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Chinook salmon depth distributions 
on the continental shelf are shaped 
by interactions between location, season, 
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Abstract 

Background  Ecological and physical conditions vary with depth in aquatic ecosystems, resulting in gradients of hab-
itat suitability. Although variation in vertical distributions among individuals provides evidence of habitat selection, it 
has been challenging to disentangle how processes at multiple spatio-temporal scales shape behaviour.

Methods  We collected thousands of observations of depth from > 300 acoustically tagged adult Chinook 
salmon Oncorhynchus tshawytscha, spanning multiple seasons and years. We used these data to parameterize 
a machine-learning model to disentangle the influence of spatial, temporal, and dynamic oceanographic variables 
while accounting for differences in individual condition and maturation stage.

Results  The top performing machine learning model used bathymetric depth ratio (i.e., individual depth relative 
to seafloor depth) as a response. We found that bathymetry, season, maturation stage, and spatial location most 
strongly influenced Chinook salmon depth. Chinook salmon bathymetric depth ratios were deepest in shallow water, 
during winter, and for immature individuals. We also identified non-linear interactions among covariates, resulting 
in spatially-varying effects of zooplankton concentration, lunar cycle, temperature and oxygen concentration.

Conclusions  Our results suggest Chinook salmon vertical habitat use is a function of ecological interactions, 
not physiological constraints. Temporal and spatial variation in depth distributions could be used to guide manage-
ment decisions intended to reduce fishery impacts on Chinook salmon. More generally, our findings demonstrate 
how complex interactions among bathymetry, seasonality, location, and life history stage regulate vertical habitat 
selection.
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Introduction
Species exhibit variation in habitat use across spatial and 
ecological scales. In the case of mobile organisms, habi-
tat use also varies temporally, and individual movement 
patterns can determine survival and reproductive suc-
cess [1]. Movement is commonly used to identify pro-
cesses regulating species distributions, which in turn can 
improve predictions of how populations will respond 
to future stressors. For instance, polar bear Ursus mar-
itimus habitat use is moderated by sea ice availability [2], 
while the migratory patterns of elk Cervus elaphus are 
regulated by interactions between vegetation phenology, 
quality, and abundance [3].

In the case of aquatic species, however, habitat selection 
occurs along both horizontal and vertical dimensions. 
Indeed, environmental gradients often vary more rapidly 
with depth than with horizontal distance, resulting in dis-
crete species distributions [4]. For example, capelin Mal-
lotus villosus are physiologically constrained by subzero 
temperatures to specific depths in the North Atlantic [5]. 
In other cases, vertical habitat use covaries with ecologi-
cal interactions. Tagging data indicate African penguin 
Spheniscus demersus foraging success varies between 
benthic and pelagic habitats [6]. The depth distributions 
of large pelagic fishes are shaped by interactions between 
both physiological and ecological processes. Species with 
suitable physiological adaptations are able to exploit cold, 
productive waters hundreds of meters below the surface, 
while others are limited to foraging in surface waters [7]. 
The changing climate will likely restructure vertical habi-
tats’ ecological characteristics [8, 9]. Thus, understanding 
the processes shaping depth distributions is necessary 
to predict how aquatic populations respond to changing 
environmental conditions.

An improved understanding of how populations use 
vertical habitats can also directly inform management. 
Variation in depth can influence a population’s vulner-
ability to fisheries [10] and have been used to tailor fish-
eries restrictions to minimize impacts on non-target 
species (e.g., depth-based rockfish conservation areas 
[11]). Similarly, catchability effects associated with depth 
can bias indices of abundance and may require modified 
assessment methods [12]. Fisheries are increasingly regu-
lated by ecosystem-based management, which necessi-
tates an improved understanding of species interactions. 
Overlapping distributions in both vertical and horizontal 
space can be used to identify plausible trophic relation-
ships [13, 14].

Unfortunately the ability to predict vertical habitat 
use is challenged by the diverse processes that influence 
depth distributions. First, vertical movements consist-
ently differ among habitat types, resulting in patterns 
across horizontal space [15]. Bottom depth constrains 

the vertical habitat accessible to an individual, and com-
plex bottom topographies often serve to aggregate prey 
thereby impacting predator behaviour [16, 17]. Residual 
spatial variation in depth distributions may represent 
physical oceanographic processes, such as offshore cur-
rents, which are difficult to observe, but form discrete 
habitat structures. Second, vertical movements can vary 
with time of day and year. Diel vertical migrations (DVM) 
are particularly widespread [18]. At intermediate tempo-
ral scales, changing tides or lunar illumination may mod-
erate ecological interactions [7, 16]. Seasonal changes in 
depth distributions may also arise due to physiological 
constraints, changes in the relative abundance of differ-
ent prey, or life history events such as reproduction [19–
21]. Third, vertical distribution may consistently differ 
among individuals. Depth distributions may change as 
fish reach reproductive maturity [22, 23]. Individuals also 
often select specific habitats to balance predation risk 
and foraging requirements [24, 25]. Thus, individuals in 
poor condition or at greater risk of predation may show 
distinct vertical distributions.

Importantly, spatial, temporal, and individual processes 
can interact with one another so that vertical move-
ments are most pronounced under specific conditions. 
The relative frequency of DVM is moderated by preda-
tor communities, prey availability, and individual condi-
tion [18]. Blue sharks use ephemeral mesoscale eddies 
to expand their thermal niche into mesopelagic ecosys-
tems [26]. Maturity stage and habitat influence the verti-
cal distributions of anadromous salmonids—individuals 
exploit surface waters for olfactory cues in nearshore 
marine habitats, but use deep water thermal refugia dur-
ing freshwater migrations [27–29].

Chinook salmon Oncorhynchus tshawytscha is a pisciv-
orous, anadromous species found in pelagic and neritic 
habitats in the North Pacific. Chinook salmon support 
fisheries throughout the region and provide unique eco-
system services, including serving as prey for resident 
killer whales Orcinus orca [30]. A more nuanced under-
standing of Chinook salmon habitat use can provide 
novel insights into their ecology and guide manage-
ment actions. For example, current spatio-temporal clo-
sures reflect the two-dimensional habitat use of salmon. 
Vertical distributions could be used to highlight areas 
where interactions between Chinook salmon, preda-
tors, and prey are most common [13]. Similarly, depth 
data could be used to minimize interactions between 
Chinook salmon and midwater trawl fisheries that 
intercept salmon as bycatch [31, 32]. Typically Chinook 
salmon occupy depths from the surface to several hun-
dred meters, and variation in vertical habitat use has 
been attributed to ontogeny, environmental conditions, 
diel cycles, season, and geographic location [32–38]. Yet, 
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previous studies have not considered these varied pro-
cesses simultaneously.

Disentangling the relative influence of multiple pro-
cesses on vertical movements requires observations 
that span diverse horizontal habitats, multiple seasons, 
and a large number of individuals. Here we use obser-
vations of more than 300 adult Chinook salmon tagged 
with long-lived depth-sensing acoustic transmitters. 
Individual fish were detected using multiple acous-
tic receivers arrays from the west coast of Vancouver 
Island (WCVI) to the mouth of the Columbia River and 

throughout the Salish Sea (Fig.  1). We incorporated 
an array of explanatory variables that spanned spatial, 
temporal, and biological processes, including dynamic 
oceanographic variables from a local Regional Ocean 
Modeling System (ROMS). We then used a machine 
learning model to evaluate the relative predictive 
power of different covariates. Ultimately, this frame-
work allowed us to estimate additive effects among 
covariates, such as how the effect of temporal and bio-
logical covariates differed through space. Our analysis 
provides inference on the primary processes shaping 

Fig. 1  Study area including receiver locations (red circles), as well as locations where Chinook salmon were tagged—Ucluelet (blue triangle) 
and Port Renfrew (blue diamond). Major geographic features are labelled. Note that the Salish Sea includes Juan de Fuca Strait, the Strait of Georgia, 
and Puget Sound. The approximate location of tag releases and the focal study area where model predictions were made are shown as rectangles 
(dotted and dashed respectively). Detailed tag release locations are shown in Fig S1. Location of study area relative to west coast of North America 
is shown by inset with focal study area represented by dashed box. Column on right shows spatial variables within the study area inset: bottom 
depth (top), slope (middle) and distance to nearest coastline (right). Projection is UTM Zone 10
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vertical habitat use in a commercially, culturally, and 
ecologically important aquatic species.

Methods
Study species and area
Chinook salmon are anadromous, semelparous, and, 
relative to other species of Pacific salmon, have diverse 
life-history strategies [39]. During marine life stages, Chi-
nook salmon become increasingly piscivorous, feeding 
on forage fish and squid [39, 40]. We collected observa-
tions of Chinook salmon vertical habitat use from north-
ern Vancouver Island to the Columbia River estuary, 
with the majority of data collected near central Vancou-
ver Island, the coast of southern Washington, Juan de 
Fuca Strait, and Puget Sound. The study region is bathy-
metrically diverse, including extensive continental shelf 
habitats, networks of canyons, narrow straits, and shal-
low inland seas (Fig.  1). Many distinct Chinook salmon 
populations, originating from central California to north-
ern British Columbia, can be encountered in this region 
[41, 42]. Some populations use the continental shelf near 
WCVI and the Salish Sea (defined as Juan de Fuca Strait, 
the Strait of Georgia, Puget Sound, and their adjoining 
waterways) as year-round rearing habitats, while others 
use the region seasonally as a migratory corridor [42]. 
We note, however, that our study does not fully represent 
Chinook salmon life-history diversity since early run tim-
ing, yearling populations were rarely encountered and 
our study area encompasses only a fraction of the marine 
distribution of a species that spawns as far north as Nor-
ton Sound, as well as in Asia [39].

Tag deployments and receiver arrays
Two field programs tagged Chinook salmon. From 2019 
to 2022, fish were sampled by Fisheries and Oceans 
Canada (DFO) near Ucluelet, British Columbia, using 
hook-and-line gear fished from a commercial troller. 
Sampling took place between late April and early Sep-
tember. Fish that were landed without major injuries 
(e.g., eye damage, heavy bleeding; n = 312) received 
coded acoustic transmitters (Innovasea Inc.; model 
V13P; 39  mm length, 5.5  g weight in water, approxi-
mately 400  days battery life; mean 120-second delay 
between transmissions at 69 kHz). Tagging occurred on 
board the vessel. We transferred fish to a tagging sling 
with continuous flow-through of ambient seawater. 
We measured each fish using a tape (fork length and 
girth), removed a sample from the adipose or caudal 
fin for genetic stock identification, inserted a passive 
integrated transponder (PIT) tag, attached the acous-
tic transmitter, and estimated each individual’s energy 
density using a microwave oscillator, then immediately 
released the fish. Total handling time never exceeded 

six minutes. We used Biomark APT12 FDX-B PIT tags 
and estimated condition using a Distell Model 692 Fish 
Fatmeter, which provides a non-invasive index of lipid 
content [43]. We mounted acoustic transmitters exter-
nally via a Floy spaghetti tag fixed through the muscu-
lature posterior to the dorsal fin. Stock identities were 
assigned when individual assignment probabilities, 
estimated using single nucleotide polymorphisms [44], 
exceeded 80% within a given stock aggregate (Addi-
tional file 2: Table S1).

A second, University of British Columbia field program 
deployed acoustic transmitters in 2019 and 2020 (June-
August) near Port Renfrew, British Columbia. Fish were 
sampled using a recreational vessel and sport fishing gear 
(n = 149), however, the tagging protocol was nearly iden-
tical to the DFO protocol, except fish did not receive a 
PIT tag. Floy spaghetti tags for both DFO and UBC pro-
grams included contact information in case a tagged fish 
was recovered by anglers, hatchery personnel, or biolo-
gists conducting spawner surveys. Fish were released 
between La Perouse Bank and Juan de Fuca Strait (Addi-
tional file 3: Fig. S1).

We detected tagged fish on Innovasea acoustic receiv-
ers (VR2, VR3, and VR4 models) that were deployed 
throughout the study area. These arrays were managed 
by a diverse network of scientists and the configuration 
of the arrays differed among years (Additional file 3: Fig. 
S7). Details in Online Supplement.

Explanatory variables
We quantified relationships between depth and explana-
tory variables associated with detections (spatial location, 
time, oceanography) or the characteristics of individual 
fish at tagging (Table 1). We also considered a model that 
included stock aggregate identity as an additional covari-
ate (Additional file 2: Table S1).

Spatial variables
We included the location of each detection (UTM 
coordinates in zone 10) and the distance to the nearest 
shoreline. We also included two bathymetric variables—
bottom depth and bottom slope. Since the precise loca-
tion of a detection within a receiver’s detection radius 
is unknown, we calculated each receiver’s mean bottom 
depth and mean slope within an 800 m radius. Bathym-
etric data were downloaded from NOAA’s 3-arc second 
(British Columbia; [45]) or 1/3-arc second (coastal Wash-
ington; [46]) digital elevation models. By including spa-
tial coordinates as covariates, we developed a model that 
accounted for residual spatial variation that was present 
after spatially correlated variables were incorporated.
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Temporal variables
We included calendar day of detection, which was 
transformed to represent seasonal effects (details in 
Online Supplement). To account for lunar effects, we 
calculated the proportion of the moon’s face that was 
illuminated at a given date and geographic location 
using the oce R package [47]. To account for diurnal 
effects, we created a categorical variable represent-
ing whether a detection event occurred during or after 
daylight hours (defined as sunrise and sunset), based 
on local time and the spatial location of the detection, 
using the suncalc R package [48].

Oceanographic variables
We obtained covariates representing dynamic oceano-
graphic conditions from the LiveOcean configuration 
[49] of the Regional Ocean Modeling System (ROMS) 
[50, 51]. ROMS is a free-surface, primitive equations 
ocean circulation model that simulates ocean responses 
to physical forcing by wind, heat, tides, and other driv-
ers. All LiveOcean variables were extracted at the sur-
face (preliminary results were qualitatively similar with 
25 m depth). We calculated thermocline depth using 
the rLakeAnalyzer R package [52], based on verti-
cal profiles of temperature extracted at each detection 
location. We used temperature and oxygen concentra-
tion estimates at depth for each detection to visualize 
habitat use. Details in Online Supplement.

Individual variables
We included individual measurements of fork length 
and an index of lipid content to account for differences 
in individual condition at the time of tagging. We used 
a Distell Model 692 Fish Fatmeter (Distell Inc., West 
Lothian, Scotland), to generate indices of tissue lipid con-
centration. The Fatmeter uses a microwave oscillator to 
emit a low-powered wave that interacts with water in the 
somatic tissues at a given body location. We took Fatme-
ter readings at two positions anterior of the dorsal fine 
and above the lateral line [43]. We averaged these data to 
generate a single index, which was converted to an esti-
mate of whole body lipid content following methods out-
lined in Lerner and Hunt [53].

Unlike most Pacific salmon, many populations of Chi-
nook salmon mature in coastal environments along the 
continental shelf. Additionally, since Chinook salmon 
mature at multiple ages [39], immature and mature indi-
viduals are sympatric in our study area. We wanted to 
test for maturation stage effects since individuals that 
will remain at sea for at least one more year may be less 
likely to exhibit directed migratory behaviour. Unfortu-
nately, we could not infer maturity stage at time of cap-
ture because Chinook salmon did not show external signs 
of sexual maturity. Therefore we assigned maturity stage 
post-hoc in a two-step process. In the first step, all fish 
detected in-river (via acoustic telemetry, PIT arrays, har-
vest, escapement walks, or hatchery broodstock remov-
als) in the year of tagging were classified as mature (stage 

Table 1  Explanatory variables included in statistical analysis. Names in the second column match Fig. 3

Group Covariate Definition

Spatial Location (UTM X and Y) Easting and northing of receiver in UTM zone 10

Shoreline distance Distance (km) to coastline

Bottom depth Mean depth (m) of seafloor

Bottom slope Mean slope ( ◦ ) of seafloor

Temporal Year Day (1 and 2) Calendar day converted to two variables representing cyclical process

Lunar cycle Proportion of moon illuminated (0-1)

Day-night Whether detection occurred after sunrise and before sunset or not

Oceanographic Temperature Sea surface temperature ( C◦)

Hor. Current 1 Horizontal momentum (m/s) in N-S direction

Hor. Current 2 Horizontal momentum (m/s) in E-W direction

Vert. Current Vertical momentum (m/s)

Zooplankton Zooplankton concentration ( mmol N

m 3 )

Oxygen Dissolved oxygen concentration ( mmol O

m 3 )

Thermocline depth Mixed layer depth (m) based on vertical temperature profiles

Individual Size Fork length when tagged (cm)

Lipid content Converted whole body lipid content (% wet weight)

Maturity Probability that an individual will mature in the same year as detection event
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fixed at one), and all fish that were detected on marine 
arrays after November 15th in the year of tagging were 
classified as immature (stage fixed at zero). In the second 
step, we estimated the probability of maturation for the 
remaining individuals (approximately one-third of the 
total) based on size at the time of capture, capture date, 
and stock identity. Briefly, we fit a logistic regression 
model to fish of known maturity stage, including fork 
length and capture date as fixed effects and a random 
intercept for stock identity. We used the fitted model 
to generate individual-level posterior median matura-
tion probabilities ranging from zero (immature) to one 
(mature). We then included maturation probability as a 
continuous explanatory variable, propagating uncertainty 
in maturation stage. Immature fish were considered 
mature on May 1 of the year following tagging. Details in 
Online Supplement.

Statistical modeling
Depth data collected from acoustic transmitters have 
several characteristics that complicate analyses that use 
likelihood-based models, which depend upon an under-
lying statistical distribution. First, detection data are seri-
ally autocorrelated with substantial temporal and spatial 
structure. Second, depth is not normally distributed but 
bounded by zero and, in this case, right skewed towards 
surface depths. Third, depth distributions are constrained 
by bottom depth, resulting in a truncated distribution 
that varies spatially. We explored hierarchical generalized 
additive models with autoregressive residuals that can 
account for several of these issues, but found that they 
either failed to converge, showed significant spatial and 
temporal autocorrelation in their residuals, or required 
substantial data preprocessing to meet diagnostic checks 
(additional details below and in Online Supplement).

As an alternative, we used machine learning algo-
rithms to estimate the relative importance of covariates 
on detection depth, estimate non-linear and interactive 
effects on detection depth, and generate spatially explicit 
predictions. Machine learning models do not assume the 
response variable follows an underlying statistical distri-
bution, increasing flexibility when modeling data with a 
non-standard truncated distribution. Here we describe 
one algorithm, random forest regression [54], but we also 
evaluated gradient boosting machines ([55]; see Online 
Supplement for details). Random forest regression algo-
rithms are built on regression trees. Each regression tree 
splits observations along a covariate at the point mini-
mizing the sum of squares error, where the prediction 
at each node is the mean of the response variable. This 
process is repeated, sequentially selecting covariates and 
split points, until each terminal node contains less than a 
specified number of observations. Since individual trees 

are sensitive to overfitting and generally poor at predic-
tion, random forest algorithms average predictions across 
regression trees. Individual regression trees within ran-
dom forest models are fit to a bootstrap sample of the 
data and explanatory covariates. Bootstrap resampling 
and averaging the predictions from many trees reduces 
variance without increasing bias, which allows for a large 
number of highly nonlinear effects to be incorporated 
while minimizing overfitting. This characteristic is par-
ticularly important in datasets such as ours with spatial 
and temporal structure, which will result in significant 
autocorrelation unless those processes are incorpo-
rated. Machine learning models are tuned by comparing 
the performance of different suites of hyperparameters, 
which control an algorithm’s learning process,  using 
cross-validation. Here, we blocked datasets by individual 
during cross-validation so that detections from the same 
tag would not inform both training and testing datasets 
during model development [56].

We compared machine learning algorithms and alter-
native hyperparameters using 8-fold cross-validation. 
Model selection and hyperparameter tuning excluded 
tags deployed in 2022 and randomly assigned data to 
training or testing groups based on individual blocks. 
For each model, we evaluated predicted performance 
using three alternative transformations for observed 
depth data: untransformed (bounded by zero and bottom 
depth within a detection radius), a bathymetric depth 
ratio (observed depth divided by the maximum depth 
within a receiver’s detection radius; bounded by zero 
and one), and a logit transform of the bathymetric depth 
ratio (approximately normally distributed). We compared 
alternative model structures using root mean square 
error (predictions based on transformed response vari-
ables were back-transformed). We also tested predictions 
from our 2019-2021 data model  fit to the 2022 deploy-
ment data as an independent test of future predictive 
performance. Additional details in Online Supplement.

We fit machine learning models using the caret [57] 
and ranger [58] R packages. We interpolated a small 
number of missing ROMS and lipid content estimates 
(details in Online Supplement) and transformed categori-
cal variables (day-night and maturity stage) to dummy 
variables prior to model fitting. We quantified the rela-
tive explanatory power of different variables by calcu-
lating the decline in model performance (percent mean 
squared error) when a given covariate was excluded from 
the model (i.e., the performance of trees that included a 
given variable relative to those that did not).

Random forest models and other machine learn-
ing algorithms are most commonly used for prediction. 
Since covariate effect sizes cannot be evaluated using 
parameter estimates, we used random forest models for 
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ecological inference by generating conditional predic-
tions to evaluate how Chinook salmon depth varies as a 
function of one, or multiple, explanatory variables. We 
emphasize that conditional predictions are not intended 
to forecast individual depth, but rather to represent a 
range of plausible vertical distributions, under specific 
conditions, based on the observed data and fitted model. 
Our analytical framework provides a suitable means of 
identifying which covariates are the strongest predic-
tors of vertical habitat use and evaluating how multiple 
covariates interact with one another. However, alterna-
tive techniques, such as generalized additive models or 
generalized linear models may also be used to estimate 
effect sizes for covariates (additional details below).

Ultimately, we generated a) non-spatial conditional 
predictions that focused on the effect of single covariates 
with all other covariates (including spatial location) held 
at reference values (median for continuous and 0.5 for 
dummy variables) and b) conditional spatial predictions 
that used a grid of cells (1 × 1 km resolution) with rel-
evant spatial attributes (bottom depth, slope, distance to 
shore) and all other non-focal variables fixed at reference 
values (median values except for year day fixed to July 30, 
dynamic ocean variables fixed to estimates for July 30, 
2020, and thermocline depth fixed at its mean value for 
July). Since machine learning models capture non-linear 
relationships among large numbers of covariates, we also 
generated conditional spatial contrasts by calculating the 
difference in spatially explicit predictions, which allowed 
us to visualize spatially varying effects.

To quantify uncertainty, we generated infinitesimal 
jackknife confidence intervals [59] and among-tree quan-
tile prediction intervals using the ranger package [58]. All 
analyses were completed in R 4.2.1 [60].

Although machine learning models are flexible, they are 
not a replacement for a sufficient number of independent 
and representative samples. While our model accounted 
for temporal autocorrelation at seasonal scales, it did not 
address subdaily autocorrelation explicitly. Addition-
ally, our data were unbalanced, with a relatively large 
number of detections associated with a small number of 
tags (Additional file 3: Fig. S7). Although bootstrap resa-
mpling and individual blocking during cross-validation 
will mitigate these issues to some degree, we completed 
a series of sensitivity analyses to evaluate their effect on 
our conclusions (Additional File 1). We fit two hierarchi-
cal generalized additive models and three random forest 
regression models that differed in model form, data pre-
processing, and data weighting. We evaluated the relative 
performance of each model based on residual temporal 
and spatial autocorrelation, as well as out-of-sample pre-
dictive performance and bias. We also compared condi-
tional predictions between models to evaluate qualitative 

differences on inference. See additional details in the 
Online Supplement.

Results
Immature fish (i.e., those observed in the marine envi-
ronment after November 15 or with a median posterior 
probability of being classified as mature less than 0.5) 
were smaller and had a lower lipid content ( 66.1± 5.54 
cm and 7.24 ± 1.13 % wet weight; n = 41) than mature 
fish ( 78.6± 8.73 cm and 8.12± 1.67 % wet weight; n = 
420). Fork length, lipid content, and the relative propor-
tion of immature fish varied among stocks (Additional 
file 3: Fig. S2).

We used 43,627 detections with valid depth data from 
338 Chinook salmon tagged between 2019 and 2021 to 
train and test the depth model using cross validation. 
We included data from 319 mature (median maturation 
probability greater than 0.5) and 26 immature individuals 
in the training dataset (sum is greater than 338 because 
seven individuals provided information as immature 
and mature individuals). An additional 5,466 detections 
from 17 mature individuals tagged in 2022 were used to 
qualitatively evaluate model performance. The number of 
detections per tag ranged from 1 to 5,987 and tags pro-
vided detection data for up to 437 days. There were sub-
stantial differences in the number of detections provided 
by each tag and observed by each receiver (Additional 
file 3: Figs. S3, S7). Detection depth of Chinook salmon 
(hereafter depth) ranged from the surface to 352 m, with 
a median of 28 m and deeper detections among imma-
ture fish (Additional file  3: Fig. S4). Chinook salmon 
were detected in both surface waters and along the sea 
floor (Additional file 3: Fig. S4). Chinook salmon moved 
through a wide range of temperatures (6-18 C◦ ; Addi-
tional file 3: Fig. S5) and dissolved oxygen concentrations 
(<1-12 mg/l, Additional file 3: Fig. S6).

The best-supported machine learning model was a 
random forest regression model fit to bathymetric depth 
ratio (i.e., observed depth scaled by the maximum bot-
tom depth within the receiver’s detection radius; Online 
Supplement). The model included 1000 trees, evaluated 
17 variables per tree, and identified split points ran-
domly following a uniform distribution (i.e., extremely 
randomised trees [61]). The model had unbiased predic-
tive performance with in- and out-of-sample data and 
high predictive accuracy with in-sample data ( r2 = 0.85 ); 
however, root mean square error increased with out-of-
sample data, particularly with data associated with detec-
tions from 2022 tag deployments (Fig. 2). The proportion 
of observations within the model’s 95% prediction inter-
val was 99% for the training data, 87% for the 2019-21 
testing data, and 91% for the 2022 testing data.
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Each variable provided predictive information to the 
random forest regression model and improved its accu-
racy; however, the strongest predictors of Chinook 
salmon depth distribution were bottom depth, one of two 
composite calendar day variables, maturity stage, and 

location. The remaining temporal, spatial, and individual 
variables, as well as a subset of oceanographic variables, 
had more modest contributions. Current strength and 
thermocline depth had the poorest predictive perfor-
mance (Fig.  3). Stock identity covariates also had weak 
predictive power (Additional file  3: Fig. S8), and the 
remaining results focus on the model that excluded stock 
identity effects to improve interpretability.

Generally Chinook salmon were predicted to occupy 
the top 20-40% of the water column, relative to bottom 
bathymetry (Fig. 4). The cumulative influence of bottom 
depth, spatial location, bottom slope, and distance to 
shore resulted in strong spatial patterns in vertical dis-
tribution. Bathymetric depth ratios were shallowest in 
western Juan de Fuca Strait, the southern Strait of Geor-
gia, and Puget Sound (Fig. 4). Predicted depth was mark-
edly deeper—50-60% of water column depth—on shelf 
habitats off the Washington coast and portions of coastal 
WCVI (Fig. 4). Back-transformed predictions (i.e., depth 
in meters) were deepest in the southern Strait of Geor-
gia and in the canyons near the western portion of Juan 
de Fuca Strait (Fig.  4). The prediction intervals associ-
ated with the best performing model were relatively wide, 
consistent with substantial variability among and within 
individuals (Fig. 4, Additional file 3: S4).

Many of the covariates we considered had nonlinear 
effects on depth. Chinook salmon were more likely to 
occupy depths closer to the bottom in shallower waters 
and when bottom topography was relatively flat (Fig.  5, 
Additional file  3: S4). We found evidence of cyclical, 
seasonal changes in Chinook salmon depth, where fish 
were deeper during winter months (Fig.  5). Seasonal 
changes in mean depth were rapid, occurring over one 
to two weeks during April (when fish moved to shallower 
waters) and September (when they returned to deeper 
waters). Immature fish tended to have deeper distribu-
tions than mature fish, particularly after accounting for 
correlations between maturation stage, size, and lipid 
content, and nocturnal predictions were shallower than 
diurnal (Fig.  5). Finally, after accounting for the effect 
of other spatial covariates (e.g., bottom depth, slope, 
distance to shore, dynamic oceanographic variables), 
bathymetric depth ratio deepened along the coast of 
Washington and in Juan de Fuca Strait (Fig. 5).

The effect of the remaining covariates was generally 
modest—less than 5% over the range of the observed 
covariate. However, considering covariates in isolation 
can obscure interactions between spatial processes and 
other variables that result in stronger localized effects. 
For example, the distributions of Chinook salmon 
deepened when zooplankton concentration, lunar illu-
mination, and oxygen concentration increased, while 
the effects of sea surface temperature were spatially 

Fig. 2  Observed and predicted Chinook salmon depth showing 
2019-21 training data from 8-fold cross validation used to fit the initial 
random forest regression model (red; 80.1% of detections), 2019-21 
out-of-sample testing data from 8-fold cross validation (green; 
8.8% of detections), and out-of-sample testing data from 2022 tag 
deployments (blue; 11.1% of detections)
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variable (Fig. 6). Environmental effects were generally 
constrained to portions of the continental shelf.

Discussion
Variation in individual depths provides information 
on the interaction between multiple ecological pro-
cesses that regulate habitat use in marine species. We 
used observations from more than 300 adult Chinook 
salmon tagged during a four-year period to disentangle 
the effect of spatial, temporal, physical, and biological 
processes on vertical distributions. Tagged individu-
als ranged from the surface to nearly 400 m in depth, 
but were typically distributed near the middle of the 
water column approximately 25  m below the surface. 
Chinook salmon encountered a wide range of thermal 
habitats, from six to 18 C◦ , and intermittently hypoxic 
conditions. Within the top performing model a subset 
of covariates representing bottom depth, spatial, sea-
sonal, and maturation stage effects were most strongly 
correlated with Chinook salmon depth distributions. 
While the model performed relatively well even with 
held-out training data, its prediction intervals were 
wide emphasizing substantial variability among and 
within individuals in vertical habitat use.

Ecological drivers of depth distribution
Our results are consistent with Chinook salmon depth 
distributions reflecting prey availability and associated 
foraging behaviours. A position within the middle of the 
water column is consistent with a vertical ambush strat-
egy whereby larger-bodied piscivores attack pelagic prey 
from below [62]. Moreover, several of the top-ranked 
covariates have clear linkages to prey availability. Com-
plex bottom bathymetries increase bio-physical coupling 
as nutrients are deflected from deeper waters, resulting 
in greater primary productivity and concentrating zoo-
plankton and forage fish [16, 63]. In this study, bottom 
depth and slope were correlated with individual depth, 
and also with one another, suggesting these variables 
are proxies for bottom complexity. Furthermore, steep 
dropoffs, reefs, or pinnacles on the west coast of Vancou-
ver Island often have greater Chinook salmon abundance 
and are commonly targeted by fishers (C. Freshwater and 
B. Hendriks, unpublished data). In this paradigm, resid-
ual spatial variation likely represents foraging hotspots 
associated with variables excluded from the model (e.g., 
bottom substrate, locations of tidal outflow).

Seasonal changes in Chinook salmon depths also 
mirror changes in prey species  behaviour. Forage fish 
in the northeast Pacific, particularly Pacific herring 

Fig. 3  Relative importance of explanatory variables in random forest regression model predicting Chinook salmon mean bathymetric depth ratio. 
Importance is quantified as the difference (mean among trees) in root mean square error when a given variable is excluded during out-of-bag 
prediction. An uncorrelated random variable will have a difference of zero. Colors represent categories of explanatory variables
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Clupea pallasii and northern anchovy Engraulis mordax, 
become increasingly bottom-oriented during the winter 
[64–66] and are key prey of Chinook salmon [39, 40]. We 
also identified localized correlations between zooplank-
ton concentration and depth, which provides additional 
evidence that Chinook salmon distributions covary with 
productivity in rearing habitats.

Although we believe changes in vertical  distribution 
are most consistent with foraging behaviour, Chinook 
salmon may also moderate their depth in response to 
predation risk. Resident killer whales prey upon Chi-
nook salmon throughout the year [67, 68] and have simi-
lar depth distributions to Chinook salmon [13]. Chinook 
salmon were deeper relative to bottom bathymetry near 
western Juan de Fuca Strait and the southern Strait of 
Georgia, which have been identified as resident killer 
whale foraging hotspots [69]. Both cetacean and pin-
niped habitat use is also correlated with bottom depth 
and topography [70, 71], presumably because these fea-
tures concentrate prey. Moreover, the depth of salmon 
sharks Lamna ditropis, another salmon predator, changes 

seasonally [72], suggesting changes in depth during win-
ter may have knock-on effects across trophic levels.

The distributions of mature Pacific salmon shallow dur-
ing marine migrations as they use olfactory cues to home 
to natal streams [27, 28]. Immature Chinook salmon, 
which were also smaller and had a lower lipid content 
than mature individuals in this study, had deeper distri-
butions, even after accounting for seasonal effects. The 
spatially varying effects of zooplankton concentration we 
observed were also consistent with fish responding more 
strongly to productivity in rearing areas, such as La Per-
ouse Bank and coastal Washington, than in migratory 
locations such as the southern Strait of Georgia. Thus, 
our results are consistent with mature individuals becom-
ing increasingly surface oriented as they migrate towards 
terminal areas. Notably, stock identity was a poor predic-
tor of variation in depth distribution, presumably because 
other model covariates accounted for stock-specific traits 
such as body size and migration route.

We did not find strong evidence that oceanographic 
conditions regulated Chinook salmon distributions. 

Fig. 4  Mean bathymetric depth ratio (left), mean depth (top right), and bathymetric depth ratio 80th percentile prediction interval width (bottom 
right) of Chinook salmon from random forest regression model. For bathymetric depth ratio, zero represents the surface and one the seafloor. 
Predictions are conditional effects of spatial processes, with year day fixed to 211 (i.e., July 30) and dynamic oceanographic variables fixed 
to estimated values for July 30, 2020. All other temporal and biological variables are fixed at median values or 0.5 for dummy variables
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Fig. 5  Conditional effects on Chinook salmon bathymetric depth ratio (zero at surface and one at sea floor) of: bottom depth a, bottom slope b, 
day of detection c, maturity stage/fork length/lipid content d, day/night e, and easting-northing f. Conditional effects represent median random 
forest regression model predictions (lines or point), assuming all other variables are fixed to reference values (i.e., medians for continuous covariates 
and 0.5 for dummy variables). Predictions based on maturity stage assume stage-specific mean values for fork length and lipid content. Predictions 
based on location exclude the effect of spatially correlated variables (i.e., mean bottom depth, mean bottom slope, distance to shore, dynamic 
oceanographic features). Ribbons and whiskers represent 95% jackknife confidence intervals
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Zooplankton concentration, sea surface temperature, 
and oxygen concentration had modest performance, but 
their predictive power was substantially weaker than 
other covariates, and the effects of thermocline depth 
and current velocity were weaker still. Consistent with 
previous Pacific salmon tagging studies, we found tagged 
individuals encountered a wide range of environmental 
conditions [29, 38]. Chinook salmon may adopt strategies 
similar to other pelagic piscivores, whereby physiologi-
cally taxing habitats are used to concentrate prey for cap-
ture [62, 73].

Divergent patterns among marine ecosystems
While we found spatial and seasonal variables were the 
strongest drivers of variation in depth distribution, previ-
ous work on Pacific salmon and other large pelagic fishes 
has emphasized the importance of processes occurring 
at shorter temporal scales. We believe that our divergent 
results are due to the ontogeny of tagged fish and their 
habitats. Previous work on Pacific salmon has demon-
strated that vertical and horizontal habitat use is moder-
ated by temperature and oxygen. Many of these studies 
have focused on individuals that have ceased feeding 

Fig. 6  Random forest regression model predicted conditional differences in bathymetric depth ratio across the study area. Maps show 
predicted differences when: sea surface zooplankton concentrations are 1 SD below or above their summer average (top left); the moon 
is 0% and 100% illuminated (top right); sea surface temperatures are 1 SD below or above their summer average (bottom left); and sea surface 
oxygen concentrations are 1 SD below or above their summer average (bottom right). Relative differences were calculated as the difference 
between predictions (e.g., 0% and 100% illumination) in a given spatial cell. Negative (red) values represent greater predicted depth with greater 
lunar illumination, temperature, zooplankton concentration, or oxygen concentration. Non-focal spatial covariates were fixed at July 30, 2020 values 
and the remaining covariates were fixed at median values
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to undergo terminal migrations. Individuals in termi-
nal areas use surface waters for orientation [27, 28] and 
deeper habitats as thermal refugia [29, 74, 75]. Con-
versely, the Chinook salmon we tagged did not enter 
freshwater for weeks to months (or over a year in the 
case of immature fish). As a result, they were continuing 
to forage and may have been less likely to exhibit strong 
responses to physical gradients [36, 38].

While there is evidence of temperature or oxygen con-
straining Chinook salmon habitat use in California Cur-
rent habitats [32, 76], temperatures in this region are 
considerably warmer than those off southern Vancou-
ver Island and northern Washington and oxygen may 
be more limiting due to stronger seasonal upwelling [4, 
77]. Indeed, Sabal et al. 2023 reported that a) the warm-
est temperatures they reported were not observed in the 
northern portion of their domain (which overlapped 
with our study area) and b) the Chinook salmon popu-
lations  they observed in northern regions did not show 
strong responses to temperature [32]. We found that Chi-
nook salmon showed moderate responses to sea surface 
temperature and oxygen concentration in shelf habitats 
and were consistently deeper in the water column on the 
Washington continental shelf than elsewhere. Both pat-
terns suggest that the effects of dynamic oceanographic 
conditions vary spatially.

More generally, our tagging data can be used to com-
pare the vertical movements of Chinook salmon to 
well-studied species such as billfishes, tunas, and sharks 
(hereafter large pelagics). Chinook salmon and large 
pelagics are in many ways ecologically similar. They are 
predominantly piscivorous, undergo extensive migra-
tions, and often exhibit diving behaviour. Large pelag-
ics such as dolphinfish Coryphaena hippurus and silky 
sharks Carcharhinus falciformis are largely constrained 
to the epipelagic. Blue sharks Prionace glauca and bigeye 
tuna Thunnus obesus, however, dive into the mesopelagic 
where they encounter cooler temperatures and hypoxic 
conditions [7]. Similar to the latter species, we found 
Chinook salmon moved through a wide range of temper-
atures, intermittently co-occurred with very low oxygen 
concentrations, and were not constrained by the thermo-
cline. Like some large pelagics [7], Chinook salmon were 
shallower at night and distributed deeper in the water 
column when light levels increased, presumably due 
to improved foraging efficiency at depth. Although the 
effect of diel period was weaker than many other covari-
ates, the forage fish that Chinook salmon prey upon do 
migrate to shallower depths at night [78], which may 
elicit a behavioural response particularly before Chinook 
salmon begin their terminal migrations.

Unlike large pelagics, however, Chinook salmon 
were not strongly associated with thermocline depth or 

horizontal and vertical currents, a proxy for mesoscale 
features [26]. We suggest these differences are associated 
with the marine habitats each group occupies, as well as 
their associated physiological adaptations. Large pelagics 
are warm water species that may dive to colder habitats 
to forage, but return to the surface to thermoregulate 
[7]. As a result, large pelagic tagging studies typically 
occur in offshore regions with substantial stratification 
[7, 10], a more extreme version of the California Current 
Chinook salmon studies described above. Conversely, 
Chinook salmon are cold water tolerant species with an 
extensive marine distribution [39, 79]. Our study area, 
which occupies the central portion of the species range, 
includes regions that are relatively well-mixed due to 
estuarine circulation (Juan de Fuca Strait) or seasonal 
upwelling (coastal Washington and WCVI) and generally 
shows less vertical structure in temperature than tropical 
regions [4].

Limitations and conclusions
Our analysis of Chinook salmon depth distributions 
using acoustic telemetry data has several limitations. 
First, we did not estimate horizontal and vertical habitat 
use simultaneously. A shift in Chinook salmon distribu-
tions from migratory corridors to productive habitats, 
coincident with increases in depth, would be strong evi-
dence that foraging decisions moderate seasonal varia-
tion; however, developing fully three-dimensional models 
was outside the scope of this work.

Second, our estimates of vertical habitat use include 
several sources of uncertainty. Since fish locations 
could not be identified within the detection radius of 
a receiver, our model integrated variation within that 
radius. Similarly, the tag pressure sensors had an esti-
mated precision of several meters, resulting in sub-
stantial observation error. Observation error is unlikely 
to bias our results, however large detection radii and 
imprecise estimates of depth will inflate residual error 
within our model predictions. If observation error 
could be reduced or accounted for statistically, then 
we may be better able to resolve fine-scale behav-
iours. While ROMS model outputs accurately capture 
relatively large-scale variability in oceanographic con-
ditions, they likely do not fully reflect granular envi-
ronmental processes that serve as cues for individual 
fish. Size and lipid content at the time of tagging are 
reasonable short-term proxies for body condition, but 
our model did not account for individual growth. Size, 
lipid content, and other traits also differ among Chi-
nook salmon stocks. While including stock identity did 
not improve model performance, it remains unclear 
to what extent differences among Chinook salmon in 
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vertical distribution are due to individual variation as 
opposed to stock-specific behaviours that covary with 
traits such as size or migration route.

Third, we tagged a relatively small number of individ-
uals, with the number of observations varying among 
individuals. Despite unbalanced data, our sensitivity 
analyses suggested that our analytical approach had 
better performance than comparable generalized addi-
tive models that accounted for among individual varia-
tion hierarchically via random intercepts. Additionally, 
random forest models that accounted for unbalanced 
sampling via data weighting provided similar predic-
tions, but with greater certainty. Thus the uncertainty 
associated with among individual variability appears 
to be adequately captured by our model. Perhaps more 
importantly, the populations we tagged, and their asso-
ciated habitats, represent only a fraction of the ecologi-
cal diversity within Chinook salmon. Chinook salmon 
behaviour may vary regionally or among life-history 
types that were not well sampled here (e.g., populations 
with yearling life histories that mature offshore). More 
generally, we could only sample depth distributions in 
locations and times where receivers were deployed. The 
accuracy of our model’s predictions will be reduced if 
habitat use differs in unmonitored locations or times. 
Indeed, model performance worsened when data from 
2022 tag deployments were compared to predictions 
from the model trained on 2019-21 tag deployment 
data. We note, however, that challenges associated with 
generalizing from ecological studies are widespread and 
that our sample size, in terms of individuals, is larger 
than many comparable tagging studies (e.g., median 
among studies cited here was 19).

Unlike open ocean pelagic environments, we found that 
vertical habitat use on the continental shelf was moder-
ated at relatively coarse scales by interactions between 
static spatial variables and seasonality. Processes occur-
ring over shorter temporal periods had weaker or more 
localized effects. Variation in Chinook salmon depth dis-
tributions provides both challenges and opportunities for 
management. On the one hand, strong seasonal effects 
coupled with a broad vertical distribution suggest catch-
ability varies, complicating the interpretation of fisheries-
dependent data [12]. On the other, evidence that depth 
varies spatially, seasonally, and ontogenetically could 
guide interventions intended to constrain directed and 
incidental harvest. Previous work has highlighted how 
trade-offs between growth, predation risk, and repro-
ductive success can influence habitat selection in aquatic 
species [24, 80]. Our analysis provides a framework for 
extending this work into difficult-to-observe pelagic eco-
systems by linking tagging data, dynamic oceanographic 
models, and spatially explicit models.
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