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Methods for implementing integrated 
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Abstract 

Integrated step-selection analyses (iSSAs) are versatile and powerful frameworks for studying habitat and movement 
preferences of tracked animals. iSSAs utilize integrated step-selection functions (iSSFs) to model movements in dis-
crete time, and thus, require animal location data that are regularly spaced in time. However, many real-world datasets 
are incomplete due to tracking devices failing to locate an individual at one or more scheduled times, leading 
to slight irregularities in the duration between consecutive animal locations. To address this issue, researchers typically 
only consider bursts of regular data (i.e., sequences of locations that are equally spaced in time), thereby reducing 
the number of observations used to model movement and habitat selection. We reassess this practice and explore 
four alternative approaches that account for temporal irregularity resulting from missing data. Using a simulation 
study, we compare these alternatives to a baseline approach where temporal irregularity is ignored and demonstrate 
the potential improvements in model performance that can be gained by leveraging these additional data. We 
also showcase these benefits using a case study on a spotted hyena (Crocuta crocuta).

Keywords Animal movement, GPS data, Imputation, Incomplete data, Missing fixes, Step-selection analyses, Step-
selection functions

Introduction
Understanding how animals move across the landscape, 
what habitats they prefer, and what resources they select 
are fundamental questions in movement ecology [56]. 
Thanks to recent advances in animal tracking [5, 11, 76] 
and remote sensing technologies [64, 72], new oppor-
tunities and analytical tools have emerged for studying 
how animals move and interact with their environment 
[41, 57, 71]. Methods commonly used to analyze animal 
movement data, including step-selection analyses [27, 

28, 70] and hidden Markov models [53], require animal 
locations (terms in bold at first occurrence are defined 
in Table 1) that are collected at a constant sampling fre-
quency, leading to data that are equally spaced in time. 
Yet, it is common to encounter missing locations in 
most telemetry data sets [29, 33, 73], which introduces 
unwanted irregularities in the duration between succes-
sive locations. Thus, there is a need for analytical tools 
that enable the analysis of such data, while mitigating 
potential biases arising from temporal irregularity intro-
duced through missing animal locations.

Step-selection analyses (SSAs) are widely used to study 
animals’ movement capacities and habitat-selection pat-
terns [28, 70]. Straight-line segments connecting con-
secutive animal locations, referred to as steps, form the 
basic building blocks of the statistical likelihood in SSAs. 
Specifically, SSAs model the probability u of finding an 
individual at location s at time t + 1 , given the animal’s 
past positions at time t and t − 1 , st and st−1 , respectively:
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Here, the function φ represents an animal’s movement 
kernel which is usually expressed in terms of step-
length and turning-angle distributions, with γ repre-
senting parameters in these distributions. The function 
w is the habitat-selection function and reflects an ani-
mal’s preferences β for environmental characteristics x 
at location st+1 . In most applications, w is modeled as a 
log-linear function of x, taking the form w = exp(x⊤β) . 
The integral in the denominator of Eq. 1 ensures that u 
is a proper probability distribution (i.e., that it integrates 
to 1). Following Michelot [52], we call the product φ × w 
the step-selection function (SSF), as it highlights that 
the probability of finding an animal at a certain location 
depends on both the animal’s movement kernel and its 
habitat-selection function.

Given a series of observed steps, finding the move-
ment and habitat-selection parameters that maximize 
the likelihood in  Eq.  1 requires approximating the 

(1)

u(st+1) =
φ(st+1, st , st−1; γ )w(x(st+1);β)

s∈G
φ(st+1, st , st−1; γ )w(x(st+1);β)ds

integral in the denominator for each observed step. 
A variety of numerical integration techniques can be 
used for this purpose [52], but a common approach is 
to combine observed steps with random steps gener-
ated by sampling step lengths and turning angles from 
parametric distributions informed by the data [28, 70]. 
Environmental conditions at observed steps are then 
contrasted with environmental conditions at random 
steps in a (mixed effects) conditional logistic regression 
framework [28, 54]. To jointly estimate parameters in φ 
and w, movement descriptors (e.g., step length (sl), its 
natural logarithm (log(sl)), and the cosine of the turn-
ing angle (cos(ta))) can be included in the conditional 
logistic regression model, and their estimated coeffi-
cients can be used to update the initial (tentative) step-
length and turning-angle distributions [3, 22, 27]. The 
specific descriptors that need to be included depend 
on the assumed step-length and turning-angle distri-
butions [for more details, see Appendix C of 27]. This 
approach to estimating parameters of the SSF, termed 
integrated SSA (or iSSA) by Avgar [3], is similar to 
using importance sampling to approximate the integral 

Table 1 Glossary of terms

Terms in the glossary are printed in bold at first occurrence in the main text. Definitions are always given in the context of step selection functions (SSFs)

Term Definition

Animal locations A series of telemetry data points that include date, time, longitude, and latitude information, describing when and where 
an animal was observed or recorded.

Step A straight line connecting two consecutive locations.

Observed step A step that connects two observed animal locations.

Random step A step that connects an observed animal location with a random location. Random locations are typically generated 
by combining an observed animal location with random step lengths and turning angles.

Step length The Euclidean distance of a step.

Turning angle A measure of the change in direction between two consecutive steps.

Habitat-selection function A probabilistic description of an animal’s habitat preferences. It describes how an animal selects habitat when not con-
strained by its movement capacity. Also referred to as movement-free habitat-selection function.

Movement kernel A probabilistic description of an animal’s movement capacity. It describes how an animal would move when not con-
strained by habitat selection. Also referred to as selection-free movement kernel.

Trajectory A sequence of animal locations collected on the same individual.

Step duration The time interval associated with a particular step, i.e., the time elapsed between two consecutive animal locations.

Regular animal locations A series of animal locations that have been obtained at regularly spaced time intervals, such as every hour.

Irregular animal locations A series of animal locations collected at irregular time intervals.

Regular step durations Step durations that occur when animal locations are successfully collected at regular time intervals.

Irregular step durations Step durations that occur when animal locations are not successfully collected at regular time intervals.

Missingness The fraction of animal locations that should have been collected but, for some reason, were not. For example, if only eight 
out of ten expected animal locations were successfully collected, the missingness would be 0.2 (i.e., 20%).

Forgiveness The maximum step duration, measured in multiples of the regular step duration, a modeler is willing to include in the step-
selection analysis. A modeler with a forgiveness of one, for instance, only considers regular steps, while a modeler 
with a forgiveness of two would consider irregular steps up to twice the regular step duration.

Burst A sequence of consecutive animal locations equally spaced in time and with steps where the step duration does 
not exceed the forgiveness.

Valid step A step for which a step length, turning angle, and step duration can be computed, and for which the step duration does 
not exceed the forgiveness of the modeler. These steps can be used for step-selection analysis.
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in 1 [52] and is readily accessible through the R-pack-
age amt [67].

SSAs have proven extremely effective in numerous eco-
logical studies [70], providing insights into seasonal space 
use [25, 73], resource selection during distinct behavioral 
phases [1, 7, 16, 24], and the effects of landscape famili-
arity or memory on animal movements [43]. A model 
parametrized using iSSA resembles a fully mechanistic 
movement model that can be used to simulate space use 
under novel conditions [3, 36, 65, 66]. This characteristic 
has made iSSAs a useful tool for quantifying landscape 
resistance and identifying movement corridors [10, 34, 
36, 80].

A key assumption when conducting an iSSA is that 
the data have been collected at a constant sampling fre-
quency, thus producing trajectories with regular step 
durations ( �t ; [28, 70]). Here, we refer to such data as 
regular animal locations, and without loss of general-
ity, we assume the regular step duration to be one (i.e., 
�t = 1 ). Regular step durations ensure that step lengths 
and turning angles are independent of the step dura-
tion, and therefore, steps can be pooled when estimat-
ing movement parameters. Since animal locations are 
usually obtained using automated tracking devices, such 
as GPS collars programmed to record data at regular 
intervals, satisfying this assumption seems straightfor-
ward. In reality, however, device limitations often imply 
that some of the aspired datapoints fail to be collected, 
thus introducing missingness and confronting research-
ers with irregular animal locations and irregular step 
durations [29]. In a comprehensive study, Hofman [33] 
showed that across 3000 GPS devices and 160 species, 
the average success rate of obtaining a scheduled animal 
location was 78% (implying a missingess of 22%), thus 
highlighting that irregular animal locations are a frequent 
phenomenon in ecological studies.

It is generally recommended that, in the case of such 
irregular data, researchers should only retain bursts of 
steps with regular step durations (possibly with some 
tolerance) and discard the rest [70]. We will refer to this 
modeling approach as having a forgiveness level of one, 
indicating that only steps with step durations �t = 1 
are retained for further analysis. In R, the amt package 
provides the function track_resample specifically 
for identifying bursts of steps with regular step dura-
tions [67]. The main drawback of this approach is that 
it may result in a substantial amount of data being dis-
carded (Fig. 1 and Fig. 2). For instance, consider a hypo-
thetical trajectory in which location 4 is missing (Fig. 1a). 
The absence of this location prevents the computation 
of a step between locations 3 and 4, as well as between 
locations 4 and 5. Furthermore, without these steps, it 
becomes impossible to compute a turning angle for the 

step between locations 5 and 6. Consequently, the lack 
of a single location reduces the effective sample size, 
which is the number of valid steps, by three. Assuming 
that animal locations are missing at random, a missing-
ness level of 25% causes the number of valid steps to 
drop by 58% (Fig. 2). A modeler willing to increase their 
level of forgiveness to two (i.e., allowing for inclusion of 
steps with �t ≤ 2 ) would be able to increase the number 
of valid steps by 57% (Fig. 1 and Fig. 2), therefore achiev-
ing a substantial gain in effective sample size. The ability 
to capitalize on irregular data is likely to be particularly 
important for applications where data are already limited, 
such as, for instance, when modeling dispersing individu-
als [13, 26, 63]. However, increasing the forgiveness also 
implies that step durations of the retained steps become 
irregular, thus necessitating appropriate tools to account 
for such irregularity.

Various methods have been employed in the past to 
address temporal irregularities in animal location data. 
These may serve as valuable starting points for develop-
ing approaches that enable the integration of irregular 
data with iSSFs. 

1. Imputation: An intuitive solution is provided by 
McClintock [50], who suggests fitting a continuous-
time correlated random walk movement model [38] 
to the collected data and to use the fitted model to 
impute missing fixes. By imputing missing locations, 
the analysed trajectories become entirely regular 
again and can be analysed using traditional tech-
niques. This approach, which we coin the imputation 
approach, is readily available through the R-package 
crawl [37], yet has only been tested for use with 
hidden Markov movement models and not with 
iSSFs [50].

2. Naïve: Another approach is outlined by Munden 
[55], who introduced time-varying iSSFs. In this 
framework, a change-point detection algorithm is 
applied to the series of observed animal locations 
to identify distinct decision points where the animal 
turns [55, 61]. Steps are then created to represent 
straight-line movements in-between these decision 
points, but because decision points are not regu-
larly spaced in time, the resulting step durations are 
irregular. Thus, step durations are treated as random 
variables, and, instead of generating random steps by 
sampling step lengths and turning angles, the authors 
generate random steps by sampling step durations, 
step speeds, and turning angles. The underlying 
assumption is that step lengths scale linearly with 
step duration, and can therefore be meaningfully 
represented by combinations of step speeds and step 
durations. Although this approach was developed 
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with ultra-high-frequency data in mind, we might 
naïvely apply it more broadly to the case of missing 
data if we believe the presumed linear relationship to 
hold true (this assumption may be reasonable when 
step durations are short, but it is unlikely to hold for 
longer step durations since an animal’s path will devi-
ate from a straight line between successive locations). 
Hence, we propose, with our naïve approach, to scale 
the generated random steps by the observed step 
duration.

3. Dynamic+Model: Instead of generating random steps 
by sampling step lengths and turning angles from 

distributions fitted to a single step duration, one may 
choose to fit separate distributions to steps of differ-
ent durations, thus acknowledging potentially non-
linear relationships between step duration and step 
lengths or turning angles. Because random steps in 
this approach are sampled using different tentative 
distributions, it is necessary to include interactions 
between step durations and other step descriptors 
(e.g., sl, log(sl), and cos(ta)) in the conditional logistic 
regression model to allow updating the distributions 
to the different step durations. We therefore refer 
to this approach as the dynamic+model approach, 

Fig. 1 a Demonstration of how missingness affects the number of valid steps that can be used for step-selection analyses under different levels 
of forgiveness. The upper panel depicts a trajectory with zero missing locations. That is, all aspired locations were successfully collected on a regular 
interval (yielding a regular step duration of �t = 1 ). This trajectory produces four valid steps that can be included in the iSSF model and one 
invalid step that has to be omitted because it has no turning angle associated with it. In the central panel, animal location 4 was not obtained, 
introducing a missingness of 16.7%. If the modeler has a forgiveness of one, only a single step can be included for further analysis, as all other 
steps are invalid (either because no turning angle can be computed or because step durations exceed the forgiveness). If, however, the modeler 
exhibited a forgiveness of two, such as in the lower panel, a total of three steps could be obtained for further analysis. b Conceptual illustration 
of how increasing the forgiveness allows one to retain additional steps that can be used for step-selection analysis. The sequence of dots resembles 
the sequence of locations that were scheduled to be collected (e.g. using a GPS device), with the lines representing hypothetical steps. Because 
not all locations were successfully obtained (gray dots), there is missingness. Depending on the forgiveness level, already a single missing location 
enforces the introduction of a new burst, which leads to the loss of several steps. In addition, some of the remaining steps are invalid (dotted) 
because they are lacking a turning angle. By increasing the forgiveness, a modeler is willing to retain steps that exceed the regular step duration 
by a certain threshold, which enables them to obtain longer bursts and increase the number of steps that can be used for further analysis. In 
the figure, forgiveness increases from left to right
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highlighting that step-length and turning-angle dis-
tributions are dynamically adjusted to observed step 
durations and that the step duration is included as a 
modifier of the coefficients of step descriptors in the 
regression model.

4. Multistep: Finally, we propose a multistep approach, 
where random steps of varying step durations are 
generated by stitching together sequences of random 
steps from the regular step duration. For example, 
one can generate a random step of duration �t = 2 
by combining two random steps of step duration 
�t = 1.

Our goal with this article is to reassess the practice 
of discarding irregular animal locations in iSSFs and 
to investigate whether retaining irregular data could, 
in fact, serve to improve model performance. Our 
hypothesis is that even irregular data contains valu-
able information on habitat and movement preferences 
that could be leveraged if appropriate methods are 
applied. To test this notion, we conducted a compre-
hensive simulation study where we simulated regular 
animal location data with known movement and habi-
tat parameters. We then introduced varying levels of 
missingness and applied iSSFs to estimate simulation 
parameters. Specifically, we employed the four alter-
native iSSF approaches outlined above and compared 
them to the traditional approach of including only 

bursts of regular data and to an uncorrected approach 
that simply ignored irregular step durations when using 
a forgiveness level > 1. To examine the impact of dif-
ferent landscape configurations on derived estimates, 
we ran our simulations for different levels of spatial 
autocorrelation. The use of simulations instead of real 
data had the benefit that underlying parameters of the 
movement kernel and habitat-selection function were 
known, which allowed us to assess the reliability of dif-
ferent methods in retrieving true simulation param-
eters under different conditions (sensu [42]). We then 
compare the traditional approach (using only bursts of 
steps with regular step durations) to the best-perform-
ing approach (with irregular data) using GPS locations 
collected on a spotted hyena (Crocuta crocuta).

We anticipated that increasing forgiveness without 
adjusting for the introduced irregularity would entail a 
bias-variance trade-off. Specifically, we anticipated that 
increasing forgiveness would allow improving estima-
tor precision, but at the cost of introducing bias due to 
failing to account for irregular sampling intervals. We 
expected this bias to be particularly pronounced at high 
levels of missingness. Furthermore, we hypothesized that 
accounting for irregularity in the naïve, dynamic+model, 
and multistep approaches would improve model accu-
racy, while alleviating potential bias, thus providing an 
effective means of incorporating additional data. Because 
the imputation approach relied on an intermediate 

Fig. 2 Illustration of how missingness in animal location data reduces the number of valid steps that can be used in step-selection analyses (left 
panel) and how increasing forgiveness helps to retain additional steps that are otherwise omitted (right panel). At a missingness of 0, 998 valid steps 
can be obtained from the total of 1000 animal locations. At higher missingness, step durations become irregular, which means that the number 
of valid steps decreases substantially. However, if the modeler is willing to increase their forgiveness, additional steps can be gained. The right 
panel shows the number of valid steps that is gained when increasing the forgiveness from 1 to 2, 3, 4, and 5, respectively. Ribbons indicate 
the 95%-percentile intervals derived from 1000 replicates
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movement model to predict missing animal locations, we 
had no prior expectations for how well it would perform.

Methods
We implemented the simulation study in the program-
ming language R version 4.3.2 [62] and achieved par-
allelization of simulation-runs using the R-package 
pbmcapply [46]. We generated figures using the 
ggplot2 [74], ggpubr [40], and ggh4x [6] R-packages. 
We manipulated raster data and computed spatial dis-
tances using the R-package raster [32]. An overview of 
the simulation design and the different iSSF approaches 
is presented in Fig. 3 and all codes to reproduce this study 
are available through an online repository [35].

Landscape simulation
We simulated a virtual landscape comprising two con-
tinuous and one categorical (binary) spatial layers, each 
with a resolution of 300 × 300 pixels (Fig. 4) and span-
ning across x- and y-coordinates from 0 to 300. The first 

layer, Dist (continuous), quantified the distance to the 
center of the virtual landscape ( x = 150 , y = 150 ), and 
can be understood as a point of attraction, such as, for 
instance, the center of an animal’s home-range. The 
second layer, Elev (continuous), resembled an eleva-
tion layer and was simulated by sampling random pixel-
values from a normal distribution. To achieve spatial 
autocorrelation, we applied a circular moving window 
with radius r within which we tallied pixel-values. We 
varied r from 5, to 10, to 20, depending on the simu-
lated level of autocorrelation (Appendix 1: Figure S1). 
The third layer, Forest (categorical), represented 
areas covered by woodland and was simulated similarly 
to the Elev layer, but we binarized the layer by setting 
all simulated values above the 50% quantile to forest 
and all other values to non-forest (our reference class). 
We normalized values of all simulated layers to a range 
between zero and one and replicated the simulation of 
each layer 100 times per autocorrelation scenario, thus 
producing 300 unique landscape configurations.

Fig. 3 Illustration of the study design. We varied the autocorrelation range when simulating spatial covariates from 5 to 20 and tested 
for different missingness scenarios (ranging from 0% to 50% missing locations). To investigate how increasing forgiveness (i.e., the willingness 
to include steps with duration above the regular step duration) influenced model results, we varied its value from 1 (regular step selection) to 5 
(considering steps that are five times the regular step duration). Finally, we tested five different methods to account for potential biases introduced 
by including irregular steps. This gave 3 x 6 x 5 x 5 = 450 combinations, each of which we replicated 100 times. We assumed step lengths (sl) 
to follow a gamma distribution, whereas turning angles (ta) followed a von Mises distribution



Page 7 of 18Hofmann et al. Movement Ecology           (2024) 12:37  

Movement simulation
To simulate movement across the virtual landscape, 
we employed the iSSF simulation algorithm devel-
oped by Signer [66] and applied in Hofmann [36]. This 
procedure consists of a sequence of five steps that are 
repeated n times to generate a movement trajectory. In 
step one, we generated a random starting location by 
sampling random x- and y-coordinates on the simu-
lated landscape. To prevent starting points near map 
borders, we restricted sampled locations to x- and 
y-coordinates between 50 and 250 (white dotted rec-
tangle in Fig. 4). In step two, we generated a set of 1000 
random steps originating from the current location, by 
sampling turning angles from a von Mises distribution 
with concentration parameter κ = 0.5 and step lengths 
from a gamma distribution with shape parameter k = 3 
and scale parameter θ = 1 . In step three, we extracted 
covariate values at the end of each random step from 
the underlying covariate layers. In step four, we 
assigned to each step j a probability πj of being selected 
using the equation below:

Here, β represents the vector of habitat-selection param-
eters and xj the covariate value at the end of the jth step. 
The probability of a step being selected thus depended 
on its associated covariate values, the covariate values 
of all other random steps, and the simulated prefer-
ences β . We defined the habitat-selection parameters as 
βdist = −20 , βelev = 0.5 , and βforest = −1 . That is, simu-
lated individuals were attracted to the landscape’s center, 

(2)πj =
exp(β⊤xj)

∑J
i=1

exp(β⊤xi)

preferred elevated areas, and avoided areas covered by 
forest. In step five, we sampled one of the random steps 
based on predicted probabilities and computed the simu-
lated individual’s new position. We then repeated steps 
two through five until the trajectory comprised a total of 
1000 steps. Each simulated step was assumed to have a 
step duration of exactly �t = 1 . We repeated the simula-
tion for each of the 300 simulated landscapes, producing 
300 unique trajectories (example trajectory presented in 
Fig. 4).

Data rarefication
To simulate missingness, we rarefied the trajectories by 
randomly removing a fixed fraction of animal locations. 
To assess the impact of different degrees of missingness, 
we varied the fraction of removed data from 0% (com-
plete dataset) to 50% in increments of 10%. The random 
removal of animal locations introduced temporal irreg-
ularity, such that the resulting step durations differed 
depending on the time elapsed between remaining fixes. 
We replicated the rarefication of each trajectory 100 
times.

Computing bursts
We used the rarefied data to compute bursts consisting 
of a sequence of animal locations with step durations 
that did not exceed the forgiveness value. To test how 
different levels of forgiveness impacted our results, we 
varied forgiveness from 1 (maximum allowed step dura-
tion was �t = 1 ) to 5 (maximum allowed step duration 
was �t = 5 ). As an example, if the forgiveness was 1, any 
step with step duration �t > 1 resulted in a new burst. 
If the forgiveness was 2, in contrast, step durations of up 

Fig. 4 Example of a landscape configuration across which we simulated movement trajectories. All simulated layers had a resolution of 300 x 
300 pixels. The distance layer indicated the distance to the center of the landscape and served to simulate attraction. The elevation and forest 
layers were simulated by sampling pixel-values from a normal distribution and applying a moving window to achieve spatial autocorrelation. 
Simulated individuals were initiated within the white dashed rectangle, which ensured that they would not be released directly at a map border. 
Simulated individuals were attracted to the landscape’s center, preferred elevated areas, and avoided areas covered by forest. The black line shows 
the simulated trajectory associated with the visualized landscape configuration (cfr. Section Movement simulation)
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to �t = 2 were allowed before a new burst was intro-
duced (Fig.  1b). Within each burst, we calculated step 
lengths and turning angles. However, due to the group-
ing of steps into bursts, the orientation of the first step 
within each burst relative to the previous step could not 
be determined. As a result, this step always lacked a turn-
ing angle and was considered invalid (Fig. 1b).

Fitting distributions
Based on the steps retained within bursts, we para-
metrized tentative step-length and turning-angle distri-
butions. Specifically, we used the fit_distr function 
from the amt package [67], which is a wrapper function 
for the fitdist function from the fitdistrplus pack-
age [19], and fitted a gamma distribution to step lengths 
and a von Mises distribution to turning angles. Notably, 
we employed two different fitting procedures: 

1. Regular Distributions: In this procedure, we fit-
ted parametric distributions considering only step 
lengths and turning angles from steps that exhib-
ited a step duration of �t = 1 (i.e., the regular step 
duration). Any steps with irregular step durations 
( �t > 1 ) were discarded and did not affect distribu-
tional parameter estimates. This represents the tradi-
tional procedure in iSSFs where only regular bursts 
of animal locations are considered when estimating 
tentative movement parameters.

2. Dynamic Distributions: In this procedure, we fitted 
separate parametric distributions to step lengths and 
turning angles from steps of different step durations. 
That is, we parametrized separate turning-angle 
and step-length distributions representative of steps 
with durations of �t = 1, 2, 3, 4 and 5 (which corre-
sponds to the maximum forgiveness level we tested 
for). Some step durations only rarely occurred at low 
levels of missingness, thus complicating parametriza-
tion of the associated distributions. To facilitate esti-
mation of dynamic distribution parameters across all 
�t (Appendix 1: Figure S2), we resampled data to dif-
ferent step durations using the track_resample 
function from the amt package [67] before fitting 
tentative parameters. This ensured a sufficient num-
ber of steps for each step duration to estimate asso-
ciated parameters. An alternative approach would be 
to increase missingness in the data even further, thus 
introducing a larger number of longer step durations.

Step‑selection functions
We implemented a baseline uncorrected approach and 
four alternative iSSF approaches that mainly differed 
in the way in which random steps were generated, but 

sometimes also in the model call that was used to esti-
mate parameters (Fig.  3). In the uncorrected approach, 
we treated data as if they were regular, ignoring potential 
issues arising from having variable step durations. When 
forgiveness was one, this approach corresponded to the 
traditional iSSF approach. All other approaches were tar-
geted towards reducing potential biases arising from the 
inclusion of steps with irregular step durations. Irrespec-
tive of the approach employed, we paired each observed 
step with a total of 200 random steps:

• Uncorrected: In the uncorrected approach, we gen-
erated random steps by sampling step lengths and 
turning angles from statistical distributions fitted to 
steps with step durations of �t = 1 , regardless of the 
forgiveness value or observed step durations. Thus, 
this approach ignored any potential effect of step 
duration when generating random step lengths and 
turning angles.

• Imputed: In this approach, we sampled step lengths 
and turning angles from statistical distributions fit-
ted to observed steps with a step duration of �t = 1 . 
However, prior to generating random steps, we 
imputed missing fixes using predictions from a sim-
ple movement model. Specifically, we fitted a single-
state movement model [38] to the simulated trajec-
tories and used the parametrized model to predict 
coordinates for all missing animal locations. For 
this, we used the functions crwFit and crwPre-
dict from the crawl R-package [37]. Although 
the crwFit function provides capabilities to incor-
porate location measurement error, we assumed 
animal locations were measured without error. The 
imputation resulted in a complete dataset without 
any missing animal locations, such that each trajec-
tory consisted of a single continuous burst of loca-
tions equally spaced in time. As such, the imputation 
approach is not affected by the forgiveness level.

• Naïve: In the naïve approach, we again sampled step 
lengths and turning angles from regular distribu-
tions fitted to steps with step durations of �t = 1 . 
However, we linearly scaled the sampled step lengths 
depending on the step durations of the observed 
steps. For instance, we doubled the sampled step 
lengths for any observed step with a step duration 
of �t = 2 . This approach naïvely assumed that step 
lengths scale linearly with step durations, which is 
unlikely to be true, as most animals don’t move in 
straight lines between successive observations. Fur-
thermore, the linear approximation is likely to get 
worse as step duration increases (i.e., as the forgive-
ness value increases). Since it is not clear how turn-
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ing angles should scale with step duration, we did not 
adjust the sampled turning angles.

• Dynamic+Model: In the dynamic+model approach, 
we sampled step lengths and turning angles from 
dynamic distributions that were fit to different step 
durations. That is, for observed steps with step dura-
tion of �t = 2 , we sampled step lengths and turn-
ing angles from distributions fit to observed steps 
with �t = 2 . We then included interactions between 
the step duration and other step descriptors (e.g., 
sl, log(sl), cos(ta)), allowing us to update movement 
parameters for each step duration separately. To 
avoid numerical instabilities with the conditional 
logistic regression model, we only included steps 
with durations �t > 1 if the respective duration was 
represented at least 5 times in the rarefied dataset.

• Multistep: In the multistep approach, we sampled 
step lengths and turning angles from statistical distri-
butions fitted to observed steps with step durations 
of �t = 1 . We then generated a sequence of random 
steps such that their combined step duration equaled 
the step duration of each observed step. For instance, 
for an observed step with step duration of �t = 2 , we 
generated sets of two random steps, which we then 
concatenated into a “random path”. The paths were 
then simplified to straight lines connecting the first 
and last coordinate of each path, which represented 
the final random step.

Together, an observed step and its 200 associated random 
steps formed a stratum that received a unique ID. At the 
end of each step, we extracted covariate values from the 
underlying covariate layers.

Conditional logistic regression model
We estimated movement and habitat-selection param-
eters for the simulation scenarios presented in Fig.  3 
using conditional logistic regression, implemented using 
the clogit function in the R-package survival [69]. 
We defined a binary response variable (observed) indi-
cating if a step was an observed (scored 1) or a random 
step (scored 0) and used the step’s ID as a stratification 
variable. We included habitat covariates (dist, elev, forest) 

and step descriptors (sl, log(sl), cos(ta)) as predictors in 
the regression model. For the dynamic+model approach, 
we also included interactions between the step duration, 
coded as a factor, and step descriptors. To update tenta-
tive movement parameters (denoted by the subscript 0 ) 
and obtain the selection-free movement kernel (denoted 
by the ^ symbol), we employed the formulas provided in 
[3, 27]. Specifically, we updated the shape ( ̂k ) and scale 
( ̂θ ) parameters of the step-length distribution (gamma) 
using:

We updated the concentration parameter ( ̂κ ) of the turn-
ing-angle distribution (von Mises) using:

We kept track of the estimates of the updated movement 
( ̂k , θ̂ , and κ̂ ) parameters and the habitat-selection ( β̂dist , 
β̂elev , β̂forest ) parameters, and compared them to the true 
simulation parameters. We also quantified model accu-
racy via the root-mean-square error (RMSE).

Results
Results were qualitatively similar for all three landscape 
autocorrelation scenarios and for different combinations 
of missingness and forgiveness (Appendix 1: Figure S4). 
Here, we report on results for a landscape with autocor-
relation of 20, while either holding constant missingness 
at a conservative 20% (Fig. 5) or the forgiveness level at 
two (Fig. 6) (results for all other combinations are sum-
marized in Additional file 1: Figure S4). The imputation 
approach resulted in biased estimators of βdist and βforest , 
whereas all other approaches were able to recover the 
parameters of the habitat-selection function with mini-
mal bias (Fig.  5). Note, the imputation approach always 
starts with a full trajectory and is therefore unaffected 
by the forgiveness level. For all other methods, increas-
ing the forgiveness from 1 to 5 improved the precision of 
the estimators of habitat-selection parameters without 

k̂ =k0 + βlog(sl)

θ̂ =
1

1
θ0

− βsl

κ̂ = κ0 + βcos(ta)

(See figure on next page.)
Fig. 5 a Parameter estimates and b root mean-square error (RMSE) with regard to the movement kernel and habitat-selection function 
as a function of forgiveness. Results are shown for the scenario with landscape autocorrelation of 20 and missingness of 20%. The movement 
kernel comprised of a gamma distribution with shape parameter k and scale parameter θ governing the step-length distribution and a von Mises 
distribution with concentration parameter κ governing the turning-angle distribution. Habitat-selection was based on three covariates, namely 
a Distance, Elevation, and a Forest layer. Estimates are shown for the five different approaches we tested for. The uncorrected approach 
ignored the fact that higher forgiveness implied temporal irregularity in the data, while all other approaches attempted to correct for the potential 
biases introduced by temporal irregularity. Note, the imputation approach is not affected by the forgiveness level, since it always starts with a full 
trajectory
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Fig. 5 (See legend on previous page.)
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introducing noticeable bias, with the biggest gains in pre-
cision and reduction in  RMSE occurring when moving 
from a forgiveness of one to a forgiveness of two (Fig. 5). 
This highlights the potential benefits of leveraging addi-
tional data compared to the traditional approach, which 
uses only bursts of regular data (represented by the 
uncorrected approach and forgiveness = 1).

The uncorrected, naïve, and imputation approaches 
resulted in biased estimators of the parameters in the 
movement kernel, particularly for high values of forgive-
ness (Fig.  5a) and high levels of missingness (Fig.  6a). 
The imputation approach appeared to perform particu-
larly poorly at estimating the concentration parameter 
of the turning-angle distribution (Fig.  6). The multistep 
and dynamic+model approaches resulted in unbiased 
estimators of parameters in the step-length distribution, 
but estimators of the concentration parameter exhib-
ited a slight bias. This bias was, however, much smaller 
than we observed with the other approaches we consid-
ered. Increasing missingness negatively influenced the 
precision and accuracy of estimates, yet its impact could 
be dampened using the dynamic+model and multistep 
approaches (Fig. 6b).

Case study
To showcase the applicability of the dynamic+model 
approach, which appeared to perform best with simu-
lated data, we conducted a case study with real GPS 
data obtained on “Apollo”, a spotted hyena (Crocuta 
crocuta) inhabiting the Okavango Delta ecosystem 
in northern Botswana. Apollo’s data were collected 
between 2007 and 2011 using GPS radio collars (GPS 
Plus; Vectronic Aerospace GmbH, Berlin, Germany) 
and comprised 9316 GPS locations (details in [12] and 
[14]). Because hyenas are nocturnal [15], GPS col-
lars were set to record data at two-hourly intervals 
between 18:00 and 06:00 o’clock, and to only record a 
single location at noon. For simplicity, we only consid-
ered nightly bursts and removed all locations obtained 
at noon. Missingness in this dataset was low (< 10 %, 
[14]) and to better showcase the usefulness of the 
dynamic+model approach, we thinned the data by 
randomly removing 25% of the obtained locations. As 

spatial covariate layers, we used Water, Distance-
ToWater and Trees (Appendix 1: Figure S5). Water 
was a binary variable representing major rivers and 
areas inundated by floodwater, whereas Distance-
ToWater was a continuous variable indicating the 
distance (in meters) to the nearest pixel categorized as 
water. Trees was a continuous variable indicating the 
percent tree cover in each pixel. We resampled all layers 
to a common resolution of 250 m ✕ 250 m and merged 
them into a single raster-stack (Appendix 1: Figure S5). 
The derivation of each covariate layer is described in 
detail in [34]. We dynamically fitted step-length and 
turning-angle distributions to steps with step durations 
of 2, 4, and 6  h, respectively, assuming a gamma dis-
tribution for step lengths and a von Mises distribution 
for turning angles. Instead of resampling the observed 
track to different step durations when fitting dynamic 
distributions (like we did in the simulation study), we 
introduced a larger amount of steps with step dura-
tions longer than two hours by thinning the data again 
(by another 10%). The benefit of this approach was that 
steps with irregular step durations occurred more ran-
domly and were not limited to the hours specified by 
the resampling algorithm. Finally, we used iSSFs with 
the dynamic+model approach to estimate the habitat-
selection function and movement kernel of Apollo. For 
this, we considered three cases:

• F1: We assumed a forgiveness of one (i.e., only steps 
with a regular step duration of 2 h), which is akin to 
conducting a traditional iSSA.

• F3-S: We assumed a forgiveness of three (i.e., consid-
ered steps with step durations of up to three times 
the regular step duration) and included interactions 
between the step duration ( �t ) and step descriptors 
(sl, log(sl), and cos(ta)) in the regression model.

• F3-SH: We assumed a forgiveness of three (i.e., con-
sidered steps with step durations of up to three times 
the regular step duration) and included interactions 
between the step duration ( �t ) and step descrip-
tors (sl, log(sl), and cos(ta)), as well as between the 
step duration and habitat covariates in the regression 
model.

Fig. 6 a Parameter estimates and b root mean-square error (RMSE) with regard to the movement kernel and habitat-selection function 
as a function of missingness. Results are shown for the scenario with landscape autocorrelation of 20 and forgiveness of 2. The movement kernel 
comprised of a gamma distribution with shape parameter k and scale parameter θ governing the step-length distribution and a von Mises 
distribution with concentration parameter κ governing the turning-angle distribution. Habitat-selection was based on three covariates, namely 
a Distance, Elevation, and a Forest layer. Estimates are shown for the five different approaches we tested for. The uncorrected approach 
ignored the fact that higher forgiveness implied temporal irregularity in the data, while all other approaches attempted to correct for the potential 
biases introduced by temporal irregularity. Note, the imputation approach is not affected by the forgiveness level, since it always starts with a full 
trajectory

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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Notably, we included F3-SH to investigate if includ-
ing interactions between the step duration and habitat-
covariates would provide insights into scale-dependent 
habitat selection. In all cases, we generated 200 ran-
dom steps and extracted spatial covariates at the end of 
observed and random steps. We then fit the three mod-
els using the conditional logistic regression framework as 
implemented in the survival R-package [69]. Lastly, 
we computed updated movement parameters for a regu-
lar step duration of 2 h.

Results from the iSSF models show that increasing the 
level of forgiveness led to improvements in estimator pre-
cision (Fig. 7). This was achieved by increasing the effec-
tive sample size from 2179 to 4505 valid steps (Appendix 
1: Table  S1). The improvement in estimator precision 
was weaker for F3-SH than for F3-S, as the F3-SH model 
was more complex due to inclusion of additional inter-
action terms. Point estimates for the habitat-selection 
and movement parameters were similar for all 3 models, 
and evidence for scale dependency in habitat selection 
was fairly weak. F3-S and F3-SH had similar AIC scores 
( �AIC ≤ 1 ; Appendix 1: Table  S1), and the interac-
tion terms were statistically significant only for the step 

duration of 6 h and only for one of the habitat covariates 
(Appendix 1: Table S1).

Discussion
We conducted a simulation study with known habi-
tat and movement parameters to investigate if retain-
ing irregular animal locations via increased forgiveness 
improves or worsens parameter estimation in iSSFs. We 
also tested the performance of four different approaches 
that attempt to correct for potential biases introduced by 
using temporally irregular data, and we compared them 
to an uncorrected baseline approach. Our results dem-
onstrated that retaining irregular animal locations can 
improve the precision of estimators of habitat-selection 
parameters but may lead to biased estimators of the 
parameters in the movement kernel. Overall, our results 
highlight the potential benefits of leveraging irregular 
animal locations, especially if an appropriate method for 
handling irregular data is chosen.

The uncorrected baseline approach ignored the fact 
that increasing forgiveness introduced irregularity in the 
data. Consequently, estimators of the parameters in the 
movement kernel were increasingly biased as forgiveness 

Fig. 7 Model results from the case study using GPS data collected on Apollo. In F1, forgiveness was set to one (only 2-hour steps were considered), 
whereas in F3-S and F3-SH a forgiveness of three was employed (allowing for step durations of up to 6 h). In model F3-S, the step duration 
was interacted with step descriptors. In model F3-SH, step duration was interacted with step descriptors and habitat covariates. The bars indicate 
the 90%, 95%, and 99% confidence intervals. Note that for simplicity, we omitted interactions with the step duration from this figure
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increased due to the inclusion of steps with varying step 
durations when fitting the model. Steps with longer step 
durations tended to have larger step lengths and less 
directed turning angles, which led to an overestima-
tion of θ and underestimation of k and κ . Yet, estimators 
of the habitat-selection parameters remained unbiased 
or nearly so, even at high levels of forgiveness, and they 
were more precise than the standard estimator (repre-
sented by the uncorrected approach with forgiveness = 
1). These results highlight the potential benefits that can 
be reaped by including additional data.

Similarly, the naïve approach performed well when 
estimating habitat-selection parameters but resulted in 
biased estimators of movement parameters, especially 
for large forgiveness values. This result was unsurprising 
given that our simulated trajectories were tortuous, and 
therefore, step lengths were not linearly related to step 
durations. Indeed, we found that, although there was a 
near linear relationship between step duration and the 
(tentative) scale parameter ( θ0 ), the relationships between 
step duration and the (tentative) movement parameters 
κ0 and k0 were non-linear (Appendix 1: Figure S2). Over-
all, the usefulness of this approach appears highly lim-
ited, as it is often not clear by what factor distributional 
parameters for step lengths and turning angles should be 
multiplied to match the observed step duration.

The dynamic+model approach provided a flexible, eas-
ily implementable, and powerful framework for retriev-
ing precise and unbiased estimators of the step-length 
and habitat-selection parameters, irrespective of the 
forgiveness level. The estimator of the concentration 
parameter exhibited some bias, but less than when using 
the uncorrected and naïve approaches. To implement 
the dynamic+model approach, we included interactions 
between step descriptors (sl, log(sl), and cos(ta)) and step 
duration in the conditional logistic regression model. 
This allowed the parameters of the movement kernel to 
depend on the step duration. A complication, however, 
is that turning angles are influenced by the step duration 
of both the current and previous step (Appendix 1: Fig-
ure S3). The bias in the concentration parameter likely 
arose from only accounting for the step duration asso-
ciated with the current step and not the previous one. 
Moreover, fitting tentative distributions for different step 
durations can be challenging due to some step durations 
occurring only rarely. However, by resampling observed 
animal locations to different step durations using the 
track_resample function from the amt R-package 
[67] the needed data can easily be generated. We included 
step duration as a categorical covariate, yet there may 
be times when it would be advantageous to treat it as a 
continuous covariate (e.g., with its effect modeled using 
a low-degree polynomial or regression spline with few 

degrees of freedom). Treating step duration as a continu-
ous variable may help to alleviate convergence issues in 
cases where some step durations are rare, and it might 
allow applying the dynamic+model approach to data that 
are entirely irregular.

The multistep approach also performed well and was 
relatively easy to implement. This approach is somewhat 
ad hoc in that it uses the tentative movement parameters 
to generate random steps to match observed steps with 
longer step durations (in multiples of �t ). It is similar to, 
but slightly less principled, than the approach developed 
by Vales [73], which formally constructs the likelihood 
for multistep durations by integrating out the missing 
steps. An advantage of this latter approach is that one can 
also attempt to account for non-random missingness by 
explicitly modeling factors related to the probability of 
obtaining a successful location [73]. Nonetheless, inte-
grating over the missing steps, as in Vales [73], can be 
computationally intensive and prohibitive with large data 
sets. Another downside of both of these approaches (the 
multistep approach and the approach of [73]) is that they 
can only be applied in cases where step durations are a 
fixed multiple of the regular step duration; i.e., unlike the 
dynamic+model approach, they cannot be applied when 
data are highly irregular.

Of the methods we considered, the imputation 
approach performed the worst. It resulted in biased esti-
mators of parameters in both the habitat-selection func-
tion and the movement kernel. This bias likely resulted 
from using an overly simplistic movement model to 
impute missing fixes. Moreover, the imputation pro-
cedure may have led to imputed animal locations that 
masked important selection properties, therefore leading 
to inaccurate parameter estimates. While this approach 
appears to perform well with hidden Markov movement 
models [50], we advise against its use with iSSFs.

For the scenarios we considered in our simulation 
study, the estimators of habitat-selection parameters 
were insensitive to the inclusion of irregular data and 
performed well, except for the imputation approach. This 
suggests that accounting for irregular step durations may 
not be particularly important if one is only interested in 
the habitat-selection function. When the movement ker-
nel is also of interest, we suggest the dynamic+model 
approach, since it is flexible, easy to implement, and 
allows one to use more data than the traditional approach 
that requires bursts of regular data, leading to more pre-
cise estimators.

Several authors have emphasized that movement and 
habitat-selection parameters in an SSF are scale depend-
ent and should be expected to change as the sampling 
frequency changes [see for example 3, 66, 27]. Further-
more, Barnett [4] developed an analytical framework for 
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investigating scale dependence and showed that habitat-
selection parameters should depend on the relative width 
of the movement kernel in relation to habitat heterogene-
ity. Thus, the relative insensitivity of the habitat-selection 
parameters to the inclusion of steps with varying step 
duration was somewhat unexpected. It would be interest-
ing to explore the robustness of this result across a wider 
range of simulation scenarios in the future.

More generally, the spatial scale of a habitat-selec-
tion analysis has been recognized as an important fac-
tor, which is why Johnson [39] proposed a hierarchical 
framework for examining habitat-selection across dif-
ferent orders (e.g., species range, individual home range, 
within a home range). Johnson’s proposed framework 
acknowledges that habitat-selection may act differently 
at different scales, and that the interpretation of ecologi-
cal processes changes depending on the spatial scale at 
which they are investigated [47, 75]. This understanding 
has encouraged scientists to conduct extensive scaling 
analyses and to comprehensively examine habitat-selec-
tion at multiple scales [17, 51, 59, 79]. In studies employ-
ing SSAs, the issue of scale is often neglected, and data 
are most frequently analyzed at the spatio-temporal scale 
at which they were collected. This choice maximizes the 
number of locations that can be used in the analysis, yet 
prevents a thorough understanding of scale dependency. 
The use of irregular data in SSAs poses another chal-
lenge, as steps with unequal step durations may reflect 
selection processes occurring at different scales. The 
severity of this issue obviously depends on the original 
sampling frequency, the degree of missingness, and the 
scale at which animals are making decisions that are rel-
evant in terms of their movement behavior and habitat 
selection. By including irregular animal locations via 
increased forgiveness, we may therefore average over 
selection processes occurring at multiple scales, which 
could produce estimates of habitat-selection parameters 
that are misleading due to contradictory effect signs at 
different scales. To better account for such scale-depend-
ent processes, it may be beneficial to include interactions 
between step duration and habitat features (e.g., dist, 
elev, forest), thus allowing habitat-selection param-
eters to also vary as a function of step duration. We dem-
onstrated how this could be implemented in the case 
study.

It is important to note that we considered a lim-
ited number of scenarios in our simulation study. For 
instance, we assumed that animal locations were miss-
ing at random, i.e., failure to obtain a fix was unrelated 
to habitat types, time of the day, etc. However, several 
studies have shown that missingness is often non-ran-
dom and related to difficulties with satellite transmission 
due to topography [48], canopy cover [18, 31, 58], time 

of the day [30], animal behavior [49], or collar orienta-
tion [20]. In fact, Vales [73] highlighted that missingness 
and the associated under-representation of certain habi-
tat types may lead to biased estimators of parameters in 
iSSFs, but that accounting for the probability of obtain-
ing a location in differing environmental conditions 
may alleviate this bias. Future studies should strive to 
further investigate these relationships and examine how 
our proposed approaches perform when missingness is 
habitat-dependent.

A major benefit of using iSSFs is the ability to allow an 
individual’s movement kernel to depend on local habi-
tat features [3]. In our simulation study, we considered 
simplified scenarios where the movement kernel was 
unchanging, which simplified the simulation and infer-
ence. Nevertheless, such interactions often play a cru-
cial role in real ecosystems. For instance, Dickie [21] 
employed iSSFs and revealed that several large mammal 
species moved faster while on linear features. Similarly, 
Hofmann [36] found that African wild dogs moved sig-
nificantly slower and less directed in areas that were 
covered by floodwater. Future studies could investigate 
simulation scenarios in which individuals alter their 
movement tendencies in response to local environmental 
features (i.e., models with habitat dependent movement 
kernels) and examine how this influences the robustness 
of our proposed approaches.

While our results suggest that irregularity due to miss-
ing animal locations can effectively be accounted for in 
iSSFs and that increasing the forgiveness, thus allowing 
for inclusion of irregular data, improves estimator pre-
cision, we also found a decreasing marginal benefit of 
increased forgiveness. In fact, increasing the forgiveness 
beyond a value of two (i.e., allowing for steps of twice the 
regular step duration) only marginally improved model 
performance in our case. This can also be seen in Fig. 2, 
which shows that the largest number of steps that can be 
gained is when increasing the forgiveness level from one 
to two. Having a higher forgiveness beyond two may thus 
not even be necessary, therefore limiting the need to cor-
rect biases emerging from the inclusion of irregular data.

Although we focused on the case of missing location 
data, the proposed approaches may also prove use-
ful for situations where sampling is irregular for other 
reasons. For example, it is not uncommon to adjust 
sampling regimes after a preliminary phase, following 
improvements to collar-battery-lifetime, or for sam-
pling rates to vary depending on type and manufac-
turer of the collar [9]. Similarly, it is common practice 
to adjust the GPS regime to the biology of the focal 
species and only record data during a specific time of 
the day (e.g., [8, 12, 24]). These irregularities might be 
addressed using the dynamic+model approach, with 
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interactions between step duration and movement 
descriptors. Interactions between step duration and 
habitat-selection covariates should also be considered, 
particularly if the sampling regime is adjusted to coin-
cide with changes in animal behavior. We expect this 
approach will work fairly well in many cases, but we 
might expect a slight bias in the estimated concentra-
tion parameters, as observed in our simulation study.

Our study contributes to the growing body of lit-
erature that extends iSSFs and improves the method’s 
robustness under various conditions. This includes 
approaches for modeling irregular data [23, 55], 
accounting for spatial dependence among residuals [2], 
methodological frameworks for fitting iSSFs with ran-
dom slopes [54] and random smooths [45], incorporat-
ing the probability of successfully obtaining an animal 
location in different habitat conditions [73], and con-
sidering the behavioral states of the tracked animals 
[44, 60].

In conclusion, our study shows that inclusion of irreg-
ular animal locations can improve model performance, 
yet only when an appropriate approach to account for 
irregularity is selected. Here, the dynamic+model and 
multistep approaches performed well and resulted in 
improved estimators of habitat-selection and move-
ment parameters, even at elevated levels of missingness 
and forgiveness. Both methods are easy to implement, 
and the associated models can readily be fitted using 
the R-packages amt [67], survival [69], coxme [68], 
and mgcv [45, 77, 78]. To facilitate uptake and encour-
age use of the proposed approaches among practi-
tioners, we provide all of our codes through an online 
repository, which includes an example application 
of the dynamic+model approach. With this, we hope 
practitioners will rethink the common use of discarding 
large portions of data and instead use methods that can 
accommodate irregular data.
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