simulate 
collective whale migration behaviour, auditory cue detection, and noise propagation. Rising ambient noise levels are 
hypothesised to influence navigation through three mechanisms: (i) diminished communication space; (ii) reduced 
ability to hear external sound cues and; (iii) triggering noise avoidance behaviour. Comparing pristine and current 
soundscapes, we observe navigation impairment that ranges from mild (increased journey time) to extreme (failed 
navigation). Notably, the three mechanisms induce qualitatively different impacts on migration behaviour. We dem-
onstrate the model’s potential predictive power, exploring the extent to which migration may be altered under future 
shipping and construction scenarios.
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Introduction
Many baleen whales routinely perform immense migra-
tions [1], with individual whales observed travelling close 
to 20,000 km in a single year [2]. This clearly represents a 
significant investment of time and energy. The inherent 
difficulties of observing whale behaviour leaves numer-
ous questions about navigation unanswered, not least 
the nature of navigation cues [1, 3]. One factor that has 
received considerable attention, though, is the whales’ 
ability to detect, respond to, and produce sounds [4]. 
Notably, sound propagates rapidly in water with little 
transmission loss, allowing information to be signalled/

received across large distances [5]. External sound 
sources may provide navigating cues [3, 6], while emitting 
low frequency sounds may provide information about the 
bathymetric features of the environment [7].

Studies into “whalesong” that date back over half a 
century [8] have increased awareness of acoustic whale 
communication. In the context of navigation, this has 
been suggested to allow whales to broadcast and rein-
force route information [5]. Such collective navigation 
has been investigated both experimentally and through 
modelling [9]. In the latter, collective behaviour has been 
shown to improve migration efficiency through a “many 
wrongs” principle [10] that reduces individual-level 
uncertainty, particularly if intrinsic navigation infor-
mation is low [11, 12]. The many wrongs principle sug-
gests that collective navigation is more effective due to 
the averaging out of navigational errors across the group 
[11]. Baleen whales can generate loud and low frequency 
sounds that lead to extraordinary communication ranges, 
theoretically covering hundreds of kilometres [4, 5]. As 
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such, seemingly-isolated whales may still be benefiting 
from collective navigation via long-distance communica-
tion across a widely dispersed group [5, 13]. Substance to 
such conjectures can be found in the sequences of calls 
made by humpbacks, tens of kilometres apart, while tra-
versing migration routes [14] or the apparent exchange of 
calls between bowhead whales as they navigate around 
ice [15].

The distance that a sound remains detectable in the 
ocean depends on fixed elements, such as bathymetry, 
and changing elements, such as ambient noise [16]. In 
the pre-industrial ocean, ambient noise would have been 
generated from factors such as wind, rain, breaking ice 
and biotic sources. Today, ambient noise in the ocean is 
increasingly a result of human activities [16, 17]. Anthro-
pogenic sound sources include those from shipping, 
sonar, exploration, and offshore construction; estimates 
suggest that these may have already induced a rise of 
more than 20 dB in certain regions [16]. Given the impor-
tance of sound for communication and information, this 
noise pollution is believed to have a broad spectrum of 
impacts on whales (and other marine animals) [17–19]. 
This ranges from a reduction in communication range 
[5, 20] to physiological damage and stranding events 
that follow extreme noise events [19]. Observed reac-
tions include altered swimming behaviour due to noise 
avoidance responses [21–23], and increased call volumes 
(Lombard effect) under higher ambient noise levels [24, 
25]. Independent of any direct behavioural change, the 
communication range is still significantly diminished 
[24–26].

Mathematical models provide a framework to investi-
gate the interplay between cue detection, noise pollution, 
and navigation behaviour. Abstract models have previ-
ously been developed to explore the benefit of collec-
tive navigation [9, 11, 12, 27, 28]. Broadly, we observe an 
increase in navigational efficiency with an increase in the 
number of observable conspecifics within a group; with 
specific investigations that include, for example, “leaders” 
in the population [29], individual heterogeneity [30], or 
flowing environments [31]. We refer the interested reader 
to the review by Berdahl et al. for a more detailed sum-
mary [9]. Whale-specific models have been presented 
to investigate, for example, the migration of humpback 
whales [32], and the migration and foraging behaviour of 
blue whales [33]. However, while certain realistic aspects 
of whale migration have been included in these models, 
the importance of collective navigation in such models 
remains to be explored, despite its conjectured impor-
tance [5, 13, 14]. In particular, the presence of a spatially- 
and temporally-varying noise field and its interaction 
with the communication range of a whale population has 

yet to be incorporated in a mathematical model of collec-
tive navigation and migration.

The aim of this study is to assess the extent to which 
ambient noise can influence whale migration paths. 
The lack of data under controlled conditions (as noted 
“baleen whales are reticent laboratory subjects” [5]) and 
the infeasibility of reverting from the current soundscape 
to a pristine soundscape motivates our computational 
modelling approach. Here we explore how anthropogenic 
activity may negatively impinge on the navigating abil-
ity of whales. Specifically, we generate synthetic migra-
tion paths while systematically addressing three possible 
consequences of higher noise: reduced communication 
space (‘solitude’), reduced goal-targeting information 
(‘confusion’), and the triggering of explicit reorientation 
responses (‘avoidance’). These plausible repercussions of 
increased noise levels are built into an agent-based math-
ematical model for whale movement that incorporates 
multiple layers of environmental data.

Results
Our mathematical model is designed to simulate a virtual 
population of baleen whales as they migrate across the 
North Sea; for example, a population returning from a 
feeding area. While the model does not explicitly describe 
a particular whale species, we have parameterised the 
model as much as possible from data of minke whales 
(Balaenoptera acutorostrata); we note that the model 
could be parameterised via other whale species and other 
migration routes, given suitable data. The agent-based 
model builds on a collective navigation model introduced 
in [12], which assumes that the confidence in the target 
direction of each whale combines local inherent infor-
mation, e.g. navigation cues, (Fig.  1a) and the collective 
information gained by co-aligning movement paths with 
other whales in communication range (Fig. 1c).

In the model, the communication range is principally 
dictated by the ocean ambient noise (Fig. 1d); other fac-
tors include the sound transmission decay and source 
level. We decompose the ambient noise into surface wind 
and shipping noise levels, which allow us to consider 
two forms of ocean soundscape: the pristine soundscape 
(wind noise only) and the current soundscape (wind and 
shipping noise) [34]. These noise layers represent two 
of the four data sources needed for model implementa-
tion (Fig. 1b); the other data are ocean currents [35] and 
bathymetry [36]. A detailed explanation of the model and 
the parameters used, and a sensitivity analysis can be 
found in the “Methods” section and  the Supplementary 
Information,   which includes an  Overview, design con-
cepts and details protocol (Additional file 1) [37, 38]. The 
model relies on noise response mechanisms that are, by 
necessity, speculative due to our current understanding 
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of baleen whales. The conclusions arising from our model 
should therefore be interpreted with this in mind. How-
ever, the clear qualitative differences in migration pat-
terns that emerge from our model imply that it may be 
possible to identify the dominant type of response to 
noise from observational data in future.

Migration in the pristine soundscape
The pristine soundscape serves as the benchmark, 
representing navigation in a pre-industrial ocean and 
offering optimal conditions for navigation: communi-
cation is close to maximum across the migration route 
(Fig.  1d). Representative migration trajectories show 
broadly straight line movements towards the target 
(Fig.  1e). At a population level, trajectories are con-
strained to a relatively tight corridor (Fig. 2a), implying 
that a high degree of cohesion is maintained through-
out migration, despite the lack of an explicit “attraction” 
mechanism between whales in the model. However, 
this does not imply physical proximity: average pair-
wise distance is ∼ 100  km and only ∼ 5% of the group 
lie within 5 km of each other, so visual sightings of pairs 
or groups would form relatively rare events. The mean 
distance to the destination decreases linearly (Fig. 2d), 

with the majority of whales arriving within a few days 
of each other (Fig.  2c). The tail is attributed to a few 
“straggling” outliers, such as those either positioned 
at the group edge or adopting routes that require navi-
gation about obstacles such as islands. The number of 
detected whales indicates the level of communication. 
This is initially high while whales are co-located at the 
feeding ground, but drops with migration as the group 
becomes dispersed. Crucially, the number of detect-
able whales remains high enough to benefit navigation. 
We do not speculate on the rate of calls for individual 
whales. Rather, we assume that a whale calls more 
often than it undergoes reorientation so that contem-
poraneous information is available; for example, calling 
rates of individual North Atlantic minke whales vary 
between 8.7 and 133.3 calls/hr, with a median intercall 
interval of 1 min [39]. Note that during the final stages, 
the bathymetry helps to funnel the population between 
landmasses, illustrating a geophysical influence on 
group structure and navigation; here, land avoidance 
behaviour can dominate by orienting individuals away 
from excessively shallow waters to prevent beaching 
(Additional file 2: Fig. S3).
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Reduced communication range delays arrival
We now consider the current soundscape, which includes 
shipping noise (Fig.  2b) [34]. The increase in ambient 
noise slows migration, introducing a delay via a 3–4 day 
shift in the distribution of arrival times (Fig.  2c). This 
effectively represents an additional ∼ 20% in travel time. 
Longer migration primarily results from reduced com-
munication space, as the detectable range drops by an 
order of magnitude or so across the migration (Fig. 1d). 
This manifests in a dramatic decrease in the number of 
detectable calls (Fig.  2e), when compared against the 
pristine soundscape. This is particular apparent from the 
outset, where initial proximity to shipping lanes leads to 
considerably reduced communication. Calling recovers 
as the population moves into quieter seas. The funneling 
between landmasses towards the end of the migration 
proves particularly beneficial here, bringing individuals 
within communication range despite the noise-induced 
masking. Overall, though, throughout migration the 
communication range is greatly diminished and the 

advantages of collective navigation are lost, with individ-
uals more heavily reliant on inherent information such as 
memory or cue detection. We see similar trends for dif-
ferent choices of the relative weight placed on inherent 
and collective information (Additional file 2: Fig. S10).

Noise avoidance can block migration routes
Explicit noise avoidance behaviour is included in Fig. 2, 
but is only triggered at higher exposure levels. Entirely 
eliminating this avoidance only marginally improves 
navigation (Additional file  2: Fig.  S1), indicating that 
the impaired navigation observed in Fig.  2 primar-
ily stems from communication masking. Clear noise 
avoidance responses are well documented for whales 
exposed to nearby loud noise sources and are typi-
cally based on direct visual observations [23]. As such, 
uncertainty exists regarding the level of noise at which 
such a response occurs, with more subtle path devia-
tions difficult to assess visually. To explore the impact 
of explicit noise avoidance we lower the intensity 
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threshold at which this behaviour is triggered (Fig.  3) 
(changing from ∼1  km to ∼8  km from a large ship). 
Navigation efficiency is significantly reduced, with a 
slower approach to the target and delayed arrival times 
are observed (Fig. 3b, c). Notably, significant differences 
only emerge around halfway through the journey. To 
understand this we chart the regions where noise avoid-
ance is triggered for different sensitivities (Fig.  3a). 
The first portion of the migration path remains rela-
tively clear for all sensitivities, yet later stage migration 
becomes more convoluted due to higher ambient noise. 
Consequently, routes that do not require noise avoid-
ance become restricted to certain channels, which can 
be closed off as the sensitivity increases. This, in turn, 
leads to failures in migration (Fig.  3b–d), as individu-
als become trapped behind a wall of noise. We further 
explore this phenomenon by systematically varying the 
parameters in the noise avoidance mechanism (Addi-
tional file 2: Fig. S8–S9).

Noise‑induced reductions in inherent information
Higher ambient noise may also reduce the level of inher-
ent information available. This may occur either directly, 
through obscuring sound sources that serve as navi-
gation cues; or indirectly, through poor processing of 
information due to noise-induced confusion or stress. 
Notably, we observe significant delays in arrival time 
when noise-induced information loss is included, becom-
ing severe if the loss is high (Fig. 4). Crucially, this inef-
fective navigation does not result from closed routes 
but from less-directed movement that places whales at 
greater susceptibility to dispersing effects, including cur-
rents. This is particularly prominent across the second 
half of the migration, where the higher noise within this 
region results in greater spread and significant deviation 
of the median trajectory (Fig. 4a). Previous studies indi-
cate that poor information zones can be compensated for 
through collective navigation [12], via a communication 
relay between information-rich and information-poor 
regions. Here, this compensation is unavailable as noise 
concurrently reduces group communication. Hence, in 
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the model, an increase in ambient noise can have a com-
pounding and negative impact on navigation efficiency 
due to simultaneously affecting the different elements 
that aid navigation.

Perturbing the current soundscape
Building on the insights of the above analysis, the pre-
dictive potential of the model is demonstrated through 
perturbing the current soundscape (Fig.  5). Specifically, 
we (i) construct synthetic noise maps with shipping 
noise that originates from virtual vessels (Fig.  5a), and; 
(ii) consider the localised impact of a large scale offshore 
construction process in an otherwise pristine sound-
scape (Fig. 6). For the synthetic equivalent to the current 
soundscape we set parameters for the routes, numbers 
and source levels of virtual vessels to near recreate the 
migration behaviour within the current soundscape pro-
file (Fig. 2). From this baseline we consider the impact of 
a future 50% increase in traffic (Fig. 5, dark blue), which 
has been suggested will occur before 2050 [40]. The 
resulting rise in ambient noise hinders migration through 

triggering the noise avoidance that traps a subset of the 
population behind high noise regimes. As a potential 
mitigation we explore the extent to which introducing 
slowdown zones can offset the impaired migration; trials 
indicate that slower speeds can reduce noise levels from 
certain vessels upwards of 10 dB [41]. Introducing a slow-
down can partially recover migration efficiency (Fig.  5, 
magenta), despite the elevated vessel numbers. To simu-
late the impact of a construction project, we place a sin-
gle noise source at a fixed location and consider different 
amounts of construction activity (e.g. pile driving) per 
day. Increasing construction activity leads to an increas-
ing perturbation to the migration path (Fig.  6a) and 
day-to-day activity triggers oscillations in the remain-
ing migration distance (Fig. 6c). The latter results from a 
daily triggering of noise avoidance behaviour that oper-
ates until the whales have moved sufficiently far away 
from the source to allow normal migration. The total 
amount of construction activity has a more pronounced 
impact on migration than the scheduling of the activity 
(Additional file 2: Fig. S5).
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Discussion
We have developed a model to explore the impact of 
ocean noise on whale migration routes, where higher 
ambient noise (i) reduces whale communication space, 
(ii) generates an avoidance response when sufficiently 
loud, and (iii) lowers inherent navigation information. 
Each mechanism can lengthen the journey time, and 
certain scenarios may even lead to failed migration. As 
such, the energetic cost of migrating in the current ocean 
soundscape is expected to be higher than in a pristine 
soundscape. Notably, though, each mechanism has a 
subtly different impact: it is not simply three different 
forms of slower migration. Rather, diminished communi-
cation space leads to greater solitude and slower migra-
tion as collective navigation benefits are eroded. Under 
a loss of information there is increased confusion, lead-
ing to off-course drifting and greater susceptibility to 
ocean currents. Finally, loud noises lead to a strong noise 
avoidance response and routes that become blocked, and 
hence migration may fail. Whether these distinct forms 
of trajectory perturbation predicted by our virtual whale 
model are also observed within tracked whales would be 
of key interest. The conclusions drawn from the model 
predictions are contingent on the relevance and accu-
racy of the mechanisms in the model. It is likely that 
baleen whales exhibit more sophisticated behaviour than 
that encoded into the model, including learning-type 
responses and adaptation to the evolving environmental 
conditions. However, in the absence of detailed under-
standing we sought to impose relatively simple mecha-
nisms and explore how these mechanisms may manifest 
in qualitatively different migration behaviour.

Reduced communication spaces lengthen journey 
times through lower collective navigation. Previous the-
oretical studies [11, 12] indicate that co-alignment of 
migration paths provides a “many wrongs” [10] benefit 
by reducing inherent uncertainty, but only above a criti-
cal number of detectable neighbours [11, 12]. A reduced 
communication space can therefore eliminate this ben-
efit, leading to a more convoluted path. We have not 
(explicitly) included noise compensation behaviour, such 
as the Lombard effect. This effect has been observed in 
whale populations, where call intensities are increased at 
higher ambient noise levels [24, 25]. It would be possi-
ble to include this mechanism, yet it is known to provide 
only provide partial compensation [25], and we would 
expect qualitatively similar results from the model.

Allowing ambient noise to reduce inherent informa-
tion also negatively impacts on migration times. The 
guidance cues used by whales during their navigation are 
largely unknown, but listening for characteristic sound 
sources is certainly plausible [3, 7]: surf may allow detec-
tion of coastlines [6], while rifting of icebergs creates 

noise sources estimated at ∼ 245 dB (re 1 µ Pa at 1  m) 
[42], detectable thousands of kilometres away for the low 
frequency bands of baleen whale acoustics. Higher ambi-
ent noise therefore may reduce the detectability of such 
sources, decreasing the efficacy of target-directed motion 
and increasing the susceptibility of whales to ocean cur-
rents. It is also feasible that louder ambient noise reduces 
inherent information from other sources, such as geo-
magnetic field information [3], through a noise-induced 
reduction in processing ability due to, for example, con-
fusion or a change in focus.

A more direct and acute response included here is noise 
avoidance [22, 23], where noise levels above a threshold 
induce movement away from the source. This can impact 
significantly beyond introducing deviations into migra-
tion paths. At the extreme end, migration routes may 
become blocked if whales are “trapped” behind a wall of 
noise. Noise avoidance is modelled as a ‘negative phono-
taxis’ response: directed away from loud noise sources. 
The relative strength of noise avoidance behaviour to 
migration behaviour increases with the noise level; it is 
feasible for motion to be a balanced combination of both 
types of behaviour. Consequently, this acts to concen-
trate the population within lower noise regions, where 
avoidance responses are not triggered. Evidence for a 
noise-induced spatial redistribution of whale populations 
can be found in [43], following analyses into the tracks 
derived from detected minke whale calls before, during, 
and after periods of naval activity [43]. Statistical model-
ling further supports the hypothesis that individuals were 
specifically moving away from sonar-producing ships 
[22]. Negative phonotaxis responses could conceivably 
be achieved through a comparison of current noise levels 
with prior noise levels.

We have currently assumed a constant swimming 
speed. Noise avoidance, however, may also manifest in 
(substantial) increases to the movement speed as the 
individual escapes [23]. Higher speeds carry significant 
extra costs: energy expenditure during migration stems 
from both metabolism and generating propulsion. For 
marine animals the latter rapidly increases with speed 
due to the increased drag [44, 45]. Optimal migration 
speeds that minimise energy expenditure can be calcu-
lated for different cetacean species [46, 47]. Therefore, 
extending the model to include noise-modulated speed 
and tracking energy expenditure will allow further insight 
into how noise impacts on whale fitness.

More severe reactions to noise are possible beyond 
those included here. Numerous studies imply a causal 
relationship between extreme noise events and cetacean 
mass strandings, with close spatiotemporal correlations 
and biopsies indicating noise-induced physiological 
damage [19]. A whole spectrum of reactions is therefore 
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plausible, from subtle to severe. Highly elevated stress 
could result in disorientation, potentially impacting 
the land avoidance mechanism that prevents beaching. 
Exposure to loud noises may result in transient or perma-
nent hearing impairment, debilitating whales beyond the 
time of exposure [19]. These factors could be included 
through an additional variable, describing a whale’s cur-
rent physiological state. Population heterogeneity could 
also be included via an age variable, that impacts both on 
hearing sensitivity (e.g. age-related hearing loss in older 
cetaceans, e.g. [48]) and navigating ability (e.g. less expe-
rienced juvenile members [3]). Incorporating these and 
other forms of heterogeneity, such as inherent informa-
tion, or the relative weight placed on inherent or col-
lective information, will allow us to explore whether 
ambient noise disproportionately impacts on different 
members of the group.

Each agent in our model has been taken to be an indi-
vidual, effectively an assumption that whales travel singly 
rather than in close-knit pods. Minke whale sightings in 
the North Sea are usually of a single individual (e.g. [49]), 
but in other species/populations this may not be the case. 
For example, sightings of Eastern Northern Pacific gray 
whales are often of multiple individuals, and the reported 
number typically underestimates the actual pod size [50]. 
This extra structuring could be incorporated by allowing 
each agent to represent a pod of up to some number of 
members, raising subsequent questions on whether this 
provides a benefit to collective navigation. Specifically, 
different forms of information could be shared according 
to the communication between nearby pod members and 
the communication with distant individuals/pods.

We have made the assumption that individual whales 
call more frequently than they undergo reorientation 
events. Conservative estimates of the calling rate of 
Antarctic minke whales (Balaenoptera bonarensis), pre-
sented in [51], indicate a diel pattern with 1.93 calls per 
hour during daylight hours and 4.09 calls per hour during 
the night. A similar diel pattern of increased calls during 
the night was observed in the North Sea and the North-
west Atlantic Ocean for northern minke whales (Balae-
noptera acutorostrata) [39, 52]. While this is indeed more 
frequent than the reorientation rate in our model (once 
per hour, on average), it is possible that the calls are clus-
tered together during certain behaviour, such as group 
foraging or when a conspecific is within close range [51]. 
If the calls are clustered, there may be longer periods of 
time between call clusters (i.e. when there are no calls), 
during which multiple reorientation events may occur. 
Alternatively, if whales rely on calls to maintain contact 
throughout migration, call rates may be enhanced dur-
ing migratory periods. For vocally-active northern minke 
whales, call rates have been observed to range between 

8.7 and 133.3 calls per hour [39]. It would be instructive 
to incorporate explicit calling behaviour in the model, so 
that whales respond to the most recently received signals 
from other whales. This will be most relevant for species 
that call infrequently, relative to the rate of reorientation 
events, as reorientation events may be based on outdated 
information.

Sound information has been condensed here into the 
intensity level, allowing us to use a simple transmission 
loss model [20] in which calls are heard only when the 
received intensity is not sufficiently below the ambient 
noise. A more sophisticated model could account for 
noises covering different frequency bands and species-
specific sensitivities. However, while available for certain 
other cetaceans, audiograms have not yet been obtained 
for baleen whales [20] and the simpler intensity-based 
model would appear a reasonable compromise at present. 
Additionally, we could extend the model to account for 
relevant factors such as the bathymetry, ocean floor com-
position and reflectivity, and sound speed [34]. However, 
as above, the complexity of the model is chosen to be lim-
ited so that the time required to perform computational 
simulations remains sufficiently low.

A number of other studies have also used agent-based 
modelling to explore the impact of noise on whale com-
munication space or navigation. For example, Cholewiak 
et al. [26] consider a model for mobile whales that swim 
within a region subject to shipping traffic, exploring the 
change in communication space for different calls across 
a variety of baleen populations and according to the dif-
ferent forms of shipping. Guarini and Coston-Guarini 
[32] explore the influence of bathymetry on humpback 
whale migrations. The work here extends the preliminary 
study performed in [12], and merges aspects of naviga-
tion with impacts from communication masking, while 
also accounting for the effects of ocean currents and 
bathymetry. Ocean currents can reach orders of mag-
nitude commensurate with migration speeds and have 
been accounted here as a passive advection. This assumes 
that whales do not specifically adapt their movement 
with respect to an ocean current – we are not aware of 
any studies that suggest whales orient according to the 
current (rheotaxis). Nevertheless, aligning with currents 
is common within marine animals [53], and this could 
be included in future. Land avoidance was primarily 
included in our model to prevent beaching. However, it 
was also found to confer navigating benefits by funnelling 
whales between landmasses, improving cohesion in the 
process.

Our case study adopted the North Sea region due to its 
high level of human activity, the availability of data (noise 
maps [34], bathymetry [36], ocean currents [35]) and the 
presence of various cetaceans [54], including a seasonal 
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aggregation of minke whales [55]. However, the modular 
nature of the model allows it to be adapted to other case 
studies: for example, noise maps are also available for 
Australian coastal waters [56], where humpback whales 
migrate along the eastern coast to breeding grounds 
in the Great Barrier Reef [57]. The model can also be 
used as a prediction tool, illustrated here by consider-
ing beneficial (lowered shipping speeds) and detrimen-
tal (increased traffic, introducing offshore construction 
projects) perturbations to the soundscape. It would also 
be possible to extend the model to consider a spectrum 
of potential climate change impacts, which could include 
altered ocean currents, changes in sound transmission 
due to ocean acidification or spatiotemporal changes to a 
target food resource. Simulating a sequence of migrations 
over multiple years across an age-structured whale pop-
ulation would allow exploration into the potential resil-
ience of whale populations in the light of such changes.

Materials and methods
Study site
Our study considers the movement of a hypothetical 
baleen whale population along a (predominantly) south 
to north route across the North Sea, from a region north 
of the Netherlands toward the Atlantic Ocean between 
Scotland and the Faroe Islands. Our focus on this region 
is motivated by the considerable human activity in these 
waters, with significant levels of shipping, exploration 
and construction. As a by-product to this activity, there 
is an availability of fine-scale data (ocean noise [34], 
bathymetry [36] and ocean currents [35]) that form key 
inputs into the model. To allow fixing of certain param-
eters of the model (e.g. migration speeds and call source 
levels) we consider data for minke whales (Balaenoptera 
acutorostrata), which is the most populous species of 
baleen whale within the North Sea [52, 58]. The starting 
location coincides with previous observations of a sig-
nificant seasonal aggregation near the Dogger Bank [55] 
region that peaks in May. However, we stress that we are 
not specifically modelling this species: the overall aim is 
to understand the potential impact of environmental fac-
tors, principally noise, on navigation. However, the model 
framework is flexible and can be tailored to explore spe-
cific whale migrations, given appropriate data.

Model
The basis for the model presented here is the collective 
navigation model in [12]. Full details can be found in 
the original manuscript; however, we briefly summarise 
the model here. Each virtual whale is tracked according 
to its position ( x ) and swimming orientation ( θ ), and 
moves according to

where vactive represents the contribution to its veloc-
ity from active swimming and vpassive is the contribution 
from ocean currents. Each individual undergoes active 
motion according to a velocity-jump random walk [59]. 
Individuals swim with a fixed heading ( θ ) and speed (s) 
for an exponentially-distributed length of time before 
selecting a new heading, and repeating the process. The 
heading selection process encodes collective navigation 
as the selected heading reflects the inherent knowledge 
of a target in combination with the observed heading of 
other nearby individuals [12]. A detailed explanation of 
the model can be found in [12].

Briefly, the heading selection (i.e. choice of vactive ) is 
a four step process. First, an individual selects a head-
ing based on its inherent knowledge of the target. This 
heading is sampled from a von Mises distribution cen-
tred in the target direction with a concentration param-
eter corresponding to the level of inherent information 
available to an individual at its current location ( κ ). 
Second, the individual observes the headings of all 
other individuals within its perceptual range. The head-
ings may either be explicitly signalled by the perceived 
individuals, or the headings may simply be observed 
(i.e. constructed from sequential call locations); see 
[31] for a detailed investigation of the impact of this 
choice. We do not impose an additional error term on 
the observed headings at this time. This remains an 
interesting possible model extension, where the error 
may depend on, for example, the background noise or 
the call frequency. Third, we calculate estimates for the 
location and concentration parameters of a von Mises 
distribution that would give rise to the set of headings, 
based on the resultant vector obtained from a weighted 
sum of the individual’s heading and the observed head-
ings, according the process detailed in [12]. Finally, 
vactive is sampled from the von Mises distribution with 
the estimated location and concentration parameters. 
Crucially, navigational uncertainty is captured by the 
spread in the set of observed headings. This previously-
proposed model effectively demonstrates the benefit 
of collective navigation, particularly in regions of poor 
navigation information. However, certain model fea-
tures necessary for describing long-distance whale 
migration are not present in the previous model. We 
extend the model to incorporate the influence of ocean 
currents, dynamic noise pollution and signal detection, 
noise avoidance, and land avoidance.

(1)
dx

dt
= vactive + vpassive,
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Ocean currents
Ocean currents can benefit (or hinder) migration sim-
ply via passive transport according to whether the tar-
get direction is aligned (or opposed) with the dominant 
current direction. In certain regions, current veloci-
ties can reach speeds comparable to average migration 
speeds, and hence form a non-negligible contribution to 
motion that is incorporated through the passive trans-
port contribution of (1). The ocean current data used 
here is obtained from the HYCOM model [35], which 
provides day-to-day currents at a spatial resolution of 
0.04◦ latitude and 0.08◦ longitude. We only use the sur-
face depth layer of this data: while baleen whales do make 
occasional deeper dives, we presume that while migrat-
ing they remain close to the surface, alternating between 
swimming and surfacing to breathe.

Ocean noise
Ocean noise is a product of both natural processes, such 
as wind and rain, and anthropogenic activity, such as 
shipping and resource exploration, each varying spatially 
and temporally [17]. Shipping activity is concentrated 
along commercial shipping lanes, while rain occurs in 
transient bands. Heightened awareness of the importance 
of the ocean soundscape has led to increased acous-
tic monitoring [60] and the generation and validation 
of ‘soundmaps’ [34, 61]. These maps require significant 
computational overhead and, consequently, we utilise the 
data from these previously-published studies rather than 
explicitly modelling spatial noise distributions. Specifi-
cally, we use data generated in [34], which provides vali-
dated estimates for the noise levels across the North Sea 
that arise from shipping traffic and wind at the ocean sur-
face. Separating this data according to the distinct noise 
sources subsequently allows us to consider both pristine 
(wind noise only) and current (both shipping and wind 
noise) soundscapes. This data also informs the parame-
terisation of synthetic noise maps (i.e. noise maps based 
on simulated traffic) based on a simplified sound trans-
mission model. Specifically, the received level RL (dB) at 
a distance r (m) from a sound with source level SL (dB), 
can be modelled by

where γ log10 r describes the transmission loss [20]. The 
coefficient γ is bounded below by 10, corresponding to 
shallow water in which the spreading is effectively cylin-
drical, and above by 20, for deep water in which sound 
propagates in all directions (spherical). Here we use 
γ = 17.8 [62]. This is a considerable simplification; how-
ever, this makes it feasible to construct and analyse mul-
tiple synthetic noise maps, which would not be the case 
for detailed sound transmission models (which require 

(2)RL = SL− γ log10 r

the solution of partial differential equations across the 
ocean, accounting for accurate bathymetric data) [34]. 
It is plausible that baleen whales are more sensitive to 
specific noise bands, particularly lower frequency bands 
[63], and this remains a model extension of interest, if a 
balance can be found between fidelity of sound transmis-
sion physics and computational complexity.

Communication range
We explicitly model potential communication mask-
ing [20], in which the call produced by a whale may be 
masked by the ambient noise. Specifically, we assume 
that a whale emits a call at 178 dB (re 1 µ Pa at 1 m), con-
sistent with median estimates of minke whale pulse trains 
[64], and that the transmission of this sound follows (2). 
This call can be detected by another individual if the 
signal-to-noise ratio (SNR) of the signal and the ambient 
noise at the location is above a theshold value

where N (x, t) is the ambient noise at location x and time 
t. We do not make any specific assumptions about the 
timing of calls; only that the whales call more frequently 
than they undergo reorientation events, so that any infor-
mation available to reorienting whales is an accurate 
reflection of the headings of other whales. As above, this 
is a considerable simplification of the complex nature of 
real world whale communication, where calling, trans-
mission and detection will be frequency and orientation 
dependent. Plausible SNR are not restricted to positive 
values; for example, negative values are observed for 
human conversation in noisy environments [65].

Noise avoidance
Loud noise sources have been observed to induce escape 
or avoidance behaviour [66]. For example, see [22, 23] 
with specific reference to minke whale noise avoidance 
responses to sonar. To include these responses into the 
model, we impose a mechanism where individuals reori-
ent and move away from regions of high noise (negative 
phonotaxis). The strength of this behaviour is given by a 
sigmoidal function such that (i) below a threshold noise 
level there is essentially zero noise avoidance, (ii) for 
intermediate noise levels individuals balance noise avoid-
ance against navigation, (iii) above a certain threshold, 
navigation behaviour is neglected and motion is dictated 
solely via noise avoidance. This latter could be viewed 
as essentially a stressed or panic response, where the 
noise overrides other factors [19]. It is likely that whales 
respond to different type of noise sources in different 
ways. One limitation of our choice of sound transmission 
model is that it is not straightforward to incorporate such 

(3)SNR = RL− N (x, t),
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behaviour; however, this remains an interesting avenue 
for a future model extension.

Here we calculate the proportion of motion that is 
driven by noise avoidance wna(N (x, t)) , where the N (x, t) 
is the noise level at location x and time t. The remaining 
proportion of motion (i.e. 1− wna(N (x, t)) ) is motion 
corresponding to regular migration behaviour. We calcu-
late the weighting via

where Nthreshold is a threshold parameter that repre-
sents the noise level at which there is an equal weight-
ing between noise avoidance and migration and Ns is the 
transition rate parameter that dictates the rate of tran-
sition between regular and noise avoidance behaviour. 
Here Nthreshold = 120  dB (re 1 µ Pa at 1  m) for Figs.  2 
and 4, Nthreshold = 105 dB (re 1 µ Pa at 1 m) (dark blue), 
110  dB (re 1 µ Pa at 1  m) (magenta), 115  dB (re 1 µ Pa 
at 1  m) (orange) for Fig.  3 and Nthreshold = 115  dB (re 
1 µ Pa at 1 m) for Figs. 5 and 6. We demonstrate the effi-
cacy of the noise avoidance response in the Additional 
file 2: Fig. S2, where we place an (artificial) extreme noise 
source in the centre of the North Sea. We observe a clear 
noise avoidance response, where trajectories indicate 
that the whales skirt around the edge of the region of 
extreme noise, and then recommence normal migration 
behaviour.

Land avoidance
We assume healthy whales, under normal noise levels, 
avoid shallow water to minimise risk of beaching. To 
include this behaviour, we implement a similar sigmoidal 
approach to land avoidance as for noise avoidance. Spe-
cifically, we use bathymetric data [36] to obtain estimates 
of the water depth at any given spatial coordinate; whales 
likely estimate distance to the ocean floor through spe-
cific downward-directed calls [7], or to the shore through 
listening for surf [6]. For deep water, land avoidance is 
essentially not considered. If the individual is in suffi-
ciently shallow water, however, navigation is neglected 
and the individual prioritises motion in the direction of 
deepest water (we call this “bathotaxis”). At intermediate 
depths, there is a weighting between navigation and land 
avoidance.

We define a weighting wla(d(x)) that represents the 
proportion of motion that is in the direction of greatest 
water depth, given the depth at the current location d(x) . 
Similar to the noise avoidance response, the remaining 
proportion of motion (i.e. 1− wla(d(x)) ) is motion cor-
responding to regular migration behaviour. We calculate 
the weighting via

wna(N (x, t)) = 0.5+ 0.5 tanh
1

Ns

(N (x, t)− Nthreshold) ,

where dthreshold is a threshold depth that represents the 
water depth at which there is an equal weighting between 
land avoidance and migration. Here we assume dthreshold 
= 30 m. We note that in the present implementation of 
the model, land avoidance responses are balanced against 
noise avoidance responses (i.e. ensuring the total weights 
are no more than one); a failsafe mechanism is present, 
where any motion that would result in whales crossing 
onto land is aborted. However, the failsafe mechanism is 
not invoked in any of the scenarios we consider, i.e. there 
are no noise responses that drive whales onto land. We 
remark that this is an interesting avenue to explore, and 
would allow exploration into potential whale beaching 
events. We demonstrate the land avoidance response 
in Additional file 2: Fig. S3, where we observe a popula-
tion of whales that are able to avoid Ireland and navigate 
around its coast.

Model metrics
For the model output, we report up to 4 key statistics. All 
statistics are calculated across Nrepeats = 10 identically-
prepared realisations of the simulation. The first is the 
median trajectory of the population [67]. As the con-
cept of a mean trajectory is not well defined in the pres-
ence of divergent paths (i.e. around obstacles), we follow 
Buchin et  al. [67] and calculate the median trajectory. 
The median trajectory is defined by following the trajec-
tory of an individual until it intersects with the trajectory 
of another individual, after which the median trajectory 
follows the trajectory of the other individual. The median 
trajectory follows this trajectory until another intersec-
tion event, after which the trajectory switches again. 
This approach ensures that the median trajectory always 
reflects a component of an actual trajectory and that the 
median trajectory is bound by the outermost individual 
trajectories [67]. We use the Matlab package “Fast Line 
Segment Intersection” [68] to efficiently determine inter-
sections. We present the spread around the median tra-
jectory by dividing space into bins and calculating the 
relative frequency that a whale is located in that bin. The 
boundary of all bins above a threshold value (0.05) is used 
to generate the transparent region in the figures.

The second metric is the number of whales at the target 
location. This is calculated by determining the average 
number of whales that remain in the simulation at a time 
and subtracting this from the initial number of whales.

The third metric is the mean distance to the target loca-
tion. This is calculated by determining the centre of the 
whale population in an individual simulation at each time 
point, and calculating the Euclidean distance between the 

wla(d(x)) = 0.5− 0.5 tanh
(

0.5(d(x)− dthreshold)

)

,
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centre of the population and the target location. This is 
then averaged across each simulation repeat.

The fourth metric is the average number of detected 
whales. At each time point we calculate the number of 
other whales each individual whale in the population can 
detect. To account for the rapidly varying noise level in 
the ocean, we calculate the average of this across the pop-
ulation and across individual simulation days. This metric 
is then averaged across each simulation repeat.

Data sources
As noted above, implementation of the model requires 
synthesis of multiple datasets: ocean current velocity 
data from HYCOM Global (GLBv0.08) [35], bathymetry 
data from EMODnet Digital Bathymetry [36], coastline 
data from the Global Self-consistent, Hierarchical, High-
resolution, Geography Database [69], and wind-derived 
noise from [34]. Shipping-derived noise data is either 
obtained from the study [34] or from our synthetic noise 
model. The synthetic noise model allows incorporation of 
both fixed (e.g. drilling and exploration) and mobile (e.g. 
ships) noise sources of varying intensity, therefore per-
mitting investigation into the influence of different ship-
ping lanes, levels and types of traffic, or the introduction 
of new construction projects. We use linear interpola-
tion between data points to evaluate each of the datasets 
at the location of an individual in the model. All simula-
tions are performed in Matlab R2020b. The code used to 
perform the model simulations can be found at https:// 
github. com/ DrStu artJo hnston/ whale- migra tion- model.

Parameter details
For all simulations we consider 100 whales. While we 
do not model a specific migration, parameters are fixed 
according to data for minke whales; this species is rela-
tively abundant within the North Sea [58] and a signifi-
cant subpopulation has been observed to congregate 
at feeding grounds at the southern end of the North 
Sea during spring/summer [55]. In our model the agent 
whales are initially distributed at random within a pre-
specified region, broadly compatible with the localisa-
tion of the congregation noted above and ensuring that 
initially the population is within communication range. 
For all results except Fig. 5, this is the region defined by 
53.5◦  N to 54.5◦  N and 4.5◦  E to 5.5◦  E. For Fig.  5, this 
region is defined by 55◦ N to 56◦ N and 4.5◦ E to 5.5◦ E. 
The target destination of the whale population in all cases 
is 61◦ N, 5 ◦ W. Whales are considered to have arrived if 
they are within 50  km of the target destination. For all 
parameter sets we perform 10 simulation realisations. 
While this is not large, relative to certain other simula-
tion studies, we are limited by the computational com-
plexity of the simulation. We verify that the estimates of 

the mean and standard deviation of the migration behav-
iour do not change substantially with additional simula-
tion realisations, suggesting that we are capturing the 
relevant behaviour with 10 simulations (Additional file 2: 
Fig. S11).

For all simulations we assume a constant speed of 
6 km/h, within the estimated range of migration speeds 
for minke whales [1]. We assume a reorientation rate of, 
on average, once per hour. The time between reorienta-
tion events is exponentially distributed. Between reori-
entation events whales move with a constant velocity 
and the new heading selected during the reorientation 
process follows the procedure described in the model by 
Johnston and Painter [12]. Consistent with that model we 
select α = 0.5 and β = 0.5 , where α and β each represent 
weighting parameters between the inherent and collec-
tive information when estimating the mean direction and 
uncertainty, respectively. This choice reflects the results 
from an exploration in [12], where an even weighting 
between inherent and collective information is deter-
mined to give rise to near-optimal navigation. We verify 
that this choice of α and β is similarly appropriate for both 
the pristine soundscape and the current environment by 
repeating the study presented in Fig. 2 for different α and 
β values. We present this result in the Additional file 2: 
Fig. S10. We see slightly different trends depending on 
the level of environmental noise, as has been observed 
previously [70], but α = β = 0.5 remains near-optimal 
in both cases. It is possible that whales may adapt to dif-
ferent noise levels, and hence place more or less weight 
on the inherent information; we leave this extension for 
future work. We select a background level of inherent 
information with κ = 1 ; again consistent with the study 
in [12], this value ensures that the level of inherent navi-
gation information can capably guide whales towards the 
target in the absence of collective navigation, but that 
collective behaviour can provide a significant boost to 
journey times.

Each simulation is conducted across 744 (model) hours, 
i.e. 31 (model) days. Note that we assume that whales do 
not break their migration (e.g. to rest, feed or sleep). We 
set the migration to begin on July 1 2010, and use the cor-
responding ocean current data from the HYCOM Global 
(GLBv0.08) model [35] with a time spacing of one day.

We assume that the source level (SL) of the whale 
call is 178  dB (re 1 µ Pa at 1  m), consistent with pre-
vious estimates [64]. We choose a signal to noise ratio 
(SNR) for detection of whale calls among background 
noise of SNR = −5 dB. The minimum received level for 
a call to be detected is chosen to be 88 dB (re 1 µ Pa at 
1  m). Under our sound transmission model, this pro-
vides a (pristine) communication range of ∼114  km, a 
value chosen for its consistency with representative 

https://github.com/DrStuartJohnston/whale-migration-model
https://github.com/DrStuartJohnston/whale-migration-model
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values of potential communication space in other stud-
ies of minke whales [25]. Note that there is an absence 
of audiogram data/hearing sensitivity for baleen whales 
[20], including minke whales, leaving uncertainty 
regarding their actual communication range.

Generally our model assumes the level of inher-
ent information to be constant ( κ = 1 ). However, for 
Fig. 4 we consider a potential impact in which the level 
of inherent information is reduced in the presence of 
higher noise. To implement this we choose κ(x, t) as a 
function of the noise:

where κmin is the minimum level of inherent information 
(i.e. at extreme noise levels) and NIL is a threshold param-
eter that represents the noise level at which half of the 
inherent information (that can be lost) is lost. In Fig. 4 we 
use κmin = 0 and NIL = 110 dB (re 1 µ Pa at 1 m) (red), 
100 dB (re 1 µ Pa at 1 m) (dark blue). Note that here there 
is a slower transition between the two extremes (full 
information and no information) due to the slope param-
eter in the tanh function, compared to the land and noise 
avoidance mechanisms. This allows us to capture a range 
of inherent information levels across the migration.

For convenience, we present a table of all model 
parameters in the Additional file 2.
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