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Abstract 

Background  Migratory birds generally have tightly scheduled annual cycles, in which delays can have carry-over 
effects on the timing of later events, ultimately impacting reproductive output. Whether temporal carry-over effects 
are more pronounced among migrations over larger distances, with tighter schedules, is a largely unexplored 
question.

Methods  We tracked individual Arctic Skuas Stercorarius parasiticus, a long-distance migratory seabird, from eight 
breeding populations between Greenland and Siberia using light-level geolocators. We tested whether migration 
schedules among breeding populations differ as a function of their use of seven widely divergent wintering areas 
across the Atlantic Ocean, Mediterranean Sea and Indian Ocean.

Results  Breeding at higher latitudes led not only to later reproduction and migration, but also faster spring migration 
and shorter time between return to the breeding area and clutch initiation. Wintering area was consistent within indi-
viduals among years; and more distant areas were associated with more time spent on migration and less time 
in the wintering areas. Skuas adjusted the period spent in the wintering area, regardless of migration distance, which 
buffered the variation in timing of autumn migration. Choice of wintering area had only minor effects on timing 
of return at the breeding area and timing of breeding and these effects were not consistent between breeding 
populations.

Conclusion  The lack of a consistent effect of wintering area on timing of return between breeding areas indicates 
that individuals synchronize their arrival with others in their population despite extensive individual differences 
in migration strategies.
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Introduction
Stages in the annual cycle of animals are intricately 
linked and the timing of each event can have cascad-
ing effects on the timing of subsequent events, usually 
referred to as carry-over effects [1, 2]. Temporal carry-
over effects may be particularly pronounced in animals 
that undertake long and challenging migrations between 
their breeding and wintering areas, where delays in one 
phase of the annual cycle can lead to a temporal mis-
match with resource availability in subsequent phases, 
ultimately affecting survival and reproductive success 
[3, 4]. The degree to which delays can be buffered, pre-
venting amplification of carry-over effects across time, 
may vary as a function of the tightness of scheduling 
within the annual cycle [5]. Quantifying the geographi-
cal variation in timing of annual cycles and carry-over 
effects is therefore important for our understanding of 
how phenology drives variation in life-history traits [6]. 
In addition, considering that daily survival rates may dif-
fer between stages of the annual cycle [7, 8], variation in 
annual schedules can drive meta-population dynamics [2, 
9, 10]. Insight in the drivers of meta-population dynam-
ics is important to inform location-specific conservation 
efforts.

Population-level differences in the scheduling of the 
annual cycle may arise as a function of the location of 
the breeding and wintering areas [11, 12] and the con-
ditions experienced there [13]. Annual schedules are 
generally shifted to later in the season at higher breed-
ing latitudes, where the optimal time for reproduction 
is associated with a later time of return to the breed-
ing site [14, 15, 16, 17, but see 18]. In turn, this affects 
the duration and timing of subsequent phases of the 
annual cycle, such as migration, given that the degree 
of seasonality in resources and photoperiod leads to 
differences in optimal migration speed [19, 20]; how-
ever, this is little studied. In addition to an effect of the 
breeding area, the timing of annual cycles may also 
depend on the choice of wintering area and migration 
routes, as more distant non-breeding areas require 
longer travel time. As such, unless departure is earlier 
or travel speeds higher, arrival will be later [21, 22]. 
When fueling conditions in the wintering area itself 
or along the migration route are sub-optimal, delays 
can arise as a result of choice of wintering area. These 
delays can subsequently carry-over to timing of return 
to the breeding area and egg laying [23, 24] and can 
reduce survival [25]. Thus, temporal carry-over effects 

are expected to be more pronounced when distances 
between breeding and non-breeding areas are greater, 
and there is less leeway in the annual cycle to compen-
sate for delays.

We define the net carry-over effect as the timing of 
an event for an individual or group relative to the pop-
ulation mean for a sequence of events (Fig.  1a). The 
strength of temporal carry-over effects can be con-
ceptualized as the degree to which timing of an event 
affects the scheduling of a following event (Fig.  1a–c). 
If there is full compensation for a delay, each day lost 
in one phase translates to one less day spent in the next 
phase, resulting in a similar timing of the following 
event. In the case of complete carry-over of delays, the 
timing of the next event is delayed by a day, i.e. there is 
no compensation. Delays may also be amplified at later 
stages, i.e. each day of delay translates to more than a 
day delay in following events.

Although long-distance migration has evolved in 
many taxonomic groups [26], geographical variation in 
the timing of annual cycles and carry-over effects have 
mainly been studied in single breeding populations of 
migratory birds [13, 27, 28], that use a single wintering 
area or multiple wintering areas at similar latitudes [11, 
12, 15] or in multiple breeding populations that breed 
at similar latitudes [29]. Ideally, quantifying and testing 
the relative effects of breeding and wintering location 
on the timing of annual schedules and on carry-over 
effects requires substantial geographic variation in both 
breeding and wintering areas and mixing of individu-
als from different breeding populations within winter-
ing areas and vice versa (weak migratory connectivity 
[30]). Such studies are rare, because of the challenges 
of performing large-scale tracking studies and because 
few species show sufficient variation in both breeding 
and wintering latitudes. Hence, the extent to which the 
timing of events and carry-over effects in the annual 
cycle of migratory birds is driven by both breeding and 
wintering locations is largely unresolved [31].

We studied carry-over effects on the timing of differ-
ent phases in the annual cycle of a long-distance migra-
tory seabird, the Arctic Skua Stercorarius parasiticus, 
from multiple breeding populations. Its circumpolar 
breeding distribution ranges from northern temperate 
to high arctic zones ([32]; Fig. 2). Based on ring recov-
eries and field sightings, the main wintering areas in 
the Atlantic are thought to span productive continental 
shelf and pelagic areas across a large (latitudinal) range, 
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from Iberia to Patagonia and South Africa [32, 33]. By 
tracking the full annual cycle of many individuals over 
several years from multiple breeding sites ranging 
from East Greenland to West Siberia (59°N to 79°N in 
latitude and 24°W to 69°E in longitude), we present the 
full extent of their wintering distribution. We quantify 

the migratory connectivity [30] and the consistency of 
individuals from year to year in their migration strat-
egy. We quantify the relative effects of breeding and 
wintering areas on the timing of key events and dura-
tion of intervening periods in the annual cycle. Based 
on the northern hemisphere (breeding area) viewpoint 
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Fig. 1  Conceptual framework of the two interrelated measures of carry-over effects between events in the annual cycle. The framework assumes 
the population mean represents the overall optimal timing, while throughout the range of timings different advantages and disadvantages can 
be attributed. A Here an example delay (d1) relative to the population mean timing (xt1) of event 1 affects the timing of a subsequent event t2 
relative to the population mean xt2 to different degrees. The resulting degree of advancement or delay in event (t2) is the net of carry-over effects 
and is described by its strength as partial, complete, or amplified carry-over effect, or a complete compensation. The strength of the carry-over 
effect can be quantified as the slope between t1 and t2 (B), or, between t1 and the duration of the period between t1 and t2 (C)
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on annual schedules, the non-breeding area is referred 
to as wintering area throughout. Using the variation 
in annual schedules, we study compensation versus 
carry-over of variation in timing between subsequent 
events, and how these depend on breeding and win-
tering areas. Later timing of events and tighter sched-
ules are predicted to be associated with more northerly 
breeding areas [15, 16]; later timing is also expected 
to lead to different allocation of time to phases of the 
annual cycle. Time spent in more distant wintering 
areas is expected to be shorter due to longer time spent 
on migration. Among different annual schedules, we 

expect carry-over effects to arise particularly among 
schedules with less leeway to compensate for delays 
and that the wintering period generally buffers the vari-
ation in timing of autumn migration, but less so when 
the wintering period is shorter. As such, migrations to 
more distant wintering areas are expected to be associ-
ated with higher risks of delayed spring return in the 
breeding area—a net carry-over effect [24, 34].

ROU n=6/4

FAI n=8/6

FAR n=27/23

ICE n=6/6

KVP n=4/1

HOC n=4/2

FIN n=11/8

ERK n=2/1

TOB n=5/5

BRH n=24/11

SLE n=79/46

SVA n=100/42
GRE n=8/3

NOR n=103/57

RUS n=7/6

SCO n=14/10

BEN n=33/20

CAN n=57/34

CAR n=62/29
GUL n=39/24

IND n=8/7

MED n=8/4

PAT n=63/36

North Atlantic staging area

Fig. 2  Wintering areas of Arctic Skuas tracked from breeding areas between East Greenland and West Siberia. Dots represent centroids of wintering 
positions for each track, coloured per wintering area (boxes). Green shaded areas reflect the breeding range, with red-filled dots showing 
the studied breeding sites, which are enlarged in the upper panel to show pie charts representing the proportion of individuals wintering in each 
of the seven wintering areas, with the size corresponding to the total number of individuals tracked. Sample sizes are shown as the number 
of tracks/number of individuals. The main stopover in the North Atlantic is shown as a dark green polygon. Abbreviations for breeding sites 
are SVA = Svalbard, KVP = Karupelv, HOC = Hochstetter Forland, ICE = Iceland, FAR = Faroe Islands, FAI = Fair Isle, ROU = Rousay, SVA = Svalbard, 
SLE = Slettnes, BRH = Brensholmen, TOB = Tobseda, ERK = Erkuta and FIN = Finland, and for breeding areas are GRE = Greenland, SCO = Scotland, 
NOR = mainland Norway and RUS = Russia. Abbreviations for wintering areas are PAT = Patagonian Shelf, BEN = Benguela region, GUL = Gulf 
of Guinea, CAR = Caribbean region, CAN = Canary Current, MED = Mediterranean Sea and IND = Indian Ocean. Sites within countries were merged 
for statistical analyses
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Methods
Device deployments and sample size
Adult Arctic Skuas were fitted with geolocators (Global 
Location Sensor or GLS) loggers at twelve breeding 
sites in eight countries. Data from sites within coun-
tries were combined to avoid very small sample sizes in 
models and are henceforth referred to as breeding areas, 
as follows: East Greenland (Karupelv, 72° 30′ N 24° 00′ 
W, and Hochstetter Forland, 75° 09′ N, 19° 40′ W), Ice-
land (Hroarstunga, 65° 35′ N, 14° 22′ W), Faroe Islands 
(Fugloy, 62° 20′ N, 6° 19′ W), Scotland (Fair Isle, 59° 54′ 
N, 1° 63′ W and Rousay, 59° 09′ N 3° 02′ W), mainland 
Norway (Brensholmen, 69° 35′ N, 18° 01′ E and Slettnes, 
71° 05′ N, 28° 12′ E), Spitsbergen (Kongsfjorden, Sval-
bard, 79° 57′ N, 12° 06′ E), Finland (Satakunta, 61° 33′ N, 
21° 27′ E), and Russia (Tobseda, 68° 36′ N, 52° 19′ E, and 
Erkuta, 68° 14′ N, 69° 09′ E) (Fig. 2).

Birds were captured either on the nest using bow nets, 
tent spring traps or walk-in traps, remote release nooses, 
or away from the nest using net guns. Geolocators were 
attached to a Darvic ring fitted around the tarsus. Vari-
ous models of geolocators were used: C65, C250 (Migrate 
Technology, Cambridge, UK), Mk9, Mk13, Mk15 and 
Mk18H (British Antarctic Survey, Cambridge, UK) and 
Mk3006 (Biotrack, Wareham, UK). Geolocators meas-
ured ambient light in lux (Migrate Technology) or arbi-
trary units (BAS/Biotrack) every 1  min and saved the 
maximum value every 5 min. In subsequent breeding sea-
sons, geolocators were removed and data downloaded.

In total, data for 276 interbreeding periods (i.e. one 
migration cycle, referred to as a ‘track’ below) from 155 
individuals were obtained in 2009–2021. Sample sizes 
per breeding area ranged from 103 tracks of 57 individ-
uals in mainland Norway to 8 tracks of 3 individuals in 
East Greenland (Fig. 2). In total, 34, 23 and 12 individuals 
were tracked for 2, 3 and 4–6  years, respectively. Some 
of the tracks (n = 48) were incomplete due to battery or 
electronics failure.

Geolocator data processing
Positions were estimated for noon and midnight from 
the light measurements by the geolocators (see electronic 
Additional file 1 for details).

We describe the phenology from the perspective of a 
breeding bird, i.e.  ‘autumn migration’ is post-breeding, 
and ‘spring migration’ is pre-breeding. We define the 
following key events in the annual cycle: (1) departure 
from the breeding area; (2) arrival in the wintering area; 
(3) departure from the wintering area; (4) arrival in the 
North Atlantic north of 35°N (mostly around the sub-
polar frontal zone where many Arctic Skuas made a stop-
over before returning to the breeding grounds [35, 36]); 

(5) return to the breeding area; (6) clutch initiation. The 
duration of the intervening periods (in days) were calcu-
lated for the: (1) autumn migration; (2) wintering period; 
(3) spring migration, including the time in the North 
Atlantic; (4) time in the North Atlantic; (5) pre-laying 
period; (6) breeding period. As loggers were deployed in 
the colony and retrieved before departure, a composite 
index of the length of the breeding period for each track 
was calculated as the sum of the periods from 1 July (all 
individuals present in the breeding area) to departure in 
the first year, and from clutch initiation in the second 
year to 30 June. Timing of movements were identified by 
inspecting raw position estimates. For birds breeding in 
areas with continuous daylight, first position estimates 
after leaving the zone with continuous daylight were 
close to the breeding site, but last position estimates, just 
before returning to the zone with continuous daylight, 
were around 60°N and distant from the breeding area. To 
estimate time of departure from or arrival to the breeding 
area under continuous daylight, we assumed birds trave-
led at a speed of ca. 850 km d−1, which has been recorded 
for the closely related Long-tailed Skua Stercorarius lon-
gicaudus [37], between the breeding site and the first or 
last position estimate. Rapid movement to or away from 
the wintering area, roughly entering or leaving the boxes 
shown in Fig. 2, was taken as the timing of arrival at and 
departure from the wintering area. The date of arrival in 
the North Atlantic during spring migration was taken 
as the day birds crossed 35°N. For birds wintering in the 
Mediterranean Sea, the day after wintering area depar-
ture was taken. Clutch initiation dates were inferred from 
the light data, as incubation stints are apparent as alter-
nating periods of light and darkness each lasting more 
than an hour [38].

Based on positions in the wintering areas, tracks were 
assigned to one of seven discrete areas: (1) Caribbean 
region, Guiyana, Gulf of Mexico and north of Brazil; (2) 
Patagonian Shelf; (3) from the Benguela region west to 
Tristan da Cuñha; (4) Gulf of Guinea and west towards 
eastern Brazil; (5) Canary Current and off north-west 
Africa/Iberia; (6) Mediterranean Sea; (7) Indian Ocean 
and adjacent seas (Fig.  2). Although skuas moved dur-
ing the wintering period, sometimes over substantial 
distances (mean = 1009  km; range = 47–2735  km), none 
had arrival and departure positions in different wintering 
areas.

Statistical analysis
Wintering centroids were calculated as the geographi-
cal mean of positions between arrival and departure. 
Minimum migration distance was calculated as the great-
circle distance between the wintering centroid and the 
breeding site. As a measure of migratory connectivity, 



Page 6 of 15van Bemmelen et al. Movement Ecology           (2024) 12:22 

the degree to which individuals from the same breeding 
site stay together at wintering areas [30], we calculated 
the Mantel correlation Rmantel using the ‘MigConnectiv-
ity’ package in R [39], using the first track of each individ-
ual. Significance of Rmantel was assessed by 1000 random 
permutations.

To quantify individual consistency in choice of winter-
ing area, inter-centroid distances were measured between 
successive years in (a) the same individual and (b) differ-
ent individuals from the same breeding site [40]. To test 
for greater consistency within than between individu-
als, a random distribution was generated 10,000 times 
by re-distributing within- and between-individual labels 
and calculating the within- and between-individual dis-
tances between centroids. In addition, the frequency with 
which individuals switched between wintering areas was 
assessed.

Timing of key events and duration of periods were 
modeled as a function of breeding latitude, with random 
intercepts for each combination of breeding and winter-
ing area as well as for individuals, in Bayesian General-
ized Linear Mixed-effects Models (GLMMs).

We then assessed whether wintering in certain areas 
led to earlier or later arrival compared to birds from 
the same breeding area, by constructing GLMMs with 
breeding and wintering area as fixed effects and random 
intercepts for individuals. We choose Bayesian GLMMs 
for these and other models as these often perform better 
when sample sizes are small and do not require adjust-
ments for multiple comparisons [41]. Data with at least 
three birds for each combination of breeding and winter-
ing areas were selected. We performed two analyses to 
show the effect of wintering area. First, all pairwise com-
parisons of wintering area effects within breeding areas 
were made based on the posterior distributions of the 
contrast between each set of two wintering areas. Poste-
rior contrast probabilities where 0 was outside the 95% 
high density interval (HDI) were considered important. 
Second, to test whether wintering areas led to advances 
or delays relative to birds from the same breeding area 
but wintering elsewhere, the 95% HDI of the posterior 
distributions of each breeding-wintering area combina-
tion were compared to the region of practical equiva-
lence (ROPE), defined as the mean timing of birds from 
the same breeding area but wintering elsewhere, ± 0.1 * 
sd [42]. If the 95% HDI of the posterior distribution fell 
completely outside the ROPE, the wintering area was 
taken to have an important effect. Variance components 
of the fixed and random effects were used to show parti-
tioning of variation between and within individuals (see 
Additional file 1).

To show partitioning of variation among breeding and 
wintering area as well as between and within individuals, 

variance components were extracted for the fixed effects 
σ 2
β as well as between σ 2

α and within individuals σ 2
ǫ  of the 

GLMM with timing of events or duration of periods as 
the response variable, and breeding and wintering area as 
fixed effects. Variance components were also used to cal-
culate the marginal repeatability as Rm = σ 2

α/ σ 2
α + σ 2

ǫ  
[43].

Using only data from breeding areas with the largest 
data sets (FAR: n = 27 tracks, NOR: n = 103 tracks and 
SVA: n = 100 tracks), we tested whether the duration of 
periods between events changed according to timing of 
the onset of each period, by fitting GLMMs with duration 
as the response, the onset of the period as a fixed effect, 
random intercepts and slopes for breeding-wintering 
area combinations and random intercepts for individu-
als. To test whether the duration of periods also changed 
as a function of timing within each breeding-wintering 
area combination, GLMMs were constructed with dura-
tion as the response, slopes with timing per breeding-
wintering area as fixed effects and random intercepts for 
individuals.

GLMMs were fitted using the brms package in R [44], 
which provides an interface to stan [45], with 6000 itera-
tions, a burn-in of 2000, a thinning interval of five and 
default uninformative priors. Model results were checked 
for mixing of and autocorrelation within the chains, and 
for convergence ( ̂R ~ 1).

Results
Migratory connectivity and spatial consistency 
of individuals
For any given colony, there was a range of wintering areas 
used by individual Arctic Skuas (Fig. 2). The largest vari-
ation was among individuals from Slettnes, mainland 
Norway (largest sample size, n = 46 individuals), which 
wintered in all seven areas identified in this study. Vari-
ation among individuals was smallest in the small sam-
ples from Russian sites that all wintered in the Indian 
Ocean (n = 6), and from Greenland, that all wintered in 
the Caribbean region (n = 3). Arctic Skuas breeding in 
Svalbard (n = 42) wintered primarily in the Caribbean 
region (51%), and none migrated to the southern winter-
ing areas, the Patagonian Shelf and Benguela region. In 
contrast to the Svalbard population, few individuals from 
mainland Norway wintered in the Caribbean region (9%, 
n = 57). A considerable proportion of individuals breed-
ing in mainland Norway and Finland wintered on the 
Patagonian Shelf (43%, n = 63). Birds breeding in Iceland, 
the Faroe Islands and Scotland wintered mainly in the 
Benguela region (31%), Canary Current (36%) and the 
Patagonian shelf (23%, n = 39), but none in the Caribbean 
or Mediterranean Sea.
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Individual wintering-site fidelity was very high: out 
of 69 individuals tracked for 2–6  years (n = 190 tracks), 
only two birds (2.9%) switched area between years. The 
first individual, a bird breeding in Brensholmen (main-
land Norway), went to the Gulf of Guinea in the first two 
years of tracking, but wintered in the Canary Current 
in the third year. Another individual, breeding in Sval-
bard, wintered in the Caribbean region in the first and in 
the Gulf of Guinea in the second year. The large overall 
consistency in wintering area is reflected in the smaller 
distance between wintering centroid of the same indi-
viduals (485 ± 558 km) compared with those of different 
individuals from the same breeding area (5634 ± 3152 km, 
p < 0.001).

The considerable degree of mixing of individuals from 
different breeding sites in wintering areas indicated weak 
overall migratory connectivity, as is expressed in the 
Rmantel of 0.19 (95% HDI: 0.11–0.26); excluding the birds 
from the Russian sites resulted in a slightly lower Rmantel 
of 0.14 (95% HDI: 0.07–0.22).

During both autumn and spring migration, most birds 
wintering in the Atlantic staged in a broad area across the 
central North Atlantic, roughly between 35°N and 55°N 

(Fig. 2). Individuals breeding at Svalbard and wintering in 
the Canary Current, however, skipped this staging area in 
spring and followed a more eastern route along Western 
Europe [36].

Annual schedules in relation to migration strategies
Birds at more northerly colonies started breeding (i.e. 
laid the first egg) later (Fig.  3, Additional file 1: Fig. S1) 
and also started and finished migration later. The dura-
tion of spring migration, the time spent in the North 
Atlantic and the time between return to the breeding 
area and clutch initiation all decreased with breeding 
latitude (Fig. 3). However, the duration of autumn migra-
tion, wintering and breeding periods did not change with 
breeding latitude (Fig. 3).

Birds that used different wintering areas also showed 
differences in timing and duration of migration (Fig. 4). 
There was a clear trend of longer migration periods and 
shorter wintering period when wintering further south 
for all breeding areas. Birds wintering on the Patagonian 
Shelf and the Benguela region (the two furthest wintering 
areas, at 12,647–14,664 km and 9803–11800 km, respec-
tively, from colonies) generally stayed for shorter periods 
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in the wintering areas and had longer spring migrations 
than individuals wintering in the Canary Current (the 
closest wintering area, at 4021–7140 km from colonies), 
with the Guinean and Caribbean regions showing inter-
mediate duration of migration and wintering periods. 
Birds from the same breeding population returned to 
the North Atlantic at the same time regardless of winter-
ing area, with the exception of later timing among birds 
wintering on the Patagonian Shelf, and earlier timing 
among Norwegian birds wintering in the Canary Cur-
rent. In all breeding areas except mainland Norway, the 
timing of return to the breeding area was similar between 
birds from different wintering areas. Among mainland 
Norwegian birds, we found weak evidence that return 

to the breeding grounds was slightly delayed among 
birds that wintered on the Patagonian Shelf and was 
advanced among those that wintered in the Canary Cur-
rent. Although timing of clutch initiation varied among 
Norwegian birds—birds that wintered in the Caribbean 
region bred substantially earlier—there was no relation 
between wintering area and clutch initiation date across 
breeding areas.

From wintering area arrival to clutch initiation in the 
next breeding season, individuals were increasingly con-
sistent in their timing (Fig.  5a). The variance between 
individuals was substantially higher than the variance 
within individuals for timing of arrival to and departure 
from the wintering area and arrival in the North Atlantic, 
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leading to highest marginal repeatabilities ( Rm ~ 0.7). 
Variance between and within individuals was similar for 
the timing of return to the breeding area and clutch ini-
tiation, with accordingly lower marginal repeatabilities 
( Rm ~ 0.55 and 0.25, respectively, Fig. 5c). With respect 
to the duration of periods, individuals were most consist-
ent in the time spent in the North Atlantic and least in 
the duration of the wintering period (Fig. 5b). Similarly, 
the repeatability of the duration of periods was ca. 0.7 for 
autumn migration to the time spent in the North Atlan-
tic, after which it dropped to ca. 0.4 due to similar vari-
ances between and within individuals (Fig. 5d).

Strength of temporal carry‑over effects
Both between and within breeding populations, the 
duration of each migration phase was shorter when 
started later (Fig.  6). There was no consistent pattern 
among breeding areas in the steepness of this relation-
ship, and slope estimates (a measure of the strength of 
the carry-over effect) were not consistently associated 
with breeding or wintering areas (Additional file  1: 
Fig. S2). Overall, the decline of duration with time was 
steepest for the wintering period (Additional file  1: 
Fig. S2b), when slope estimates around − 1 indicate 

complete compensation of the timing of arrival in the 
wintering area (Fig.  1). There were two exceptions to 
this pattern: slope estimates around − 0.5 for the two 
farthest wintering areas suggested only partial compen-
sation for late arrival in a) Norwegian birds wintering 
at the Patagonian Shelf ( β = − 0.5, 95% HDI =  − 0.83 
to − 0.15) and b) Faroese birds wintering in the Ben-
guela region ( β = − 0.48, 95% HDI =  − 1.2 to 0.24). 
Note, however, that the estimate for the Faroese birds 
wintering in the Benguela region was associated with 
a very wide HDI overlapping with both − 1 and 0, and 
that the slope estimate for birds from mainland Norway 
wintering in the Benguela region indicates complete 
compensation ( β = − 0.97, 95% HDI =  − 1.53 to − 0.43). 
The duration of spring migration and the time spent 
in the North Atlantic were tightly related to their tim-
ing, with overlapping distributions across breeding 
and wintering areas (Fig.  6c, d). The slope estimates 
between − 0.5 and 0 indicated a partial to complete 
carry-over effect of the arrival in the North Atlantic on 
return to the breeding area (Fig.  6d, e). The timing of 
return partially carried-over to the timing of clutch ini-
tiation, with most slope estimates between − 1 and − 0.5 
(Additional file 1: Fig. S2e).
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Discussion
Our study demonstrates substantial variation within and 
between breeding populations in both wintering areas 
and annual schedules of the Arctic Skua, a long-distance 
migratory seabird with a huge wintering range. Arctic 
Skuas showed weak overall migratory connectivity in 
the Atlantic, with very high variation among individuals, 
including individuals within breeding sites, in their use 
of wintering areas separated by thousands of kilometers. 
Individuals from the colony with the most tracked birds 
(Slettnes, mainland Norway) wintered in all productive 
areas of the Atlantic between 50°S and 30°N, and also 
in the Mediterranean Sea and the Persian Gulf (Fig.  2), 
together representing roughly a tenth of the world’s 
ocean surface area. The lower variability in wintering 
destinations of birds from other breeding sites may partly 
reflect smaller sample sizes. The wintering range of Arc-
tic Skuas is as large or larger than most other well-stud-
ied long-distance migratory seabirds [46–49] and also 
far exceeds the variation shown by a congeneric species, 
the Long-tailed Skua Stercorarius longicaudus [50]. Such 
ocean-scale variation in wintering area selection makes 

the Arctic Skua exceptionally well-suited for directly test-
ing the relationships between the timing of annual events 
and wintering site selection within and between breeding 
colonies.

Migration timing of the tracked Arctic Skuas var-
ied principally with breeding latitude, with later-timed 
schedules of more northern breeders associated with 
faster spring migrations and shorter periods between 
spring arrival at the breeding grounds and clutch initia-
tion. Variation in timing of autumn migration was com-
pletely compensated during the wintering period, even in 
the most distant wintering areas, where skuas spent less 
time. Despite the large variation in migration distances 
and schedules and the strong carry-over effect of tim-
ing during spring migration, the timing of return to the 
breeding area was highly synchronized among individu-
als from the same site, leaving no substantial net carry-
over effect.

In Arctic Skuas, breeding latitude not only shifted the 
timing of annual schedules, as expected [12, 15, 16, 51], 
but later timing also affected the duration of subsequent 
key periods within the annual cycle. Most notably, Arctic 
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Skuas breeding at high latitudes had faster spring migra-
tions and shorter pre-laying periods compared to birds 
breeding at lower latitudes. The faster migration of later-
timed spring migration of Arctic Skuas contrasts with lit-
tle or no geographical variation in the duration of spring 
migration of two insectivorous songbirds [16, 51] and a 
long-distance migratory seabird, the Arctic Tern Sterna 
paradisaea [52]. Arctic Skuas may face faster seasonal 
changes in conditions encountered en route or may be 
more flexible in where they fuel for migration/reproduc-
tion, by regulating the amount of pre-migratory fueling 
in the wintering area, foraging en route and the time 
spent in staging areas, in particular the North Atlantic 
staging area where Arctic Terns stage for no or few days 
in spring [52]. Arctic Skuas from Svalbard spent fewer 
days during spring migration at stopovers compared to 
birds from more southern breeding areas (Fig. 6d; [36]), 
which may be explained by deteriorating foraging condi-
tions in the North Atlantic for Arctic Skuas during April 
to May, when the potential host species to kleptopara-
sitize [53], such as Arctic Terns and Sabine’s Gull Xema 
sabini, return to their breeding areas [52, 54, 55]. Shorter 
time spent at stopovers suggests that birds from more 
northern breeding areas need to fuel up before migra-
tion rather than depend on foraging en route to fuel the 
migration flight, which is common among migrating 
seabirds [56], and to return with large body reserves in 
the breeding area [57]. These body stores are also used 
for egg production: in a population breeding at 61°N, a 
latitude similar to our most southern study sites and thus 
presumably with a relatively long pre-laying period, 16% 
of the protein in eggs originated from distantly-acquired 
resources [58]. Carrying large nutrient stores on migra-
tion is however costly and hence less beneficial as migra-
tory distance increases. This trade-off potentially explains 
why Arctic Skuas breeding in the high Arctic do not 
migrate to the southernmost wintering areas. However, 
carrying large nutrient stores on migration can also be 
advantageous as it increases flight speed when adopt-
ing the ‘dynamic soaring’ flight technique [59], which 
skuas utilize at high wind speeds. Furthermore, carry-
ing nutrient stores is relatively less costly in larger-bod-
ied birds [19]. Interestingly, Arctic Skuas from Svalbard 
were heavier and larger than those from mainland Nor-
way, the Faroe Islands and Scotland (B. Moe, R.S.A. van 
Bemmelen, K.R.S. Snell, R.A. Phillips unpublished data). 
Selection for larger body size to reduce the relative costs 
of carrying nutrient stores during migration provides an 
alternative hypothesis to explain latitudinal clines in body 
size, for which Bergman’s rule is usually invoked [60].

Arctic Skuas were able to compensate for the timing 
of the autumn migration during the wintering period. 
Thereby, our study adds to a growing number of studies 

of ducks, waders and passerines reporting the wintering 
period to be the main period in the annual cycle where 
delays are compensated [17, 27, 61, 62], although the 
migration periods may additionally act as time buffer in 
some species [63, 64]. The ability to shorten the wintering 
period to compensate for later timing of autumn migra-
tion has also been shown by experimentally increas-
ing the duration of parental care [65]. We investigated 
whether birds are less able to compensate for timing of 
autumn migration if the wintering period is shorter, as 
observed in more distant wintering areas, and evidence 
was inconsistent. Indeed, reduced compensation in the 
wintering period was found among skuas breeding in 
northern Norway and wintering at the furthest winter-
ing area, the Patagonian Shelf (Fig. 4), where the winter-
ing period is up to 50 d shorter than in the northernmost 
wintering area (but still about 50 d longer than the 122 
d needed for the moult of the primary feathers; [66]). 
However, no conclusive evidence for reduced compensa-
tion was found among individuals wintering in the Ben-
guela region, at a similar latitude and migration distance. 
Therefore, site-specific effects, rather than migration dis-
tance alone, may explain the difference in the degree to 
which birds compensate earlier timing variation during 
the wintering period, which corresponds to findings for 
the Sanderling Calidris alba [13].

Our study shows largely synchronized timing of return 
to the breeding grounds as well as clutch initiation within 
breeding sites, despite differences between wintering 
areas in migration distance of thousands of kilometers 
and in average spring migration duration of up to 19 d (in 
Scotland). Despite the longer duration of spring migra-
tion from more distant wintering areas and the increas-
ing strength of the carry-over effect of timing during 
spring migration, the similar departure dates across win-
tering areas did not result in substantial net carry-over 
effects on the breeding grounds (Fig.  1). This indicates 
that, rather than departing earlier from the wintering 
grounds, Arctic Skuas with longer migrations increased 
travel speeds to ensure a timely return to the breeding 
grounds, which agrees with empirical data from song-
birds [21]. The similarity in timing of departure across 
wintering areas observed in Arctic Skuas suggests control 
by endogenous biological ‘clocks’, which are thought to 
be fine-tuned by selection [31]. While such endogenous 
rhythms may dictate the general timing of departure, 
individuals select the timing of their departure relative 
to their nutrient stores and environmental conditions 
[67, 68] and may optimise their timing with age [69, 70]. 
Indeed, we found that individuals varied their timing of 
departure from the wintering area from year to year, with 
a standard deviation of about a week (Fig.  5). Whether 
this variation represents sufficient flexibility for Arctic 
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Skuas to adjust to fast directional environmental change, 
such as the effects of global warming on oceanic primary 
productivity in the North Atlantic [71], is yet unclear.

Birds from widely separated wintering areas arrived 
back in the breeding area, on average, within less than a 
week. This synchrony underpins the strong selection on 
timing of spring arrival and breeding when competition 
for territories is high [72]. Later arrival at the breeding 
grounds of individuals from more distant wintering areas 
has been reported for several short- to long-distance 
migrants [28, 73–77], but only in European Shags Gulo-
sus aristotelis and Eurasian Spoonbills Platalea leucoro-
dia did this also lead to later reproduction (6 d in shags, 
12 d in male spoonbills) and lower reproductive success. 
In Arctic Skuas, however, we found partial compensation 
for later return at the breeding grounds: on average, a 1 
d later spring arrival led to 0.6 d later clutch initiation, 
but with substantial individual variation. We did not have 
data on reproductive success, but as wintering area had 
a minimal influence on timing of return to the breeding 
area (on average up to 6 d later) and laying dates (up to 
3 d), a substantial effect of wintering area on reproduc-
tive success via timing of breeding seems unlikely. Fur-
thermore, unless an effect on productivity is substantial, 
demonstrating a carry-over effect on reproduction would 
be difficult considering the multitude of local effects at 
the breeding grounds—effects that have been shown to 
impact reproduction and thus drive population declines 
in Arctic Skuas, at least in Scotland and mainland Nor-
way [78, 79].

By describing the migratory connectivity and ocean-
scale geographic variation in annual schedules and 
carry-over effects on timing of a long-distance migra-
tory seabird, our study contributed to our understand-
ing of potential drivers of meta-population dynamics 
in migratory species. Our results indicate that choice 
of wintering area is unlikely to affect population trends 
through a carry-over effect on timing of breeding, irre-
spective of breeding latitude. Of course, this does not 
rule out effects on survival or reproduction via other 
mechanisms. For example, as daily survival rate may 
differ between stages of the annual cycle [7, 8], winter-
ing area selection may affect annual survival rates and 
therefore population trends, given their concomitant 
annual schedules. While the weak migratory connec-
tivity means that conditions in each wintering area can 
affect multiple breeding populations, each breeding 
population may be buffered from the effect of condi-
tions at specific wintering areas due to the large spread 
of individuals across wintering areas [30]. Interest-
ingly, the population decline in Svalbard (from where 
no individuals wintered in the two most distant win-
tering areas) is less than in the Faroe Islands, Scotland 

and mainland Norway [78–80] and the longevity record 
holder of the species, a bird from Finland, wintered in 
one of the closer wintering areas, the Canary Current 
[81]. If and how breeding area, wintering area, and the 
corresponding annual schedules affect seasonal sur-
vival rates in Arctic Skuas [82] across populations, and 
whether these can explain differences in population 
trends, remains to be investigated.
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