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Abstract 

Understanding drivers of space use by African elephants is critical to their conservation and management, particularly 
given their large home‑ranges, extensive resource requirements, ecological role as ecosystem engineers, involvement 
in human‑elephant conflict and as a target species for ivory poaching. In this study we investigated resource selection 
by elephants inhabiting the Greater Mara Ecosystem in Southwestern Kenya in relation to three distinct but spatially 
contiguous management zones: (i) the government protected Maasai Mara National Reserve (ii) community‑owned 
wildlife conservancies, and (iii) elephant range outside any formal wildlife protected area. We combined GPS tracking 
data from 49 elephants with spatial covariate information to compare elephant selection across these management 
zones using a hierarchical Bayesian framework, providing insight regarding how human activities structure elephant 
spatial behavior. We also contrasted differences in selection by zone across several data strata: sex, season and time‑
of‑day. Our results showed that the strongest selection by elephants was for closed‑canopy forest and the strongest 
avoidance was for open‑cover, but that selection behavior varied significantly by management zone and selection 
for cover was accentuated in human‑dominated areas. When contrasting selection parameters according to strata, 
variability in selection parameter values reduced along a protection gradient whereby elephants tended to behave 
more similarly (limited plasticity) in the human dominated, unprotected zone and more variably (greater plastic‑
ity) in the protected reserve. However, avoidance of slope was consistent across all zones. Differences in selection 
behavior was greatest between sexes, followed by time‑of‑day, then management zone and finally season (where 
seasonal selection showed the least differentiation of the contrasts assessed). By contrasting selection coefficients 
across strata, our analysis quantifies behavioural switching related to human presence and impact displayed by a cog‑
nitively advanced megaherbivore. Our study broadens the knowledge base about the movement ecology of African 
elephants and builds our capacity for both management and conservation.

Keywords GPS tracking, Home‑range, Resource selection, Bayesian, Loxodonta africana, EarthRanger, Ecoscope, INLA, 
Landscape dynamics, Land cover

Introduction
Many wildlife areas are undergoing rapid anthropo-
genic land conversion resulting in habitat loss and frag-
mentation that continue to be leading causes of species 
extinctions and biodiversity loss globally [1–3]. Effective 
habitat management and conservation planning requires 
a comprehensive evidence-based understanding of 
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species-environment relationships [4]. In areas of anthro-
pogenic-driven land use conversion, species’ behavior 
often differs across contiguous land parcels [5], which 
can be critical for persistence. Conservation in complex, 
variegated landscapes is facilitated by building a deeper 
understanding of the drivers of, and changes in, habi-
tat selection – the behavioral process that occurs across 
a hierarchy of spatiotemporal scales, in which animals 
actively or passively choose habitats to fulfill require-
ments for survival, growth, and reproduction while bal-
ancing fitness and predation risk [6–9]. Quantifying 
changes in habitat selection across contiguous areas with 
different human impacts can serve to identify landscape 
features relied upon for persistence in different contexts 
that may be a target for management efforts.

Habitat selection is fundamentally driven by trade-offs 
between food access and perceived mortality risk, which 
can change dramatically in landscapes at the human-
wildland interface [10]. For species that are harvested or 
persecuted by humans, perceived mortality risk (e.g., ‘the 
landscape of fear’; [11]) and consequently habitat selec-
tion is often shaped by the presence of human infrastruc-
ture and population centers [12–14] and human activities 
like hunting [15] or agriculture [16]. Perceived risk from 
humans may also vary temporally depending on the tim-
ing of human activity (e.g., less risk at night) [17] or may 
be tolerated differently by individuals in a population 
based on factors such as sex [18].

Resource Selection Functions (hereafter RSFs; [19]) 
are commonly used to quantify animal habitat selec-
tion. Typically, RSF models are structured with a use-
versus-availability design that compares environmental 
data at species occurrence or use points (i.e., GPS relo-
cation data) to environmental data at a sample of points 
assumed to be available but not observed [20]. Such 
models provide estimates that are proportional to the 
probability of use for a given habitat unit [21, 22]. RSFs 
are useful tools for landscape planning and habitat man-
agement because they can be used to make spatially 
explicit inference [20]. Increasingly, RSFs are applied to 
assess anthropogenic effects on space-use and move-
ments of wildlife [23–25]. For example, RSF model esti-
mates have been used to map species distributions and 
predict range shifts [4, 26], model functional connectivity 
[27, 28], and quantify animal responses to anthropogenic 
land use change [12, 29].

Resource selection behavior of individual animals can 
change as a function of resource availability (e.g., a func-
tional response; [30]). Characterizing animal functional 
responses in resource selection is increasingly of inter-
est to improve understanding of how resource selec-
tion behavior changes across ecoregions [25] or across 
gradients of human activity or disturbance [31–33]. For 

example, [31] evaluated wolf resource selection as a func-
tion of proximity to humans and found that in areas with 
high human activity, wolves selected locations closer 
to humans but avoided human activity during daylight 
hours, whereas in areas with low human activity, prox-
imity to humans did not influence wolf resource selec-
tion [31]. However, few studies have investigated how 
species might shift (intensify or weaken) or flip (selec-
tion to avoidance) resource selection between discrete 
land management areas within their home range (but see 
[34, 35]). Understanding how specific land management 
regimes affect wildlife resource selection, particularly for 
wide-ranging, persecuted species with large space-use 
requirements, is key to informing optimal conservation 
and management actions.

African savanna elephants (Loxodonta africana) are 
an ideal species for studying the effects of land man-
agement on selection because they have large home 
ranges, high dispersal potential, and are habitat gen-
eralists known to use space outside of protected area 
boundaries [36, 37]. In addition, elephants are per-
secuted by humans for ivory and their involvement 
in human-wildlife conflict. In 2021, the International 
Union for Conservation of Nature (IUCN) updated the 
status of African savanna elephants to “Endangered” 
under the IUCN Red List Assessment [38]. Across 
elephant range countries, previous studies have iden-
tified human presence [25, 39], land fragmentation [5, 
40], water availability [25, 41], vegetation productiv-
ity and structure [25, 35, 42], and slope [43] as factors 
that influence elephant resource selection, but less is 
known about how selection for these features changes 
in relation to human land use management practice. In 
particular, community-based conservation, where land 
management is intended to support both wildlife con-
servation and human social wellbeing through devel-
opment initiatives and land-sharing, has been widely 
adopted across sub-Saharan Africa in elephant range 
countries over the last twenty years [44, 45]. Yet, lit-
tle information about the impact of community-based 
conservation on African elephant resource selection 
and space use is available, and no studies have directly 
contrasted variation in African elephant resource selec-
tion within home ranges between community-based 
conservation areas, conventional formally protected 
areas, and unprotected areas.

In this study, we use GPS telemetry data of African 
elephants in the Greater Mara Ecosystem of Kenya to 
develop third-order (i.e., within home range) resource 
selection functions and investigate how resource 
selection by elephants shifts across land manage-
ment zones that correspond to discrete differences in 
human land-use intensity and protection for elephants 
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[9]. Our main objectives were to (1) understand spa-
tial variation in selection across management zones, 
and (2) explore diurnal, sex and seasonal differences in 
selection across this spatial structure [10, 35, 46]. We 
expected that (1) differences in selection would occur 
primarily in relation to anthropogenic features (i.e. 
greatest avoidance in unprotected areas and greater 
selection for cover habitat in unprotected areas), (2) 
similarities in selection would occur in relation to 
geophysical and foraging resources (i.e., avoidance of 
slope and attraction to vegetation productivity) across 
management zones, and; (3) sex, diurnal and seasonal 
differences in selection would be greater in unpro-
tected areas (where human activities have stronger 
influence). We discuss how these results can facilitate 
understanding of elephant behavioral adaptations to 
human activity and provide insight to conservation 
efforts in ecosystems with variable land use manage-
ment systems.

Methods
Study area
The study area of 5,709  km2 is situated within the Greater 
Mara Ecosystem (GME) – the northern extent of the 
transboundary Serengeti-Mara Ecosystem (Fig.  1). The 
core area of the GME is formed by the 1,500  km2 Maasai 
Mara National Reserve, where photo tourism is the only 
permitted land use. This core area is buffered by com-
munity conservancies covering 1394  km2, which allow 
regulated use of the landscape for livestock grazing in 
addition to tourism [47, 48]. The remainder of the GME 
is unprotected and made up of private land parcels with 
human settlement, agriculture and pastoralism. These 
areas remain critical to dispersing and migrating wildlife 
and incur high rates of human-wildlife conflict [49, 50].

Seasonal rainfall patterns are generally bimodal, with 
two wet periods and two dry periods annually but rain-
fall is becoming more variable overall [51, 52]. Annual 
rainfall follows a spatial gradient from 600  mm in the 

Fig. 1 The combined 100th percentile Elliptical Time Density (ETD) Home Range Area from 58 elephants (18,795 sq.km) between 2011 and 2022 
(grey hatching). The combined Mara Reserve (green), Conservancies (brown), and Unprotected (purple) zones form the Resource Selection Function 
(RSF) Zone (black outline) where the RSF analysis was conducted based on the union of spatial layers and tracking data. Within the RSF Zone were 
834,138 used positions and 9,180,738 unused positions from 49 elephants
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southeast to 1300 mm in the northwest Transmara region 
[52, 53]. Rainfall patterns structure wildlife distributions 
throughout the year, and long-distance movements are 
common to access areas of higher vegetation productiv-
ity. The GME is tropical grassland savanna interspersed 
with Acacia woodlands but includes dense bushland 
thickets and some montane forest.

Recent estimates put the elephant population in the 
Serengeti-Mara Ecosystem at 7535 individuals with 2595 
within the GME [54]. Elephants in the GME remain 
threatened by human elephant conflict, illegal hunting 
for ivory, expansion of agriculture, and a surge of fenc-
ing, road development, and settlements in unprotected 
corridors and dispersal areas [50, 55, 56]. Given the rapid 
changes occurring across the landscape in relation to 
increasing human pressures, identifying and character-
izing high value features on the landscape for elephants 
is important for informing the ecosystem management 
process currently underway.

Tracking data
Fifty-eight elephants were collared  between September 
2011 and April 2022 across the GME. GPS collar deploy-
ments followed four objectives: (1) elephants with a high 
poaching risk (e.g., large tusked individuals), (2) conflict 
risk (e.g., individuals known to move through high set-
tlement density areas), (3) elephants thought to be pre-
senting interesting corridor or long-distance movements, 
and; (4) to collect a balanced spatial representation 
of the Mara ecosystem. Females selected for collaring 
each represented a distinct family group, while selected 
males were dispersed at the time of collaring. Elephants 
were immobilized and fitted with GPS collars following 
procedures established by the Kenya Wildlife Service. 
The study used collars from African Wildlife Tracking™, 
Savannah Tracking™, Vectronics™, and Followit™. Col-
lars were most commonly set to collect GPS points every 
hour and data were transmitted by satellite or cellular sig-
nal. During capture, ages were estimated when possible 
based on body size and molar progression [57].

We evaluated resource selection by elephants using 
third-order RSFs based on a use-available design [20, 
21]. RSFs rely on comparing GPS locations used by an 
animal to random locations on the landscape that are 
considered to be available to each individual but not 
necessarily used. To characterize availability, we con-
structed 100th percentile elliptical time-density (ETD) 
home ranges [58] for each individual and generated 
10 random unused locations within each individu-
al’s home range for every used GPS location [59]. For 
every unused sample we generated a random times-
tamp between the data start and end time for a given 

individual. We classified the set of used and available 
GPS positions into one of three land management 
zones: Maasai Mara National Reserve (Mara Reserve), 
community conservancy areas (Conservancies), and 
unprotected areas (Unprotected).

Covariate data
Covariates were classified as either (i) geophysical (Slope, 
Drains, Bare), (ii) vegetation (Normalized Difference 
Vegetation Index (NDVI) and Cover), and; (iii) anthro-
pogenic (Agriculture, Lodges, Settlements, Roads). Slope 
was calculated from NASA’s Shuttle Radar Topography 
Mission at 30  m resolution [60]. Moderate Resolution 
Imaging Spectroradiometer (MODIS) Aqua/Terra 16-day 
500 m composite normalized difference vegetation index 
(NDVI) images [61] were used to annotate each used/
unused observation with the closest spatial and tempo-
ral NDVI value within the study period (2011–2022). To 
capture water availability, we included rivers and drain-
ages from the global HydroSHED Free Flowing Rivers 
Network [62] buffered by 400  m corresponding to the 
95th percentile of elephant step length, which served to 
demarcate the area in which water was readily accessible 
(Drains). We created a land cover map of the Mara using 
Sentinel-1 and Sentinel-2 imagery from 2019 to 2022 
at 10-m resolution, given that currently published land 
cover maps in the area lacked information on up-to-date 
agricultural boundaries [63]. Land cover classes were 
defined by the percent of canopy cover and were defined 
as < 20% canopy cover (e.g. grassland and savanna and 
composed 29.8% of study area), 20–70% cover (e.g. open 
woodland and bushland and composed 46.9% of study 
area), > 70% cover (e.g. forest and bushland thicket and 
composed 9.6% of study area), and agriculture (composed 
9.7% of study area). Bare ground, rock, and built land 
were combined into a single class (Bare) (composed 1.6% 
of study area). Land cover classification was performed 
using random forest classification with 2,696 train-
ing points and validated using five-fold cross validation 
(mean accuracy 81%; Additional file 1: SM Table 2). Sea-
sons (i.e., wet versus dry periods) were delineated using 
NDVI values for the study area using 16-day MODIS 
imagery. Values were classified into Wet and Dry peri-
ods using gaussian mixture clustering, where high NDVI 
values correspond to wet periods and low NDVI corre-
sponds to dry periods [35]. To capture diurnal informa-
tion, we annotated each used/unused observation with a 
‘day/night’ attribute by recording whether the observa-
tion’s timestamp was after or before sunrise/sunset. We 
also quantified human footprint dynamics using digi-
tized permanent settlements and buildings (Settlements), 
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tourist lodges and camps (Lodges), and ground-mapped 
primary and secondary roads (Roads), each buffered by 
400 m to create presence/absence raster layers.

Data modeling
To answer our research questions, we developed four 
sets of discrete statistical models consisting of 21 mod-
els in total as follows. First, we defined 3 Zonal models 
(Table 1) to assess generalized selection across the three 
different management zones within the study site: (i) 
Mara Reserve, (ii) Conservancies and iii) Unprotected. All 
model parameters were included within each of the three 
models except for the inclusion of an agricultural land 
cover variable in the Unprotected model and the lack of a 
settlement covariate in the Mara Reserve model (Table 1). 
We then defined 6 models each to compare selection in 
each of the three management zones across strata: season 
(Wet/Dry by zone), time-of-day (Day/Night by zone), and 
sex (Male/Female by zone).

We fit all 21 elephant resource selection models using 
a Bayesian framework. We used a hierarchical model 
structure to account for inter-elephant differences by 
allowing individual-level parameter mean and variance 
values to be drawn from Gaussian group-level param-
eters. Group-level parameter mean and variances were 
also assumed Gaussian. Uninformative prior values for 
group-level mean = 0 and variance = 100 were used for all 
model parameters. A logistic-link (i.e., sigmoid) function 
was used to link a linear predictor with a Bernoulli prob-
ability θ  (Table 1).

Continuous variables (Slope & NDVI) were first nor-
malized to the range 0–1 and then z-score standardized 
[64]. From fitted models, posterior distributions and 
95% highest-density posterior intervals (HDPIs) were 
calculated for each parameter in the model. To assess 

the similarity of selection between individual elephants, 
we visualized the posterior predictive distribution of 
the individual random effects for each zonal model and 
assessed the variance. For model diagnostics, we used 
posterior predictive checks to assess how well the pre-
dicted values from each zonal model described the 
observed data [65].

To understand which data strata (Season, Time of 
Day, or Sex) most strongly structured resource selection 
behavior, we used a ‘consistency’ score [66] calculated 
as the mean of the absolute difference between zonal 
selection coefficients i ∈ {Mara Reserve, Conservancies, 
Unprotected} for a strata level j ∈ {Zone, Season, TOD, 
sex} for a given covariate k ∈ {1…n}. The consistency score 
Cijk can be aggregated across combinations of indices i, 
j, k, and is always positive with values further from zero 
indicating more differentiation. For example, the consist-
ency of resource selection parameters p across each zone 
i = {Mara Reserve (mr), Conservancies (cca), Unprotected 
(up)} for strata j = ’sex’ within covariate k = ’NDVI’ would 
be calculated as:

We used consistency to address objectives related to 
determining the relative differentiation in resource selec-
tion behaviour between management zones and within 
management zones with respect to diel timing, season, 
and sex.

Data & analytical processing
Elephant tracking data were collected, stored and 
accessed using the EarthRanger platform (www. earth 
ranger. com). Spatial vector covariate layers were stored 
and accessed from the Landscape Dynamics spatial data-
base [67]. Raster-based covariate layers were stored and 
accessed from the Google Earth Engine platform [68]. 
All analytical and data processing steps were performed 
using the open-source Ecoscope python library (https:// 

Cijk =

pimr jf kndvi − piccajf kndvi + pimr jf kndvi − piupjf kndvi + piccajf kndvi − piupjf kndvi +

pimr jmkndvi − piccajmkndvi + pimr jmkndvi − piupjmkndvi + piccajmkndvi − piupjmkndvi

6

Table 1 Zonal model definitions

The Mara Reserve did not contain an appreciable number of settlements or any agriculture and these covariates were not included in the model definition. Similarly, 
there is very little agriculture in the community conservancies and this covariate was not included in the model definition. Models for the three comparison strata 
(season, sex, time-of day) followed the same model structure

Model structure Management zone

log( θ
1−θ

 ) = β 0 + β SLOPE + β DRAINs + β NDVI + β COV‑20 + β COV‑2070 + β COV‑70 + β BARE + β ROADS + β LODGES
Mara Reserve

log( θ
1−θ

 ) = β 0 + β SLOPE + β DRAINS + β NDVI + β COV‑20 + β COV‑2070 + β COV‑70 + β BARE + β ROADS + β LODGES + β SETTLEMENTS
Conservancies

log( θ
1−θ

 ) = β 0 + β SLOPE + β DRAINS + β NDVI + β COV‑20 + β COV‑2070 + β COV‑70 + β BARE + β ROADS + β LODGES + β SETTLEMENTS + β AGRICULTURE
Unprotected

http://www.earthranger.com
http://www.earthranger.com
https://ecoscope.io
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ecosc ope. io) within Jupyter Notebooks (https:// jupyt er. 
org). All Bayesian statistical models were fit using the 
INLA v22.10.23 [69] package for R (www.r- inla. org). 
We developed a Terraform (https:// www. terra form. io/) 
server definition to quickly deploy and run our compu-
tational infrastructure on the Google Cloud Platform 
(https:// cloud. google. com/) using an n1-highmem-32 
(https:// cloud. google. com/ compu te/ docs/ gener al- purpo 
se- machi nes# n1- high- memory) machine in order to pro-
cess the entire 9.18  M used/unused observations in the 
dataset. We configured our analysis environment with 
Docker (https:// www. docker. com/) to support both nec-
essary Python and R kernels and analytical replicability. 
All Jupyter Notebooks, Terraform and Docker files needed 
to reproduce our analyses are available in the supplemen-
tary info (Additional file 2).

Results
Fifty-eight elephants were tracked from Sept 2011–April 
2022 totalling 1,176,287 positions (interquartile range: 
8844–29,991). The combined total Elliptical Time Den-
sity (ETD) elephant home-range covers an area of 18,758 
sq.km extending west from the Mara reserve into Nyak-
weri forest, south into the Serengeti and Loliondo in Tan-
zania, and east to the Loita forest and extending through 
the Great Rift Valley (Fig. 1). Of the elephants tracked 44 
had datasets greater than one-year in duration which we 
used to report Elliptical Time-Density (ETD) [36] indi-
vidual range metrics. The 100th percentile home range 
areas of these 44 individuals averaged 1455 sq.km (Inter-
quartile Range: 892–1700 sq.km). Wet season ranges 
(mean = 1098 sq.km, IQR: 606–1336 sq. km) were similar 
but slightly smaller than dry season ranges (mean = 1192 
sq.km, IQR: 745–1623 sq. km). There was on average 56% 
overlap between individual wet and dry season range 
areas (IQR: 47%–66%).

We retained 49 elephants and 834,138 GPS locations 
for the RSF analysis that intersected with the extent of the 
covariate layers. This subset of data contained 26 male 
(416,215 locations) and 23 female elephants (417,923 
locations). 17% of locations were recorded within the 
MMNR (15 female / 101,938 locations, 19 males / 42,151 
locations), 59% in community conservancies (18 female / 
228,556 locations, 24 male / 264,950 locations), and 24% 
outside formally protected lands (20 female / 87,429 loca-
tions, 24 males / 109,114 locations).

All 21 models converged and posterior predictive 
checks showed that all models accurately described the 
observed data (Additional file 1: SM Fig. 2). Results from 
the zone-only strata models, contrasting selection in 
areas with different human land use and management, 
showed elephant selection behavior differed signifi-
cantly across zones, particularly in respect to vegetative 

(NDVI, Cover < 20%. Cover 20%-70%, and Cover > %70) 
and anthropogenic (Agriculture, Lodges, Roads, Settle-
ments) features (Fig.  2, Additional file  1: SM Table  1). 
In contrast, selection coefficients for geophysical (Bare, 
Drains and Slope) features were more similar across 
zones (Fig.  2, Additional file  1: SM Table  1). Selection 
in respect to vegetation Cover demonstrated universal 
positive selection for Cover between 20% and 70%, for 
Cover over 70% and for Bare across management zones 
(Fig. 2, Additional file 1: SM Table 1). Coefficient values 
were generally stronger in the Conservancies and Unpro-
tected areas, with the highest values (strongest selection) 
for vegetation Cover over 70% (mean: 1.634). In con-
trast, vegetation Cover under 20% had negative selection 
across all regions, with stronger avoidance in Unpro-
tected (mean: -1.519) and Conservancies (mean: -0.912) 
compared to the Mara Reserve (mean: -0.399) (Fig.  2, 
Additional file  1: SM Table  1). Contrary to our predic-
tion, NDVI had both a small selection magnitude and 
the least variation in selection of any vegetative covariate 
between land use areas, with negative selection in Unpro-
tected (-0.067) and Conservancies (-0.061) but positive 
selection in Mara Reserve (0.430). Selection of anthropo-
genic features differed by zone and feature: Settlements 
were avoided in Conservancies (-0.738) and Unprotected 
(-0.067) and were not present in the Mara Reserve. There 
was negative selection for Lodges (-0.328) in the Mara 
Reserve but they were selected for in the Conservancies 
(0.211) and Unprotected (0.338). Roads were avoided in 
Unprotected (-0.336) and Mara Reserve (-0.144) but had 
very slight positive selection in the Conservancies (0.074). 
Agriculture was avoided in Unprotected (-0.131) (and not 
present in Conservancies or Mara Reserve). Selection for 
geophysical features was universally negative for increas-
ing slope, particularly in the Mara Reserve (-0.232) and 
Conservancies (-0.196), and universally positive for 
Drains, particularly in Unprotected (0.708) and Conserv-
ancies (0.531) (Fig. 2, Additional file 1: SM Table 1).

Assessment of the group-level posterior distribution 
of the individual random effects for each zonal model 
showed that the most variation between individuals 
occurred in the Mara Reserve, while variation was the 
lowest in Conservancies (Additional file 1: SM Fig. 1a-b). 
The Unprotected had several individuals with differing 
posterior distributions, but the majority of individuals 
were clustered (Additional file 1: SM Fig. 1c).

Differentiation in selection coefficient values (consist-
ency) was strongly related to the gradient of protection 
between management strata when analyzing the data 
according to zone only. The greatest difference occurred 
between the Unprotected and Mara Reserve ( C = 0.457 , 
Fig. 3A). Difference in selection was lowest between the 
Conservancies and Unprotected ( C = 0.220 , Fig.  3A), 

https://ecoscope.io
https://jupyter.org
https://jupyter.org
http://www.r-inla.org
https://www.terraform.io/
https://cloud.google.com/
https://cloud.google.com/compute/docs/general-purpose-machines#n1-high-memory
https://cloud.google.com/compute/docs/general-purpose-machines#n1-high-memory
https://www.docker.com/
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while Mara Reserve-Conservancies differences fell in the 
middle ( C = 0.302 , Fig. 3A). The overall difference value 
across all land uses with the zonal model was C = 0.322 
(Fig.  3A). Degree of avoidance of cover below 20% was 
the main driver of differentiation across zones, with 
stronger avoidance in the Unprotected and Conservan-
cies, and avoidance of slope showed the strongest consist-
ency across zones (Fig. 4A).

Possibly in relation to the relatively high degree of 
overlap between seasonal home ranges, seasonal model 
coefficient values were the most similar ( C = 0.242 , 
Fig.  3B) of any strata comparison, suggesting selection 
behavior did not shift strongly with respect to season 
in the study system. Seasonal differentiation was lowest 
within Conservancies ( C = 0.185 , Fig. 3B) and greatest in 
Unprotected ( C = 0.307 , Fig.  3B) with intermediate dif-
ferentiation in Mara Reserve ( C = 0.235 , Fig.  3B). The 
main covariate driving differentiation was avoidance of 
agriculture (closely followed by bare ground and cover 
below 20%), while avoidance of slope had strong consist-
ency (Fig. 4C).

We found much stronger diurnal differentiation in 
selection than that noted between seasons, with an 
overall difference index of 0.380 (Fig.  3D). This value 
suggests there was more differentiation in selection 
behavior between night and day hours than between 
wet and dry seasons or across management zones. 
Diurnal consistency scores were similar between the 
Conservancies (0.441, Fig. 3D) and Unprotected (0.430, 
Fig. 3D) indicating strong diurnal structuring of selec-
tion. The Mara Reserve had notably less differentiation 
between day and night selection (0.270, Fig. 3D), where 
differentiation tended to be less than that found across 
management zones. Avoidance of settlement was the 
strongest driver of differentiation, while NDVI had the 
least differentiation (Fig. 4B).

Intra-strata comparisons found that the greatest 
degree of differentiation in resource selection occurred 
between sexes with an overall consistency of C = 0.397 
(Fig.  3C) – a value slightly greater than that found in 
the diurnal and management zone contrasts. The great-
est sex-based differences occurred in the Mara Reserve 

Fig. 2 Parameter mean and 95% Highest Posterior Density Interval (HPDI) estimates for each spatial covariate within the three management zone 
models: i) Mara Reserve, ii) Conservancies, iii) Unprotected zones
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zone ( C = 0.546 , Fig. 3C), being the highest consistency 
score across any strata in any zone in the study. Differ-
ences between coefficient values were notably lower 
in the Conservancies ( C = 0.360 , Fig.  3C) and Unpro-
tected ( C = 0.286 , Fig.  3C), demonstrating sex-based 
differences in selection behavior were less pronounced 
in areas experiencing greater human activity. Selec-
tion for drainages drove differentiation across zones, 
while avoidance of settlement was the most consistent 
(Fig. 4D).

Discussion
African elephants are intrinsically linked to many emer-
gent conservation issues [70] including human-wildlife 
conflict [71], climate change [72], range fragmentation 
[40] and consumptive poaching and hunting [73, 74]. 
Elephants have large home-ranges and requirements for 
vegetative and water resources which puts them at risk 
from the expanding human-footprint across most of their 
continental range [36]. The Greater Mara Ecosystem is 

an area undergoing rapid human-footprint expansion 
including fencing [55, 75, 76], agricultural expansion 
and industrialization [77], livestock increase [50], defor-
estation [78], accelerated human population growth [50, 
79], and wildlife declines [50]. It is also still considered to 
be a globally premiere wildlife and biodiversity hotspot 
and represents important economic revenue for Narok 
County and Kenya as a whole [80]. The landscape is com-
plex, including governmentally protected areas, com-
munity conservancies, and unprotected agricultural and 
range lands, all of which are transboundary with Tanza-
nia. These diverse factors make the study of the distribu-
tion and movement of elephants in the Mara, especially 
with regards to management and anthropogenically 
influenced factors, particularly important. This analysis, 
using over ten years of intensive tracking data, represents 
the first comprehensive definition of range and resource 
use by elephants in the ecosystem.

In this study, we evaluated elephant range and assessed 
resource selection behavior across management zones 

Fig. 3 Consistency scores are shown for each data contrast (strata). A higher consistency score indicates a higher differentiation of parameter 
values across the comparison strata. Values have been colour coded blue (low differentiation) through red (high differentiation). Consistency 
metrics were calculated between zones (values between circles) for the Zone models A, and across zones (center values) for Season B, Time of Day 
C, and Sex D 
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(objective 1), and in relation to season, time of day and 
sex (objective 2) using third-order selection (i.e., selec-
tion/avoidance by individuals within each elephant’s 
home-range). We looked at both the relative magnitude 
and sign (positive/negative) of selection coefficients and 
at the differences in coefficients across strata.

Resource selection across zones
Vegetative cover had the strongest influence on ele-
phant selection with cover > 70% being the most strongly 
selected covariate and cover < 20% being the larg-
est magnitude negative selection covariate. Vegetative 
cover > 70% was most strongly selected for in the Unpro-
tected and Conservancies zones, while cover < 20% was 
most strongly avoided in the Unprotected and Conserv-
ancies and supporting hypothesis (1). This points to the 
importance of forest cover as habitat in human-domi-
nated areas, likely representing a response to the ‘land-
scape of fear’ [11]. Several studies have reported on the 
relationship between elephants and NDVI and elephants 
are generally believed to favour areas with greener veg-
etation [81] especially in more arid landscapes [35, 82]. 

Our results show however that in the GME, there is 
only a relatively weak selection for higher NDVI, and 
even negative selection outside of the formally protected 
wildlife area. In our analysis region, because of extensive 
grass cover, there was some correlation between NDVI 
and cover > 70% (0.38) (Additional file 1: SM Fig. 6) which 
may temper the overall NDVI signal. However, [36] also 
found that when considering overall landscape effects, 
NDVI was not an important driver relative to anthro-
pogenic influence and only became important over 
localized scales. This difference in the role of NDVI in 
structuring elephant space use is likely related to the high 
overall productivity in the Mara, which is on the wetter 
side of the mesic savanna ecotone.

Key differences across RSF models
Our results indicated that selection behavior differed 
most strongly by sex followed by time of day, then by 
management zone,  and finally by season. For each of 
these contrasts, the magnitude of differences in selection 
behaviour appeared to be structured by human activities. 
For instance, differences in selection between sexes were 

Fig. 4 Consistency scores summarised for each strata Cn . The x‑axis shows the model covariates. The y‑axis (Consistency Score) represents 
the mean of the absolute differences of covariate parameter estimates across the three land management zones and across each strata level 
for a given covariate. The strata are Zone, Time of Day, Season, and Sex
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most pronounced in the Mara Reserve, and much weaker 
in human dominated landscapes, likely reflecting limi-
tations in possible resource use strategies driving more 
similarity between sexes in human dominated areas. Sim-
ilarly, the strong diurnal differences in resource selection 
behavior in the study ecosystem was likely a response to 
highly diurnal human activity [83, 84], being greatest in 
areas with high human activity. Overall, resource selec-
tion was more similar in the mixed wildlife-livestock 
Conservancies and Unprotected zones relative to the wild-
life-only zone of the Mara reserve, suggesting less scope 
for differentiation in resource selection behavior when 
in human dominated areas (supporting hypothesis 3). 
Selection for open grassland and high canopy cover areas 
appeared to be key drivers of this differentiation across 
strata, with elephants selecting for high canopy cover and 
avoiding open areas most strongly in unprotected areas. 
This highlights the universal importance of high canopy 
cover in human dominated areas for elephants and con-
sequently the importance for protection of forested areas.

Across management zones, the strongest driver of 
differentiation in resource selection was avoidance of 
cover < 20%. Vegetation cover < 20% had the largest gra-
dient change in selection magnitude of any covariate, 
where elephants strongly avoided open-areas within the 
Unprotected region, but avoidance was weaker in the 
Conservancies and weakest in the Mara Reserve. In the 
study system, cover < 20% is primarily open grasslands 
that are used extensively by grazers, including livestock, 
especially within the Conservancies and Unprotected 
regions. As such, it is plausible that elephants were avoid-
ing livestock and herders when exposed to them in this 
land cover category in the Conservancies and Unpro-
tected. Even within the Mara Reserve, cover < 20% is not 
a preferred habitat for elephants. These results suggest 
that human modification and habitat conversion in such 
areas would potentially have the least adverse effects on 
elephant space use in the ecosystem. Across manage-
ment zones, avoidance of slope was the most consistent 
response, which is consistent with multiple other studies 
showing elephants do not like steep terrain [25, 36, 43, 
85] and supporting hypothesis 2.

Across other models, drivers of differentiation varied. 
For the seasonal models, which were the most consist-
ent of any model contrast conducted, agricultural use 
was the strongest driver of differentiation. This is likely 
because agriculture is highly seasonal and its use differs 
substantially across individuals [83]. Within the diur-
nal contrast, avoidance of settlement was the strongest 
driver of differentiation. Elephants avoided settlements 
more strongly during the day when humans were active, 
providing further evidence of the importance of human 
activity in structuring resource selection and space use. 

Across sexes, use of drainages appeared to be the most 
different, suggesting that ecological differences, possibly 
related to foraging behavior, drove habitat selection dif-
ferences. Avoidance of settlements was the most con-
sistent, indicating the influence of humans on resource 
selection was similar regardless of sex.

Implications for management and conservation
The intra-strata differences demonstrated notable varia-
tion in selection behavior in relation to different human 
activities. The variation reported here highlights the 
adaptability of elephants to co-occur with humans by 
changing selection behaviour from what is ecologically 
optimal behaviour within the Mara Reserve, to what is 
tolerable from a risk–benefit trade-off within the unpro-
tected regions. However, we note that two human activi-
ties that are rapidly increasing in the GME – fencing and 
agriculture – are generally considered incompatible with 
healthy elephant ranging behaviour. The rise in agricul-
tural practice within the GME is leading to increased 
incidents of human-elephant conflict (MEP unpublished 
data), while fencing has the potential to inhibit move-
ment critical to the biology of the species.

Drainages form naturally long linear features support-
ing high canopy riparian cover and are therefore especially 
important features to consider both from a connectivity 
and optimal elephant habitat perspective. Across all strata 
contrasts, the importance of drainages and high canopy 
cover forests was notable. These resources are relatively 
rare in the ecosystem but appear to be the key driver of 
space use and particularly important in unprotected areas. 
Maintaining elephant access to these resources in unpro-
tected areas in the face of fencing and livestock pressures 
should be a priority for management planning. These areas 
are also preferred sites for lodges and tourism infrastruc-
ture, which are generally electrically fenced leading to total 
exclusion of elephants. Management planning focused on 
elephants should focus on reducing isolation, conversion 
and exclusionary developments within these forest patches, 
particularly as tourism continues to expand in the Mara. 
Given the lower selection for open grasslands, focusing 
future development in these areas could benefit elephants.

While we focused on the highest density of use for our 
resource selection analysis, it is notable that the study 
elephants were wide ranging with cross border excur-
sions into Tanzania and movements into the Loita and 
Nyekweri forests, both of which are under threat (Fig. 1).  
Historically, connectivity between the Mau forest and the 
Mara may have occurred frequently, but we did not find 
evidence of this connection over 11  years of movement 
tracking. Maintaining movement connectivity across the 
ecosystem should be a core focus of management efforts 
going forward.
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Future directions
This study represents a comprehensive analysis of ele-
phant resource selection across 11 years, without assess-
ing dynamics within or across years. During the study 
period, habitat change occurred, namely in the form of 
agriculture and fencing expansion. Additionally, it has 
been shown that there is high individual variation in ele-
phant populations in regards to resource selection par-
ticularly in response to human development [85]. While 
we accounted for individual variation in our hierarchical 
modeling approach, further work should explore how ele-
phant space use and resource selection is structured by 
agricultural expansion in the context of seasonal dynam-
ics and individual variation. Future work could also focus 
on identifying elephant movement corridors across the 
landscape given ongoing human development and land 
use change.

While we found seasonal dynamics to have minor influ-
ence on resource selection behavior, it is possible other 
inter-annual periods may be of importance in structur-
ing elephant space use. In particular, the study system 
experiences major fluxes of biomass from the wildebeest 
and zebra migration [86, 87] that potentially strongly 
influence distributions of year-round resident species 
like elephants. Multi-species analyses to understand the 
impacts and interactions between species would be a val-
uable next step. Finally, the approach used here to con-
trast selection preference across different management 
regimes is readily translatable to other systems. Although 
management strategies are often specific to local geo-
graphic context, we hope that our approach of analysis of 
the differentiation in resource selection across manage-
ment strategies will lead to insight into elephant spatial 
behaviour in other regions.
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