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Background High-resolution sound and movement recording tags offer unprecedented insights into the fine-scale 
foraging behaviour of cetaceans, especially echolocating odontocetes, enabling the estimation of a series of foraging 
metrics. However, these tags are expensive, making them inaccessible to most researchers. Time-Depth Recorders 
(TDRs), which have been widely used to study diving and foraging behaviour of marine mammals, offer a more 
affordable alternative. Unfortunately, data collected by TDRs are bi-dimensional (time and depth only), so quantifying 
foraging effort from those data is challenging.

Methods A predictive model of the foraging effort of sperm whales (Physeter macrocephalus) was developed to 
identify prey capture attempts (PCAs) from time-depth data. Data from high-resolution acoustic and movement 
recording tags deployed on 12 sperm whales were downsampled to 1 Hz to match the typical TDR sampling 
resolution and used to predict the number of buzzes (i.e., rapid series of echolocation clicks indicative of PCAs). 
Generalized linear mixed models were built for dive segments of different durations (30, 60, 180 and 300 s) using 
multiple dive metrics as potential predictors of PCAs.

Results Average depth, variance of depth and variance of vertical velocity were the best predictors of the number of 
buzzes. Sensitivity analysis showed that models with segments of 180 s had the best overall predictive performance, 
with a good area under the curve value (0.78 ± 0.05), high sensitivity (0.93 ± 0.06) and high specificity (0.64 ± 0.14). 
Models using 180 s segments had a small difference between observed and predicted number of buzzes per dive, 
with a median of 4 buzzes, representing a difference in predicted buzzes of 30%.

Conclusions These results demonstrate that it is possible to obtain a fine-scale, accurate index of sperm whale PCAs 
from time-depth data alone. This work helps leveraging the potential of time-depth data for studying the foraging 
ecology of sperm whales and the possibility of applying this approach to a wide range of echolocating cetaceans. The 
development of accurate foraging indices from low-cost, easily accessible TDR data would contribute to democratize 
this type of research, promote long-term studies of various species in several locations, and enable analyses of 
historical datasets to investigate changes in cetacean foraging activity.
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Introduction
Efficiency at foraging is crucial for predators so that 
enough energy is left for the remaining life-history traits, 
ensuring growth, reproductive success and ultimately, 
individual survival [1, 2]. Consequently, individual for-
aging success is one of the most important drivers of 
population dynamics [3]. However, as foraging success is 
difficult to estimate, long-term changes in foraging effort 
has been used to infer population health and the impact 
of natural and anthropogenic changes [4–6].

Numerous marine diving predators forage at depth 
challenging the direct observation of their foraging activ-
ity. The first studies of the foraging behaviour of div-
ing predators (e.g., northern elephant seal, Mirounga 
angustirostris [7]; ringed seal, Phoca hispida [8]; and 
various cetaceans [9]) were based on occasional direct 
observations and the examination of stomach contents. 
Although the analyses of stomach contents of hunted and 
stranded individuals allowed to identify the main feeding 
habits of many marine diving predators [10], it did not 
enable a good understanding of their foraging effort [11].

The subsequent emergence of biologging devices (i.e., 
animal-attached data recorders) revolutionized the study 
of foraging behaviour of marine predators, allowing the 
continuous tracking and recording of movements and 
behaviour of animals at sea [12]. The first biologging 
devices used on marine animals measured depth as func-
tion of time [13], enabling reconstructing 2D dive profiles 
[14, 15]. Although these Time-Depth Recorders (TDRs) 
later evolved to record other parameters, here the term 
is used to refer to devices recording only depth over time, 
at a sampling rate of 1 Hz as this was the maximum accu-
racy provided by the available equipment. Based on the 
2D movement data obtained from TDRs, numerous stud-
ies distinguished different dive phases to quantify time 
spent transiting, foraging and resting [16], or to identify 
different dive shapes to separate foraging (U-shaped) 
from exploratory (V-shaped) dives [17, 18].

The development of sophisticated multi-sensor tags 
incorporating high-resolution tri-axial accelerometers 
and magnetometers, depth sensors and hydrophones 
has enabled unprecedented views of the 3D fine-scale 
movement behaviour of cetaceans [19–21], especially for 
those species that use sound to forage. In sperm whales 
(Physeter macrocephalus), such high-resolution acoustic 
tags enable recording buzzes, i.e., very fast echolocation 
click sequences which are commonly used as indicators 
of prey capture attempts (PCAs) [19, 20, 22–24]. Buzzes 
occur most in the bottom phase of sperm whale dives 
and are associated with increased manoeuvring and dive 
inflection points [22]. Changes in movement parameters 
near the end of the buzzes [24] suggest an active-pursuit 
hunting strategy for this species [15, 25]. Greater varia-
tions in buzz rates and movement during PCAs indicated 

that male sperm whales also target less mobile prey and 
may have a more generalist diet [26].

Unfortunately, the use of multi-sensor tags has been 
severely constrained by their high cost, making it diffi-
cult to investigate variations in foraging effort over time 
or across individuals due to small sample sizes [27, 28]. 
The development of robust indices of sperm whale for-
aging activity from time-depth data would offer the pos-
sibility of using relatively inexpensive, widely available 
TDRs. This would not only enable increasing the sample 
size and duration of studies but also conducting retro-
spective analysis of existing low-resolution diving datas-
ets to assess changes in foraging activity over longer time 
scales, a key aspect on megafauna movement ecology 
[28]

Earlier studies attempted to use dive metrics calculated 
from TDR data to estimate foraging effort and PCAs at 
fine-scale. For example, the number of PCAs per dive 
of Antarctic fur seals (Arctocephalus gazella) was mod-
elled based on the vertical transit (descent and ascent 
rates) and recovery time at the surface [29]. For southern 
elephant seals (M. leonina) and Weddell seals (Leptony-
chotes weddellii), a broken stick algorithm was used to 
split 2D dives into short segments and different metrics 
were calculated for each dive segment [30]. Sinuosity of 
dive segment was found to be a good proxy of foraging 
behaviour in both species. Bottom time and ascent rate 
were the most reliable predictors of Australian fur seal 
(A. pusillus doriferus) PCAs in time-depth data [31]. 
While these previous studies were successful at finding 
reliable proxies of foraging effort in 2D dives, that could 
potentially be applied to several pinnipeds, there have 
been no attempts to develop similar indices for cetaceans.

The objective of this study was to develop a predictive 
model of PCAs for sperm whales from low-resolution 
time-depth data. To achieve this, high-resolution move-
ment and acoustic data from 12 sperm whales instru-
mented with digital acoustic recording tags (Dtags; [32, 
33]) was used to extract time-depth values at a sampling 
frequency of 1 s and detect buzzes, considered to repre-
sent PCAs. Using this dataset, a comprehensive model-
ling approach (Fig.  1) was implemented by: i) analysing 
the dive profiles with different segment durations and 
calculating a suite of dive metrics for each segment 
duration, ii) using Generalized Linear Mixed Models 
(GLMMs) to identify dive metrics that best predict the 
number of buzzes, iii) evaluating the predictive perfor-
mance of the best models using multiple accuracy mea-
sures, and finally iv) conducting a sensitivity analysis to 
determine whether model outputs were robust to param-
eter uncertainty.
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Materials and methods
Data collection
Data were collected from 12 sperm whales instrumented 
with Dtags (version 3; [32, 33]) off the Azores archipel-
ago between 2017 and 2019 (Additional file 1: Table A1). 
Dtags recorded 2-channel audio data (sampling frequen-
cies of 192 kHz for 2017, and 120 kHz for 2018–2019) 
and collected pressure, 3-axis accelerometer, and 3-axis 
magnetometer data at 20 Hz in 2017, and 25 Hz in 2018–
2019. The suction-cup tags were attached to the back 
of sperm whales using a cantilevered or hand-held pole 
operated from a small rigid-hulled inflatable boat (RHIB). 
Tags were located and recovered by radio tracking after 

being released from the whale. Sperm whale tagging 
was conducted under research permits 37/2016/DRA, 
80/2017/DRA and LMAS-DRAM/2018/06 issued by the 
Regional Government of the Azores and followed the 
guidelines of the American Society of Mammalogists 
[34].

Data processing
Audio data were analysed using a custom code in MAT-
LAB (R2007b and R2016b; The Mathworks Inc., Natick, 
MA). The audio data were visualised using spectrograms 
(512 sample FFT block size, 15 s segments with 2 s over-
lap, Hanning window) and plotted alongside the whale’s 

Fig. 1 Schematic highlighting the modelling approach implemented to estimate prey capture attempts for sperm whales using low-resolution data. 
(1) High-resolution movement data (20-25 Hz) with identified prey captured attempts/events were downsampled to obtain low-resolution data (1 Hz). 
(2) The low-resolution data were grouped based on different segment durations (30, 60, 180 and 300 s). The investigated time scales of analysis (i.e. seg-
ment durations) were based on the minimum duration of prey capture attempts. (3) Dive metrics were obtained for the different segments and models 
(GLMMs) were constructed. (4) The predictive performance of the models was evaluated using multiple accuracy measures (AUC, Specificity, Sensitivity 
and Precision) and the differences between the number of prey capture attempts/events observed and predicted per segments were calculated
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dive profile. Clicks produced by the tagged whale were 
identified based on their higher received acoustic level, 
angle-of-arrival [33, 35] and temporal characteristics 
[36]. Buzz start time was defined as a change in ampli-
tude and/or spectral content of clicks before a fast click-
ing rate, and buzz end time as a change in amplitude and/
or spectral content or the start of a pause before the next 
usual click or buzz [26]. The time between the end of one 
buzz and the start of the following was defined as the 
inter-buzz interval (IBI).

Tag depth was derived from pressure readings using 
established methods [32]. The first dive of each individual 
was excluded from analysis to eliminate potential tagging 
effects [23]. A foraging dive was defined as being deeper 
than 25 m [20] and including at least one buzz [37]. Dtag 
depth data collected at 20 or 25 Hz were downsampled 
to 1 Hz to match the typical TDR sampling rate. Descent 
and ascent phases were determined by a continuous 
depth rate (depth(tn)-depth(tn-1)) higher and lower than 

zero, respectively. Descent and ascent phases were occa-
sionally interrupted by brief periods in which the depth 
changed in the other direction. In order to define com-
plete descent and ascent phases, those brief periods were 
ignored, as their short duration was negligible in relation 
to the dive phase duration (following the same principle 
in [38]). The bottom phase was defined as the period 
between the descent and ascent phases of the dive.

To investigate the foraging effort of sperm whales at the 
shortest time intervals and select the appropriate time 
scale of analysis, the mean buzz duration of less than 10 s 
reported for the species in the study area and surround-
ing waters was taken into account [24, 39]. Based on this 
buzz duration, the downsampled dataset of 1 Hz (1 s) was 
grouped into segments of 30, 60, 180 and 300 s, resulting 
in four different datasets, one for each segment duration. 
The package “zoo” [40] in R [41] was used to identify the 
start and end of each segment for each segment dura-
tion and to group the segments without overlap between 
them. Incomplete segments at the end of the dive pro-
files were excluded from the analysis (see Table A5 for 
the numbers of segments analysed). The dive phase 
assigned to the first second of each segment was used to 
indicate dive phase for the whole segment. In an initial 
exploratory analysis, the use of shorter dive segments 
and a broken stick algorithm to identify breakpoints in 
the dive profile was explored but abandoned due to poor 
performance.

Dive metrics
Eighteen dive metrics were calculated for every dive seg-
ment based on the knowledge of the species’ foraging 
behaviour and their potential to predict buzzes [15, 19, 
20, 24–26, 42] (Table 1). For each dive segment, the total 
number of buzzes was calculated. Sperm whales gener-
ally produce more buzzes and show increased manoeu-
vring, changes in body orientation and dive inflections 
during the bottom phase of their dives [22]. Therefore, 
to attempt to capture this behaviour in time-depth data, 
a series of parameters potentially indicative of foraging 
at depth (average depth, maximum depth, depth differ-
ence between the start and end of the segment), and of 
increased manoeuvring along the vertical axis (variance 
of depth) were calculated. In addition, for each segment, 
bottom time was calculated as the percentage of time 
of that segment spent at more than 60%, 70%, 80% and 
90% of the dive maximum depth [43]. The production 
of buzzes can also be associated with strong bursts of 
speed and changes in acceleration [24]. Although time-
depth data cannot be used to calculate forward swim-
ming speed and acceleration, it does reflect changes in 
the vertical component of the animal’s motion. Vertical 
velocity was defined as the difference in depth (1 Hz data) 
between time t1 and time t0, and vertical acceleration as 

Table 1 Description of dive metrics calculated for each dive 
segment
Dive metrics Definition Unit
Average depth Average depth of the segment (m) m

Maximum depth Maximum depth of the segment (m) m

Variance depth Variance in depth over the segment (m) m

Depth difference Difference in absolute depth between the 
start and end of the segment (m)

m

Time 60% max. 
depth

Time spent at > 60% of the maximum dive 
depth (seconds)

Ratio 
0–1

Time 70% max. 
depth

Time spent at > 70% of the maximum dive 
depth (seconds)

Ratio 
0–1

Time 80% max. 
depth

Time spent at > 80% of the maximum dive 
depth(seconds)

Ratio 
0–1

Time 90% max. 
depth

Time spent at > 90% of the maximum dive 
depth(seconds)

Ratio 
0–1

Vertical velocity Difference in absolute depth between time t1 
and time t0

m 
s-1

Average vertical 
velocity

Vertical velocity averaged over the segment m 
s-1

Variance vertical 
velocity

Variance in vertical velocity over the segment m 
s-1

Vertical 
acceleration

Absolute difference in vertical velocity be-
tween time t1 and time t0

m 
s-2

Average vertical 
acceleration

Vertical acceleration averaged over the 
segment

m 
s-2

Variance vertical 
acceleration

Variance in vertical acceleration over the 
segment

m 
s-2

Inflections Point where Depth(t0)-Depth(t-1) > 0 & 
Depth(t1)-Depth(t0) < 0 or
Depth(t0)-Depth(t-1) < 0 & 
Depth(t1)-Depth(t0) > 0

m

Wiggles Inflection where depth difference to previous 
inflection point is > 20 m

0/1

Steady points Point where Depth(t0) = Depth(t-1) s

Sinuosity Absolute depth difference / Sum vertical 
velocity over segment

Ratio 
0–1
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the difference in vertical velocity between time t1 and 
time t0. The average and variance of vertical velocity and 
acceleration were then calculated over the segment dura-
tion. Inflection points have been associated with forag-
ing activity in sperm whales [22]. Dive inflections were 
defined as the moments in time t0 where depth was shal-
lower or deeper than depth at t1 and t-1, and wiggles were 
defined as inflection points with a difference in depth > 20 
m in relation to the previous inflection point [22, 42]. 
Steady periods (i.e., periods with equal depth) reflect the 
time spent at approximately the same depth, and can be 
indicative of prey chasing along the horizontal axis [25]. 
Vertical sinuosity (hereafter, sinuosity) was calculated 
for each dive segment, as the ratio between the vertical 
distance travelled in a linear path (i.e., the absolute depth 
difference between the start and end of the segment) and 
the sum of all the vertical distances the whale has actu-
ally travelled in that segment [43]. A segment with a sinu-
osity of 1 expresses a straight path; any deviation from a 
straight path decreases the sinuosity towards 0.

Prior to constructing the models, all candidate met-
rics were tested for collinearity using the Pearson’s cor-
relation coefficient (Additional file 1: Table A2). Selected 
metrics had correlations < 0.7 and considered to be eco-
logically more relevant [44].

Model construction and evaluation
GLMMs were used to examine the relationship between 
the number of buzzes and the candidate dive metrics, 
using a separate model for each dive segment dura-
tion. Models were fitted with a Poisson distribution and 
included individual whale as a random effect (R package 
“lme4”; [45]). A cross-validation procedure was applied 
by partitioning the data into a training dataset contain-
ing 67% of the data (8 of the 12 individuals), used to cali-
brate the models, and a test dataset with the remaining 
33% of the data (4 individuals) to evaluate the models. 
The GLMMs were built using a backward selection of the 
variables, and the best model was chosen based on the 
lowest Akaike’s Information Criterion (AIC) [46]. Mar-
ginal and conditional R2 values describing the variance 
explained by the models [47] were calculated with the R 
package “MuMIn” [48].

Model predictive performance was evaluated using 
multiple accuracy measures ([49, 50]; Additional file 1: 
Table A3): AUC - the area under the ROC (receiver oper-
ating characteristic) curve, Sensitivity - the proportion of 
presences correctly predicted, Specificity - the propor-
tion of absences correctly predicted, and Precision - the 
proportion of true positives to total predicted positives 
[51], which were calculated by generating a ROC curve 
using R package “ROCR” [52]. The AUC index ranges 
from 0 to 1; AUC ≤ 0.6 indicate a discrimination ability no 
better than random, 0.6–0.7 indicate moderate predictive 

performance, 0.7–0.8 as good, 0.8–0.9 as very good and 
> 0.9 as excellent [53]. Finally, the absolute difference 
between the total number of observed and predicted 
buzzes per segment and per dive were calculated for each 
individual whale.

A sensitivity analysis was performed separately for 
each of the four segment durations to determine whether 
model outputs were robust to the different dive metrics 
values obtained from the 12 individuals. The analysis 
was conducted by randomly selecting a training dataset 
(8 of the 12 individuals) to obtain the dive metrics’ esti-
mates of the best-fitting model and evaluate them on the 
test dataset (remaining 4 of the 12 individuals) through 
assessing their significance value, repeating this proce-
dure 100 times. All accuracy measures (sensitivity, speci-
ficity, precision and AUC) were calculated for each model 
run, and the median and standard deviation of each mea-
sure were obtained from the 100 runs. Lastly, in order to 
assess the effect of the type of data included in the mod-
els, models with the same segment durations were built 
using only data from the bottom phase of dives and the 
resulting accuracy measures were compared to the mea-
sures obtained from the models including all dive data 
(descent, bottom and ascent phases).

Results
The dataset from the 12 sperm whales included 103 for-
aging dives and 1278 buzzes, with a mean of 9 (SD: 7) for-
aging dives per individual and 12 (SD:6) buzzes per dive 
(Additional file 1: Table A1). The number of segments 
for all whales combined ranged from 915 (300 s) to 9068 
segments (30 s), with the largest number of segments 
allocated to the bottom dive phase (mean: 62% of the seg-
ments; SD:2) followed by the ascent (mean: 21%; SD: 2) 
and descent dive phase (mean: 17%; SD: 2) (Additional 
file 1: Tables A4 & A5). Only 12% of the 30 s segments 
contained at least one buzz, whereas this percentage was 
considerably higher (58%) for 300 s segments. The num-
ber of buzzes per segment ranged from 0 to 2 for 30 s 
segments, and 0 to 7 for 300 s segments (Additional file 1: 
Table A4). For all segment durations analysed, most dive 
segments were at 500–900 m depth, where the highest 
number of buzzes occurred (Additional file 1: Fig. A1), 
with only a few segments deeper than 1000 m.

Relationship between buzz production and diving 
behaviour
The best-fitting GLMM for each segment duration (30, 
60, 180 or 300 s) analysed included average depth, vari-
ance of depth, and variance of vertical velocity. The num-
ber of buzzes showed a positive linear relationship with 
the average depth and variance of vertical velocity, and a 
negative relationship with the variance of depth (Table 2; 
Fig.  2). The three variables retained in the best-fitting 
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models were significant in all 100 models ran with dif-
ferent combinations of individuals, showing the robust-
ness of these metrics to multiple simulations (Table  2). 
The average depth and variance of vertical velocity were 
also significant when models were built using only data 
from the bottom phase of dives (Additional file 1: Table 
A7), and showed the same relationship with the num-
ber of buzzes as with all dive data (Additional file 1: Fig. 
A2). However, the variance of depth was less important 
in those models. Models for segments of 180 s and 300 
s had a higher variance explained (marginal and condi-
tional R2 values ≥ 0.45) than segments with 30 s and 60 s 
(< 0.25) (Table 2).

Predictive ability of the models
The best model for the 30 s and 60 s dive segments had a 
median AUC ≤ 0.62, indicating a low to moderate predic-
tive performance (Table  3). These models had an excel-
lent specificity (> 90% of segments without buzzes were 
correctly classified) and a low sensitivity (< 30% of seg-
ments with buzzes were correctly classified). The best 
models for 180 s and 300 s had a good predictive perfor-
mance (median AUC ≥ 0.77), and an excellent sensitiv-
ity (> 90% of segments with buzzes correctly classified). 
The model for the 180 s segments had a higher specific-
ity (64%) than the model based on 300 s segments (56%). 
Segments with 180 s and 300 s resulted in a higher pre-
cision (≥ 70%) than segments with 30 s and 60 s (< 60%). 
Similar results were obtained on all accuracy measures 
when using only data from the bottom phase, except a 
much lower predictive performance (AUC) and specific-
ity for segments with 180 s and 300 s (Table 3).

Models for segments of 30 s and 60 s correctly iden-
tified the number of buzzes in 87% and 77% of the seg-
ments, respectively (Additional file 1: Table A6). When 
overestimating or underestimating the number of buzzes, 

their bias usually ranged from 1 to -1 buzz per segment, 
with less than 0.20% of the segments with an abso-
lute bias of greater than 3 buzzes. Although there were 
small differences between the total number of buzzes 
observed and predicted per segment, the large number 
of segments within a dive (for 30s a median of 105 seg-
ments (SD: 94.41); for 60s a median of 57 segments (SD: 
49.20)) led to large absolute differences in the numbers 
of buzzes per dive (Table A4). A median difference of 9 
and 6 buzzes was obtained from models of 30 s and 60 
s, respectively, nearly doubling the median number of 
buzzes per dive (median of 10 buzzes), and resulting on 
an absolute difference in predicted buzzes of more than 
70% (Table 4). On the other hand, models of 180 s pre-
dicted the exact number of buzzes in 54% of segments, 
overestimated the number of buzzes in 23% of segments, 
and underestimated in 23%, with most values within the 
− 2 to + 2 range (Additional file 1: Table A6). Models of 
300 s had the lowest percentage of accurate identifica-
tions of the number of buzzes (accurately predicted in 
44% of the segments; Additional file 1: Table A6). Models 
of 180 s and 300 s segments yielded the smallest differ-
ence between observed and predicted number of buzzes 
per dive, with a median absolute difference of 4 and 3 
buzzes per dive, respectively, representing an absolute 
difference in predicted buzzes of 25–30% (Table 4).

Differences between the observed and predicted 
buzzes occurred in all dive phases but most incorrect 
predictions were found in the bottom phase for all seg-
ment durations (Fig. 3, Additional file 1: Figs. A3 & A4; 
Table A8). The highest overestimations of the number of 
buzzes were found at the deepest part of the dives (> 1000 
m), mainly for models of 180 and 300 s (Additional file 1: 
Fig. A5).

Table 2 Summary of the modelling outputs for dive segments of 30, 60, 180 and 300 s. Models were run 100 times, and the 
significance of explanatory dive metrics was evaluated with p values < 0.01. Median and standard deviation (shown in brackets) values 
for marginal and conditional R2 were obtained from the sensitivity analysis with 100 model runs
Segment 
duration

Dive metric Estimate Std. Error Z value n-significant 
(n/100)

R2 marginal R2 
condi-
tional

30 s Average depth 1.14014 0.06897 16.53 100/100 0.13 (0.03) 0.13 
(0.03)Variance depth -0.14611 0.04566 -3.2 98/100

Variance vertical velocity 0.23185 0.01722 13.46 100/100

60 s Average depth 0.99658 0.07358 13.544 100/100 0.22 (0.04) 0.24 
(0.04)Variance depth -0.35951 0.06249 -5.753 100/100

Variance vertical velocity 0.23359 0.02049 11.399 100/100

180s Average depth 0.95534 0.06617 14.437 100/100 0.46 (0.05) 0.49 
(0.05)Variance depth -0.35571 0.06988 -5.09 100/100

Variance vertical velocity 0.18681 0.02726 6.854 100/100

300s Average depth 0.57066 0.04762 11.984 100/100 0.54 (0.04) 0.58 
(0.04)Variance depth -0.46369 0.06395 -7.25 100/100

Variance vertical velocity 0.21382 0.02832 7.551 100/100
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Fig. 2 Distribution of dive metrics per number of buzzes for segments of 30, 60, 180 and 300 s. The horizontal line represents the median, the box rep-
resents the 25th and 75th percentiles, the whiskers represent the extreme values within 1.5 times the length of the box, and dots beyond the end of the 
whiskers are outlier points [54]
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Table 3 Results of the accuracy measures (AUC, sensitivity, specificity and precision) obtained from the sensitivity analysis for 
segments of 30, 60, 180 and 300 s. Median and standard deviation (shown in brackets) values were obtained from the sensitivity 
analysis with 100 model runs
Data type Segment duration AUC Sensitivity Specificity Precision
All dive data 30 s 0.52 (0.00) 0.05 (0.02) 0.99 (0.01) 0.49 (0.13)

60 s 0.62 (0.04) 0.29 (0.10) 0.94 (0.02) 0.59 (0.09)

180 s 0.78 (0.05) 0.93 (0.06) 0.64 (0.14) 0.70 (0.12)

300 s 0.77 (0.04) 0.96 (0.02) 0.56 (0.08) 0.77 (0.06)

Bottom phase data 30 s 0.51 (0.01) 0.04 (0.01) 0.99 (0.01) 0.56 (0.14)

60 s 0.60 (0.04) 0.29 (0.13) 0.93 (0.06) 0.67 (0.12)

180 s 0.50 (0.02) 1.00 (0.01) 0.00 (0.05) 0.68 (0.10)

300 s 0.50 (0.00) 1.00 (0.00) 0.00 (0.01) 0.82 (0.07)

Table 4 Difference between the total number of observed and predicted buzzes per dive for each segment duration, in terms of 
absolute value and percentage of segments Median and standard deviation (shown in brackets) values were obtained from the 
sensitivity analysis with 100 model runs
Data type Segment duration Absolute difference nº buzzes/

dive
|observed – predicted|

% Absolute difference
|observed – predicted|

Nº observed
buzzes
per dive

Nº seg-
ments 
per dive

All dive data 30 s 9 (7.88) 100 (46.05) 10 (7.41) 105 
(94.41)

60 s 6 (7.97) 73 (57.96) 10 (7.38) 57 (49.20)

180 s 4 (4.76) 30 (96.05) 10 (7.35) 17 (16.31)

300 s 3 (4.71) 25 (82.41) 11 (7.32) 12 (9.17)

Bottom phase 
data

30 s 9 (5.55) 100 (43.74) 10 (5.64) 70 (56.34)

60 s 7 (5.08) 83 (66.85) 10 (5.58) 36 (28.68)

180 s 4 (3.33) 37 (112.90) 11 (5.86) 12 (10.81)

300 s 4 (3.46) 36 (127.78) 11 (5.68) 8 (6.35)

Fig. 3  A) Segments with their number of buzzes correctly or incorrectly predicted by the model for the dive profile of whale sw19_088a and segment 
duration of 180 s. B) Difference in the number of buzzes observed and predicted by this model

 



Page 9 of 13Pérez-Jorge et al. Movement Ecology           (2023) 11:33 

Discussion
In this study, a model was developed to detect the num-
ber of buzzes within sperm whale dives, when no concur-
rent acoustic information was available and solely based 
on dive metrics derived from 1 Hz time-depth profiles. 
Other studies developed similar methods to predict for-
aging activity of pinnipeds from time-depth data [30, 
43]. However, this is the first approach capable of pre-
dicting prey capture attempts (PCAs) by sperm whales 
at the scale of a few minutes, along the entire dive. The 
sensitivity analysis showed that the model was able to 
detect the presence and number of buzzes within dive 
segments from different individuals with good accuracy. 
Overall, models for segments of 180 s showed the high-
est accuracy scores, with a good predictive performance, 
an excellent identification of segments with buzzes, and 
good identification of segments without buzzes, as well 
as a small difference between the total number of buzzes 
observed and predicted per dive (Table 3; Additional file 
1: Table A6). Models including all dive data performed 
better than those including only data from the bot-
tom phase (Table  3). This model, therefore, constitutes 
a robust tool to estimate sperm whale foraging effort at 
fine spatial and temporal scales, representing a significant 
improvement over previous approaches using surface 
time [55], or dive duration, surface interval and distance 
travelled during a dive cycle [56].

Dive metrics used to detect buzzes
In the Azores archipelago, sperm whales forage mainly 
between 700 and 1200 m depth [39]. The fact that for-
aging activity takes place within such a specific range 
explains why average depth was an important predictor 
in the model, contributing to the model’s ability to dis-
criminate between segments with and without buzzes 
(Fig.  2; Table  2). In addition, sperm whales produce 
more buzzes during the bottom phase of the dives [39], 
as in other regions [19]. Two of the metrics used to mea-
sure time spent in the bottom phase (time at 60% and 
70% of the maximum depth) were correlated to average 
depth, and the other two metrics (time at 80% and 90%) 
were not retained in the best-fitting models (Table  2). 
Although the number of buzzes had a positive linear rela-
tionship with average depth for segments < 800 m depth, 
this relationship was constant for segments deeper than 
800 m, resulting in small differences on average depth 
for segments with 3–5 buzzes. This partly explains why 
differences between observed and predicted buzzes 
increased with depth. The dataset used to develop the 
models included few dives > 1000 m and model accuracy 
in the deepest segments was substantially reduced (Addi-
tional file 1: Figs. A1 & A5).

The presence of buzzes was associated with reduced 
depth variance, most likely because most segments 

without buzzes occurred during the descent and ascent 
phases of a dive (Fig. 2). Average vertical velocity (± SD) 
during the descent and ascent phases of dives for sperm 
whales in the Azores was 1.35 ± 0.21 m s-1 and 1.60 ± 0.19 
m s-1, respectively [33, 39]. This means that changes in 
depth between the start and end of the longest segments 
can surpass 200 m, so the variance in depth within these 
segments is high. Conversely, the results showed that 
variance in depth over time scales of a few minutes dur-
ing the bottom phase of the dive, where most buzzes 
were produced, was substantially smaller. Although vari-
ance in depth was a good predictor of the presence and 
absence of buzzes, it changed little with the number of 
buzzes, suggesting that consecutive buzzes within a seg-
ment concentrate in a restricted depth range.

The production of buzzes by sperm whale has been 
linked to strong bursts of speed [15, 24]. To capture the 
vertical component of these bursts, the variance in ver-
tical velocity and in vertical acceleration were calculated 
for each dive segments but only the former had a signifi-
cant effect on the number of buzzes per segment (Fig. 2). 
A higher number of buzzes occurred in segments with 
higher variance in vertical velocity, possibly reflecting 
sudden accelerations during active prey chases, followed 
by slowdowns after prey capture [24].

Vertical sinuosity in diving data, quantified by inflec-
tion points and wiggles, has been related to successful 
prey capture in baleen whales and deep diving preda-
tors [57–59]. Even though one could expect wiggles and 
inflection points to be good predictors of the number of 
buzzes, that was not the case in this study. It is possible 
that wiggles and inflection points did not capture the 
associated three-dimensional movements associated with 
buzz production [24].

Model predictive performance
The models for segments of 180 and 300 s showed a very 
good predictive performance, considerably higher than 
models for 30 and 60 s segments (Table  3). Although 
models for 30 and 60 s had a slightly higher specificity 
(proportion of true negative correctly predicted) than 
models for 180 and 300 s segments, their sensitivity (pro-
portion of true positive correctly predicted) was nearly 
four times lower. The 300 s model had worse results than 
the 180 s model at predicting the exact number of buzzes 
per segment (54% and 44% of the segments for 180 and 
300 s, respectively). Additionally, the 180 s model cor-
rectly detected the presence or absence of buzzes in 78% 
of new observations (test datasets). Thus, 180 s was con-
sidered the most suitable time scale for modelling the 
number of buzzes.

The performance of this model was similar to that of 
models developed to predict PCAs in 2D time-depth 
data of southern elephant seals and Weddell seals [29, 



Page 10 of 13Pérez-Jorge et al. Movement Ecology           (2023) 11:33 

30, 43]. Unlike these models that predicted PCAs at the 
dive scale [30, 43] or, at best, at 30 minutes and hourly 
scales [29], the model developed in this study predicted 
PCAs at much higher resolution (3 minutes). In addition, 
when comparing the overall performance of this model 
with an automated method to detect PCAs in high-res-
olution data from Risso’s dolphins (true positive rate of 
0.41; [60]), the approach developed on the present study 
based on low-resolution data performed much better 
(true-positive rate of 0.92) (Table 3).

Hence, the model showed a great potential to estimate 
PCAs from low-resolution time-depth data for sperm 
whales. Nonetheless, there was still space for improve-
ment. For instance, there was considerable overlap in 
the distribution of all dive variables retained in the final 
models across different numbers of buzzes (Fig. 2). This 
was especially evident for the variance in depth and 
for the average depth in segments with ≥ 3 buzzes, and 
largely explains why model performance at predicting 
presence/absence of buzzes was substantially better than 
at predicting the exact number of buzzes. The positive 
linear relationship between average depth and number 
of buzzes (Table 2), influenced by the reduced number of 
segments with buzzes at > 1000 m, may also explain the 
overestimation of buzzes in the deepest dive segments 
(Additional File 1; Fig. A5). Lastly, movement signatures 
of foraging sperm whales are likely to vary with prey spe-
cies, which could affect the accuracy of this model. How-
ever, it is not possible to know how much of the lack of 
accuracy of the model is due to sperm whales targeting 
different prey species, as previous studies have not been 
able to collect these data on sperm whales. The integra-
tion of video recorders on high-resolution tags could 
allow discriminating prey species and help refining this 
model [61].

Foraging ecology applications
Information on feeding events is critical to have a bet-
ter understanding of the foraging activity of marine top 
predators. Low-resolution data offer a simplified rep-
resentation of the complex diving behaviour revealed 
by high-resolution movement tags [59, 62–64]. Here 
a model was developed, for the first time, that pre-
dicts the number of PCAs, and consequently foraging 
effort, from low-resolution time-depth data for sperm 
whales. The model showed good predictive perfor-
mance at relatively short-time scales (180 seconds) for 
whales tagged in different years, and therefore has great 
potential to investigate the fine-scale foraging activity of 
sperm whales within the Azores archipelago, help iden-
tify areas or times where individuals maximize foraging 
effort around the study area, and study the factors driv-
ing foraging behaviour and habitat preferences [65, 66]. 
Nonetheless, to investigate if this model is transferrable 

to other locations it would be necessary to validate that 
the selected dive metrics have a good predictive capacity 
to identify PCAs of sperm whales from other geographic 
areas and populations segments, such as males in north-
ern latitudes, which have been shown to forage at differ-
ent depths [20] than sperm whales in the Azores [33]). 
Additionally, the same approach could potentially be 
applied to other odontocetes species known to produce 
buzzes [67, 68], enabling more accurate estimations of 
foraging effort than the coarse foraging indexes typically 
derived from time-depth profiles. However, this would 
likely require one to adapt the time scale of the segments 
to the buzz duration of the target species.

The modelling approach implemented on this study 
might also be applied successfully to time-depth datasets 
from other marine megafauna species [69, 70]. For this, 
it is recommended to perform the following five steps 
(Fig. 1): 1) Acquire high-resolution movement data with 
identified prey capture attempts/events; 2) Downsample 
the high-resolution data to match the resolution of the 
time-depth data (typically 1 Hz); 3) Define the appropri-
ate time scale of analysis (segments durations) based on 
the duration of the prey capture attempts/events, and 
grouped the low-resolution data based on this dura-
tion on different segment durations; 4) Choose the dive 
metrics based on the knowledge of the species’ foraging 
behaviour and their potential to predict prey capture 
attempts/events, and construct the models (i.e., GLMMs) 
using the dive metrics obtained for the different segment 
durations; and 5) Evaluate the predictive performance of 
the models using multiple accuracy measures.

The implementation of the modelling approach of this 
study with sperm whales or other marine megafauna spe-
cies could contribute to maximize the potential applica-
tion of already existing and future datasets obtained from 
low-cost and widely available TDRs. Improved predic-
tions of foraging events in these data would enable the 
re-interpretation of extensive datasets available, and pro-
vide much needed information on the foraging behav-
iour of marine megafauna species [28]. Furthermore, this 
approach could help to increase the sample sizes required 
for population-level inference in movement ecology stud-
ies and overcome the limiting factor of the cost of the 
multi-sensor tags [71]. In addition, the results obtained in 
this study are a critical step towards the development of a 
simple automated PCA detector that, in the future, could 
be integrated onboard satellite-linked tags [72], provid-
ing summarised information on foraging effort over long 
time-scales. Such developments would be important to 
study, for example, the energetic consequences of migra-
tion and long-distance movements of marine megafauna 
species. Finally, analysing time-series datasets of diving 
activity would allow investigating potential changes in 
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the foraging behaviour of these species in response to cli-
mate or other anthropogenic changes [5]
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